profiler.cpp 13.3 KB
Newer Older
1 2 3 4
/**
 * \file src/opr/impl/search_policy/profile.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11 12 13 14 15
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
 */

#include "megbrain/opr/search_policy/profiler.h"

#include "../internal/invoke.h"
16
#include "../internal/megdnn_opr_wrapper.inl"
17 18
#include "megdnn/handle.h"
#include "megdnn/oprs/base.h"
19

M
Megvii Engine Team 已提交
20 21 22 23
#if MGB_ROCM
#include "hcc_detail/hcc_defs_prologue.h"
#include "megcore_rocm.h"
#endif
24 25 26 27 28 29 30 31 32 33 34 35 36

//! TODO: here has to be know some megdnn::opr when there is produced midout.h
//! fix it if there is another graceful way.
#include "megdnn/oprs.h"

#include "midout.h"

MIDOUT_DECL(megbrain_opr_profile)
#define MIDOUT_B(...) MIDOUT_BEGIN(megbrain_opr_profile, __VA_ARGS__) {
#define MIDOUT_E \
    }            \
    MIDOUT_END();

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
namespace {
std::string serialize_policy(const megdnn::ExecutionPolicy& policy) {
    std::string ret;
    //! serialize AlgorithmDesc
    megdnn::Algorithm::serialize_write_pod(policy.algo.handle_type, ret);
    megdnn::Algorithm::serialize_write_pod(policy.algo.type, ret);
    uint32_t param_size = policy.algo.param.size();
    megdnn::Algorithm::serialize_write_pod<uint32_t>(param_size, ret);
    ret += policy.algo.param;

    //! serialize sub_policy
    uint32_t size = policy.sub_policy.size();
    megdnn::Algorithm::serialize_write_pod(size, ret);
    for (auto&& sub : policy.sub_policy) {
        ret += serialize_policy(sub);
    }
    return ret;
}

megdnn::ExecutionPolicy deserialize_policy(const char* buf, uint32_t size,
                                           uint32_t& offset) {
    megdnn::ExecutionPolicy ret;
#define cb(_val, _type)                                                 \
    _val = megdnn::Algorithm::deserialize_read_pod<_type>(buf, offset); \
    offset += sizeof(_val)

    cb(ret.algo.handle_type, megdnn::Handle::HandleType);
    cb(ret.algo.type, uint32_t);

    uint32_t param_size = 0;
    cb(param_size, uint32_t);
    if (param_size > 0) {
        ret.algo.param = std::string(buf + offset, param_size);
        offset += param_size;
    }

    uint32_t nr_policy = 0;
    cb(nr_policy, uint32_t);
#undef cb

    for (uint32_t i = 0; i < nr_policy; i++) {
        ret.sub_policy.push_back(deserialize_policy(buf, size, offset));
    }
    return ret;
}
}

84 85 86 87 88 89
namespace mgb {
namespace opr {
#define APPLY(statement, ...)                                  \
    mgb::apply([&](const auto&... args) { return statement; }, \
               std::tuple_cat(__VA_ARGS__))

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
////////////// TimedProfiler::Param::ExecutionPolicyBlob //////////////////////

template <typename Opr>
typename TimedProfiler<Opr>::Param::ExecutionPolicyBlob
TimedProfiler<Opr>::Param::ExecutionPolicyBlob::serialize(
        const megdnn::ExecutionPolicy& policy) {
    ExecutionPolicyBlob ret;
    std::string serialize_bin = serialize_policy(policy);
    mgb_assert(serialize_bin.size() < MAX_SIZE_IN_BYTES);
    memcpy(ret.data, serialize_bin.data(), serialize_bin.size());
    ret.size = serialize_bin.size();
    return ret;
}

template <typename Opr>
megdnn::ExecutionPolicy
TimedProfiler<Opr>::Param::ExecutionPolicyBlob::deserialize() const {
    uint32_t offset = 0;
    auto&& ret = deserialize_policy(data, size, offset);
    mgb_assert(offset == size);
    return std::move(ret);
}

#define INST(Opr)                                                            \
    template typename TimedProfiler<megdnn::Opr>::Param::ExecutionPolicyBlob \
    TimedProfiler<megdnn::Opr>::Param::ExecutionPolicyBlob::serialize(       \
            const megdnn::ExecutionPolicy& policy);                          \
    template megdnn::ExecutionPolicy                                         \
    TimedProfiler<megdnn::Opr>::Param::ExecutionPolicyBlob::deserialize()    \
            const;

MGB_FOREACH_FASTRUN_OPR(INST)
#undef INST


////////////////// TimedProfiler //////////////////////////////

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
template <typename Opr>
const double TimedProfiler<Opr>::timeout_setting =
        TimedProfiler<Opr>::init_timeout_setting();

template <typename Opr>
double TimedProfiler<Opr>::init_timeout_setting() {
#if MGB_ENABLE_FASTRUN
    sys::TimedFuncInvoker::ins().register_func(
            AlgoChooserFuncId<Opr>::ID, &TimedProfiler<Opr>::prof_impl,
            &TimedProfiler<Opr>::prof_init_device);
    auto to_set = MGB_GETENV("MGB_CONV_PROFILING_TIMEOUT");
    if (to_set)
        return std::stod(to_set);
#endif
    return 0;
}

#define APPLY(statement, ...)                                  \
    mgb::apply([&](const auto&... args) { return statement; }, \
               std::tuple_cat(__VA_ARGS__))

template <typename Opr>
typename TimedProfiler<Opr>::TResult TimedProfiler<Opr>::prof_impl(
        const TParam& raw_param) {
    MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("TimedProfiler::prof_impl")))
M
Megvii Engine Team 已提交
152 153 154 155 156
#if MGB_ROCM
    bool miopen_algo_search_enabled;
    megcore::getMIOpenAlgoSearchStatus(&miopen_algo_search_enabled);
    mgb_assert(miopen_algo_search_enabled, "MIOpen algo search not enabled");
#endif
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
    auto&& param = raw_param.as_single_pod<Param>();
    CompNode cn = CompNode::load(param.comp_node_loc, param.comp_node_loc);
    auto megdnn_opr = intl::create_megdnn_opr<Opr>(cn);
    std::array<TensorLayout, arity> layouts;

    auto from_enum = [&](DTypeEnum enumv) -> DType {
        switch (enumv) {

#define cb(_dt)                  \
    case DTypeTrait<_dt>::enumv: \
        return _dt(1.0f, static_cast<uint8_t>(0))
            cb(dtype::Quantized8Asymm);
#undef cb

#define cb(_dt)                  \
    case DTypeTrait<_dt>::enumv: \
        return _dt(1.0f)

            cb(dtype::QuantizedS8);
            cb(dtype::QuantizedS16);
            cb(dtype::QuantizedS32);
            default:
                return DType::from_enum(enumv);
#undef cb
        }
    };
    for (int i = 0; i < arity; ++i) {
        layouts[i] = {param.shapes[i], from_enum(param.dtypes[i])};
    }

    megdnn_opr->param() = param.opr_param;
188
    megdnn_opr->execution_policy() = param.execution_policy.deserialize();
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257

    // Allocate preprocessed weight buffers.
    TensorLayoutArray preprocessed_layout;
    if_constexpr<opr_supports_preprocess<Opr>()>([&](auto _) {
        if (param.allow_weight_preprocess) {
            preprocessed_layout = APPLY(
                    _(megdnn_opr)->deduce_preprocessed_filter_layout(args...),
                    layouts);
        }
    });

    {
        // first allocate a whole chunk to avoid memory fragmentation (here we
        // rely on memory allocator to reuse memory)
        auto align = cn.get_mem_addr_alignment();
        size_t tot_size = align;
        for (int i = 0; i < arity; ++i) {
            tot_size += layouts[i].span().high_byte + align;
        }
        for (const auto& layout : preprocessed_layout) {
            tot_size += layout.span().high_byte + align;
        }
        tot_size += param.workspace;
        DeviceTensorStorage storage{cn};
        storage.ensure_size(tot_size);
    }

    // allocate input and output memory
    std::array<DeviceTensorND, arity_in> inp_val;
    std::array<DeviceTensorND, arity_out> out_val;
    DeviceTensorND workspace;
    for (int i = 0; i < arity_in; ++i) {
        inp_val[i].comp_node(cn).dtype(layouts[i].dtype).resize(layouts[i]);
    }
    for (int i = 0; i < arity_out; ++i) {
        out_val[i]
                .comp_node(cn)
                .dtype(layouts[arity_in + i].dtype)
                .resize(layouts[arity_in + i]);
    }
    megdnn::Workspace mdn_workspace;

    // allocate workspace
    if (param.workspace) {
        workspace.comp_node(cn).dtype(dtype::Byte()).resize({param.workspace});
        mdn_workspace.size = param.workspace;
        mdn_workspace.raw_ptr = workspace.raw_ptr();
    }

    // allocate storage for preprocessed filter
    SmallVector<DeviceTensorND> flt_val(preprocessed_layout.size());
    for (size_t i = 0; i < preprocessed_layout.size(); i++) {
        flt_val[i] = {cn, preprocessed_layout[i], preprocessed_layout[i].dtype,
                      preprocessed_layout[i].format};
    }

    for (int i = 0; i < arity_in; ++i) {
        fill_zero_dev_tensor(inp_val[i]);
    }

    PreprocessFilter<Opr> prep_flt;
    if_constexpr<opr_supports_preprocess<Opr>()>([&](auto _) {
        if (!preprocessed_layout.empty()) {
            auto&& pf = _(prep_flt);
            pf.algorithm_id = nullptr;
            pf.tensors.resize(flt_val.size());
            for (size_t i = 0; i < flt_val.size(); i++) {
                pf.tensors[i] = flt_val[i].as_megdnn();
            }
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
            if_constexpr<opr_contain_bias<Opr>()>(
                    //! convbias
                    [&](auto __) {
                        APPLY(__(megdnn_opr)
                                      ->exec_preprocess(args..., &pf,
                                                        mdn_workspace),
                              std::forward_as_tuple(layouts[0],
                                                    inp_val[1].as_megdnn(),
                                                    inp_val[2].as_megdnn()),
                              array_skip<arity_in - 1>(layouts));
                    },
                    //! Convolution
                    [&](auto __) {
                        APPLY(__(megdnn_opr)
                                      ->exec_preprocess(args..., &pf,
                                                        mdn_workspace),
                              std::forward_as_tuple(layouts[0],
                                                    inp_val[1].as_megdnn()),
                              array_skip<2>(layouts));
                    });
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
        }
    });

    RealTimer timer;
    auto ev_start = cn.create_event(CompNode::Event::NEED_TIMER),
         ev_end = cn.create_event(CompNode::Event::NEED_TIMER);
    ev_start->record();
    if_constexpr<opr_supports_preprocess<Opr>()>(
            [&](auto _) {
                auto&& opr = _(megdnn_opr);
                PreprocessFilter<Opr>* pf =
                        preprocessed_layout.empty() ? nullptr : &prep_flt;
                APPLY(opr->exec(args.as_megdnn()..., pf, mdn_workspace),
                      inp_val, out_val);
            },
            /* else */
            [&](auto _) {
                APPLY(_(megdnn_opr)->exec(args.as_megdnn()..., mdn_workspace),
                      inp_val, out_val);
            });
    ev_end->record();

300 301 302
    megdnn::Algorithm* algo = megdnn_opr->get_algorithm_from_desc(
            megdnn_opr->execution_policy().algo);
    mgb_assert(algo);
303 304 305 306 307 308
    double next_report_time = 0.5;
    while (!ev_end->finished()) {
        if (timer.get_secs() >= next_report_time) {
            mgb_log_warn(
                    "profiling conv algo %s already took %.3f/%.3f secs"
                    " (limit can be set by MGB_CONV_PROFILING_TIMEOUT) ",
309
                    algo->name(), timer.get_secs(), param.actual_timeout);
310 311 312 313 314
            next_report_time = timer.get_secs() + 1;
        }
        using namespace std::literals;
        std::this_thread::sleep_for(1000us);
    }
315 316 317
    // release all free blocks owned by child process,
    // in order to avoid main process running out of memory
    cn.try_coalesce_all_free_memory();
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345

    mgb_assert(ev_start->finished());
    return TResult::from_pod(Result{ev_start->elapsed_time_until(*ev_end)});
    MIDOUT_E
};

template <typename Opr>
Maybe<typename TimedProfiler<Opr>::Result> TimedProfiler<Opr>::profile(
        const Param& param, double& timeout) {
    mgb_assert(timeout >= 0);
    if (!timeout) {
        timeout = timeout_setting;
    } else if (timeout_setting) {
        timeout = std::min(timeout, timeout_setting);
    }
    param.actual_timeout =
            timeout ? timeout : std::numeric_limits<double>::infinity();
    auto res = sys::TimedFuncInvoker::ins().invoke(
            AlgoChooserFuncId<Opr>::ID,
            TParam::from_pod(const_cast<Param&>(param)), timeout);
    if (res.valid())
        return res.val().template as_single_pod<Result>();
    return None;
}

template <typename Opr>
void TimedProfiler<Opr>::prof_init_device(const TParam& raw_param) {
    MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("TimedProfiler::prof_init_device")))
M
Megvii Engine Team 已提交
346 347 348
#if MGB_ROCM
    megcore::enableMIOpenAlgoSearch(true);
#endif
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
    auto&& param = raw_param.as_single_pod<Param>();
    CompNode cn = CompNode::load(param.comp_node_loc, param.comp_node_loc);
    // wait for cuda init, so its time does not get accounted in timeout
    cn.sync();
    MIDOUT_E
}

#define INST(Opr)                                                             \
    template const double TimedProfiler<megdnn::Opr>::timeout_setting;        \
    template double TimedProfiler<megdnn::Opr>::init_timeout_setting();       \
    template typename TimedProfiler<megdnn::Opr>::TResult                     \
    TimedProfiler<megdnn::Opr>::prof_impl(const TParam& raw_param);           \
    template Maybe<typename TimedProfiler<megdnn::Opr>::Result>               \
    TimedProfiler<megdnn::Opr>::profile(const Param& param, double& timeout); \
    template void TimedProfiler<megdnn::Opr>::prof_init_device(               \
            const TParam& raw_param);

MGB_FOREACH_FASTRUN_OPR(INST)
#undef INST
}  // namespace opr
}  // namespace mgb

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}