提交 2c4d1afe 编写于 作者: M Megvii Engine Team

test(mge): move `NUMBER` config to pytest.init

GitOrigin-RevId: 1d82209c409ccf884ed9f7917a51ea4da62ec00b
上级 f33a92d6
......@@ -190,7 +190,6 @@ def sqrt(inp: Tensor) -> Tensor:
Outputs:
.. testoutput::
:options: +NUMBER
[[0. 1. 1.4142]
[1.7321 2. 2.2361 ]]
......
......@@ -636,7 +636,6 @@ def interpolate(
Outputs:
.. testoutput::
:options: +NUMBER
[[[[1. 1.25 1.75 2. ]
[1.5 1.75 2.25 2.5 ]
......
......@@ -39,7 +39,6 @@ def argsort(inp: Tensor, descending: bool = False) -> Tuple[Tensor, Tensor]:
Outputs:
.. testoutput::
:options: +NUMBER
[1. 2.] [0 1]
......@@ -93,7 +92,6 @@ def top_k(
Outputs:
.. testoutput::
:options: +NUMBER
[1. 2. 3. 4. 5.] [7 0 6 1 5]
......
......@@ -50,7 +50,6 @@ def accuracy(logits: Tensor, target: Tensor, topk: Union[int, Iterable[int]] = 1
Outputs:
.. testoutput::
:options: +NUMBER
[0.] [0.375]
"""
......
......@@ -20,7 +20,7 @@ class Softmax(Module):
.. math::
\text{Softmax}(x_{i}) = \frac{exp(x_i)}{\sum_j exp(x_j)}
It is applied to an n-dimensional input Tensor and rescaling them so that the elements of the
It is applied to an n-dimensional input Tensor and rescaling them so that the elements of the
n-dimensional output Tensor lie in the range of `[0, 1]` and sum to 1.
:param axis: An axis along which softmax will be applied. By default,
......@@ -137,8 +137,8 @@ class PReLU(Module):
ax, & \text{ otherwise }
\end{cases}
Here :math:`a` is a learnable parameter. When called without arguments, `PReLU()` uses
a single paramter :math:`a` across all input channel. If called with `PReLU(num_of_channels)`,
Here :math:`a` is a learnable parameter. When called without arguments, `PReLU()` uses
a single paramter :math:`a` across all input channel. If called with `PReLU(num_of_channels)`,
a seperate :math:`a` is used for each input channle.
:param num_parameters: number of :math:`a` to learn, there is only two
......@@ -218,7 +218,6 @@ class LeakyReLU(Module):
Outputs:
.. testoutput::
:options: +NUMBER
[-0.08 -0.12 6. 10. ]
......
......@@ -21,7 +21,7 @@ class Embedding(Module):
A simple lookup table that stores embeddings of a fixed dictionary and size.
This module is often used to store word embeddings and retrieve them using indices.
The input to the module is a list of indices, and the output is the corresponding word embeddings.
The input to the module is a list of indices, and the output is the corresponding word embeddings.
The indices should less than num_embeddings.
:param num_embeddings: size of embedding dictionary.
......@@ -138,7 +138,6 @@ class Embedding(Module):
Outputs:
.. testoutput::
:options: +NUMBER
[[[1.2 2.3 3.4 4.5 5.6]
[0.1 1.1 2.1 3.1 4.1]
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册