profiler.cpp 10.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/**
 * \file src/opr/impl/search_policy/profile.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
 */

#include "megbrain/opr/search_policy/profiler.h"

#include "../internal/invoke.h"

M
Megvii Engine Team 已提交
17 18 19 20
#if MGB_ROCM
#include "hcc_detail/hcc_defs_prologue.h"
#include "megcore_rocm.h"
#endif
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

//! TODO: here has to be know some megdnn::opr when there is produced midout.h
//! fix it if there is another graceful way.
#include "megdnn/oprs.h"

#include "midout.h"

MIDOUT_DECL(megbrain_opr_profile)
#define MIDOUT_B(...) MIDOUT_BEGIN(megbrain_opr_profile, __VA_ARGS__) {
#define MIDOUT_E \
    }            \
    MIDOUT_END();

namespace mgb {
namespace opr {
#define APPLY(statement, ...)                                  \
    mgb::apply([&](const auto&... args) { return statement; }, \
               std::tuple_cat(__VA_ARGS__))

template <typename Opr>
const double TimedProfiler<Opr>::timeout_setting =
        TimedProfiler<Opr>::init_timeout_setting();

template <typename Opr>
double TimedProfiler<Opr>::init_timeout_setting() {
#if MGB_ENABLE_FASTRUN
    sys::TimedFuncInvoker::ins().register_func(
            AlgoChooserFuncId<Opr>::ID, &TimedProfiler<Opr>::prof_impl,
            &TimedProfiler<Opr>::prof_init_device);
    auto to_set = MGB_GETENV("MGB_CONV_PROFILING_TIMEOUT");
    if (to_set)
        return std::stod(to_set);
#endif
    return 0;
}

#define APPLY(statement, ...)                                  \
    mgb::apply([&](const auto&... args) { return statement; }, \
               std::tuple_cat(__VA_ARGS__))

template <typename Opr>
typename TimedProfiler<Opr>::TResult TimedProfiler<Opr>::prof_impl(
        const TParam& raw_param) {
    MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("TimedProfiler::prof_impl")))
M
Megvii Engine Team 已提交
65 66 67 68 69
#if MGB_ROCM
    bool miopen_algo_search_enabled;
    megcore::getMIOpenAlgoSearchStatus(&miopen_algo_search_enabled);
    mgb_assert(miopen_algo_search_enabled, "MIOpen algo search not enabled");
#endif
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
    auto&& param = raw_param.as_single_pod<Param>();
    CompNode cn = CompNode::load(param.comp_node_loc, param.comp_node_loc);
    auto megdnn_opr = intl::create_megdnn_opr<Opr>(cn);
    std::array<TensorLayout, arity> layouts;

    auto from_enum = [&](DTypeEnum enumv) -> DType {
        switch (enumv) {

#define cb(_dt)                  \
    case DTypeTrait<_dt>::enumv: \
        return _dt(1.0f, static_cast<uint8_t>(0))
            cb(dtype::Quantized8Asymm);
#undef cb

#define cb(_dt)                  \
    case DTypeTrait<_dt>::enumv: \
        return _dt(1.0f)

            cb(dtype::QuantizedS8);
            cb(dtype::QuantizedS16);
            cb(dtype::QuantizedS32);
            default:
                return DType::from_enum(enumv);
#undef cb
        }
    };
    for (int i = 0; i < arity; ++i) {
        layouts[i] = {param.shapes[i], from_enum(param.dtypes[i])};
    }

    megdnn_opr->param() = param.opr_param;
    {
102 103 104 105
        typename Opr::AlgorithmInfo algo;
        for (auto i :
             APPLY(megdnn_opr->get_all_algorithms_info(args...), layouts)) {
            if (!strcmp(i.name.c_str(), param.algo_name)) {
106 107 108 109
                algo = i;
                break;
            }
        }
110
        mgb_assert(algo.valid(), "algorithm %s not found", param.algo_name);
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
        megdnn_opr->execution_policy() = {algo};
    }

    // Allocate preprocessed weight buffers.
    TensorLayoutArray preprocessed_layout;
    if_constexpr<opr_supports_preprocess<Opr>()>([&](auto _) {
        if (param.allow_weight_preprocess) {
            preprocessed_layout = APPLY(
                    _(megdnn_opr)->deduce_preprocessed_filter_layout(args...),
                    layouts);
        }
    });

    {
        // first allocate a whole chunk to avoid memory fragmentation (here we
        // rely on memory allocator to reuse memory)
        auto align = cn.get_mem_addr_alignment();
        size_t tot_size = align;
        for (int i = 0; i < arity; ++i) {
            tot_size += layouts[i].span().high_byte + align;
        }
        for (const auto& layout : preprocessed_layout) {
            tot_size += layout.span().high_byte + align;
        }
        tot_size += param.workspace;
        DeviceTensorStorage storage{cn};
        storage.ensure_size(tot_size);
    }

    // allocate input and output memory
    std::array<DeviceTensorND, arity_in> inp_val;
    std::array<DeviceTensorND, arity_out> out_val;
    DeviceTensorND workspace;
    for (int i = 0; i < arity_in; ++i) {
        inp_val[i].comp_node(cn).dtype(layouts[i].dtype).resize(layouts[i]);
    }
    for (int i = 0; i < arity_out; ++i) {
        out_val[i]
                .comp_node(cn)
                .dtype(layouts[arity_in + i].dtype)
                .resize(layouts[arity_in + i]);
    }
    megdnn::Workspace mdn_workspace;

    // allocate workspace
    if (param.workspace) {
        workspace.comp_node(cn).dtype(dtype::Byte()).resize({param.workspace});
        mdn_workspace.size = param.workspace;
        mdn_workspace.raw_ptr = workspace.raw_ptr();
    }

    // allocate storage for preprocessed filter
    SmallVector<DeviceTensorND> flt_val(preprocessed_layout.size());
    for (size_t i = 0; i < preprocessed_layout.size(); i++) {
        flt_val[i] = {cn, preprocessed_layout[i], preprocessed_layout[i].dtype,
                      preprocessed_layout[i].format};
    }

    for (int i = 0; i < arity_in; ++i) {
        fill_zero_dev_tensor(inp_val[i]);
    }

    PreprocessFilter<Opr> prep_flt;
    if_constexpr<opr_supports_preprocess<Opr>()>([&](auto _) {
        if (!preprocessed_layout.empty()) {
            auto&& pf = _(prep_flt);
            pf.algorithm_id = nullptr;
            pf.tensors.resize(flt_val.size());
            for (size_t i = 0; i < flt_val.size(); i++) {
                pf.tensors[i] = flt_val[i].as_megdnn();
            }
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
            if_constexpr<opr_contain_bias<Opr>()>(
                    //! convbias
                    [&](auto __) {
                        APPLY(__(megdnn_opr)
                                      ->exec_preprocess(args..., &pf,
                                                        mdn_workspace),
                              std::forward_as_tuple(layouts[0],
                                                    inp_val[1].as_megdnn(),
                                                    inp_val[2].as_megdnn()),
                              array_skip<arity_in - 1>(layouts));
                    },
                    //! Convolution
                    [&](auto __) {
                        APPLY(__(megdnn_opr)
                                      ->exec_preprocess(args..., &pf,
                                                        mdn_workspace),
                              std::forward_as_tuple(layouts[0],
                                                    inp_val[1].as_megdnn()),
                              array_skip<2>(layouts));
                    });
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
        }
    });

    RealTimer timer;
    auto ev_start = cn.create_event(CompNode::Event::NEED_TIMER),
         ev_end = cn.create_event(CompNode::Event::NEED_TIMER);
    ev_start->record();
    if_constexpr<opr_supports_preprocess<Opr>()>(
            [&](auto _) {
                auto&& opr = _(megdnn_opr);
                PreprocessFilter<Opr>* pf =
                        preprocessed_layout.empty() ? nullptr : &prep_flt;
                APPLY(opr->exec(args.as_megdnn()..., pf, mdn_workspace),
                      inp_val, out_val);
            },
            /* else */
            [&](auto _) {
                APPLY(_(megdnn_opr)->exec(args.as_megdnn()..., mdn_workspace),
                      inp_val, out_val);
            });
    ev_end->record();

    double next_report_time = 0.5;
    while (!ev_end->finished()) {
        if (timer.get_secs() >= next_report_time) {
            mgb_log_warn(
                    "profiling conv algo %s already took %.3f/%.3f secs"
                    " (limit can be set by MGB_CONV_PROFILING_TIMEOUT) ",
                    param.algo_name, timer.get_secs(), param.actual_timeout);
            next_report_time = timer.get_secs() + 1;
        }
        using namespace std::literals;
        std::this_thread::sleep_for(1000us);
    }

    mgb_assert(ev_start->finished());
    return TResult::from_pod(Result{ev_start->elapsed_time_until(*ev_end)});
    MIDOUT_E
};

template <typename Opr>
Maybe<typename TimedProfiler<Opr>::Result> TimedProfiler<Opr>::profile(
        const Param& param, double& timeout) {
    mgb_assert(timeout >= 0);
    if (!timeout) {
        timeout = timeout_setting;
    } else if (timeout_setting) {
        timeout = std::min(timeout, timeout_setting);
    }
    param.actual_timeout =
            timeout ? timeout : std::numeric_limits<double>::infinity();
    auto res = sys::TimedFuncInvoker::ins().invoke(
            AlgoChooserFuncId<Opr>::ID,
            TParam::from_pod(const_cast<Param&>(param)), timeout);
    if (res.valid())
        return res.val().template as_single_pod<Result>();
    return None;
}

template <typename Opr>
void TimedProfiler<Opr>::prof_init_device(const TParam& raw_param) {
    MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("TimedProfiler::prof_init_device")))
M
Megvii Engine Team 已提交
264 265 266
#if MGB_ROCM
    megcore::enableMIOpenAlgoSearch(true);
#endif
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
    auto&& param = raw_param.as_single_pod<Param>();
    CompNode cn = CompNode::load(param.comp_node_loc, param.comp_node_loc);
    // wait for cuda init, so its time does not get accounted in timeout
    cn.sync();
    MIDOUT_E
}

#define INST(Opr)                                                             \
    template const double TimedProfiler<megdnn::Opr>::timeout_setting;        \
    template double TimedProfiler<megdnn::Opr>::init_timeout_setting();       \
    template typename TimedProfiler<megdnn::Opr>::TResult                     \
    TimedProfiler<megdnn::Opr>::prof_impl(const TParam& raw_param);           \
    template Maybe<typename TimedProfiler<megdnn::Opr>::Result>               \
    TimedProfiler<megdnn::Opr>::profile(const Param& param, double& timeout); \
    template void TimedProfiler<megdnn::Opr>::prof_init_device(               \
            const TParam& raw_param);

MGB_FOREACH_FASTRUN_OPR(INST)
#undef INST
}  // namespace opr
}  // namespace mgb

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}