提交 2c4d1afe 编写于 作者: M Megvii Engine Team

test(mge): move `NUMBER` config to pytest.init

GitOrigin-RevId: 1d82209c409ccf884ed9f7917a51ea4da62ec00b
上级 f33a92d6
...@@ -190,7 +190,6 @@ def sqrt(inp: Tensor) -> Tensor: ...@@ -190,7 +190,6 @@ def sqrt(inp: Tensor) -> Tensor:
Outputs: Outputs:
.. testoutput:: .. testoutput::
:options: +NUMBER
[[0. 1. 1.4142] [[0. 1. 1.4142]
[1.7321 2. 2.2361 ]] [1.7321 2. 2.2361 ]]
......
...@@ -636,7 +636,6 @@ def interpolate( ...@@ -636,7 +636,6 @@ def interpolate(
Outputs: Outputs:
.. testoutput:: .. testoutput::
:options: +NUMBER
[[[[1. 1.25 1.75 2. ] [[[[1. 1.25 1.75 2. ]
[1.5 1.75 2.25 2.5 ] [1.5 1.75 2.25 2.5 ]
......
...@@ -39,7 +39,6 @@ def argsort(inp: Tensor, descending: bool = False) -> Tuple[Tensor, Tensor]: ...@@ -39,7 +39,6 @@ def argsort(inp: Tensor, descending: bool = False) -> Tuple[Tensor, Tensor]:
Outputs: Outputs:
.. testoutput:: .. testoutput::
:options: +NUMBER
[1. 2.] [0 1] [1. 2.] [0 1]
...@@ -93,7 +92,6 @@ def top_k( ...@@ -93,7 +92,6 @@ def top_k(
Outputs: Outputs:
.. testoutput:: .. testoutput::
:options: +NUMBER
[1. 2. 3. 4. 5.] [7 0 6 1 5] [1. 2. 3. 4. 5.] [7 0 6 1 5]
......
...@@ -50,7 +50,6 @@ def accuracy(logits: Tensor, target: Tensor, topk: Union[int, Iterable[int]] = 1 ...@@ -50,7 +50,6 @@ def accuracy(logits: Tensor, target: Tensor, topk: Union[int, Iterable[int]] = 1
Outputs: Outputs:
.. testoutput:: .. testoutput::
:options: +NUMBER
[0.] [0.375] [0.] [0.375]
""" """
......
...@@ -20,7 +20,7 @@ class Softmax(Module): ...@@ -20,7 +20,7 @@ class Softmax(Module):
.. math:: .. math::
\text{Softmax}(x_{i}) = \frac{exp(x_i)}{\sum_j exp(x_j)} \text{Softmax}(x_{i}) = \frac{exp(x_i)}{\sum_j exp(x_j)}
It is applied to an n-dimensional input Tensor and rescaling them so that the elements of the It is applied to an n-dimensional input Tensor and rescaling them so that the elements of the
n-dimensional output Tensor lie in the range of `[0, 1]` and sum to 1. n-dimensional output Tensor lie in the range of `[0, 1]` and sum to 1.
:param axis: An axis along which softmax will be applied. By default, :param axis: An axis along which softmax will be applied. By default,
...@@ -137,8 +137,8 @@ class PReLU(Module): ...@@ -137,8 +137,8 @@ class PReLU(Module):
ax, & \text{ otherwise } ax, & \text{ otherwise }
\end{cases} \end{cases}
Here :math:`a` is a learnable parameter. When called without arguments, `PReLU()` uses Here :math:`a` is a learnable parameter. When called without arguments, `PReLU()` uses
a single paramter :math:`a` across all input channel. If called with `PReLU(num_of_channels)`, a single paramter :math:`a` across all input channel. If called with `PReLU(num_of_channels)`,
a seperate :math:`a` is used for each input channle. a seperate :math:`a` is used for each input channle.
:param num_parameters: number of :math:`a` to learn, there is only two :param num_parameters: number of :math:`a` to learn, there is only two
...@@ -218,7 +218,6 @@ class LeakyReLU(Module): ...@@ -218,7 +218,6 @@ class LeakyReLU(Module):
Outputs: Outputs:
.. testoutput:: .. testoutput::
:options: +NUMBER
[-0.08 -0.12 6. 10. ] [-0.08 -0.12 6. 10. ]
......
...@@ -21,7 +21,7 @@ class Embedding(Module): ...@@ -21,7 +21,7 @@ class Embedding(Module):
A simple lookup table that stores embeddings of a fixed dictionary and size. A simple lookup table that stores embeddings of a fixed dictionary and size.
This module is often used to store word embeddings and retrieve them using indices. This module is often used to store word embeddings and retrieve them using indices.
The input to the module is a list of indices, and the output is the corresponding word embeddings. The input to the module is a list of indices, and the output is the corresponding word embeddings.
The indices should less than num_embeddings. The indices should less than num_embeddings.
:param num_embeddings: size of embedding dictionary. :param num_embeddings: size of embedding dictionary.
...@@ -138,7 +138,6 @@ class Embedding(Module): ...@@ -138,7 +138,6 @@ class Embedding(Module):
Outputs: Outputs:
.. testoutput:: .. testoutput::
:options: +NUMBER
[[[1.2 2.3 3.4 4.5 5.6] [[[1.2 2.3 3.4 4.5 5.6]
[0.1 1.1 2.1 3.1 4.1] [0.1 1.1 2.1 3.1 4.1]
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册