test_functional.py 16.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import itertools

import numpy as np
import pytest
13
from utils import opr_test
14

15
import megengine.core.ops.builtin as builtin
16 17
import megengine.core.tensor.dtype as dtype
import megengine.functional as F
M
Megvii Engine Team 已提交
18
from megengine import Parameter, Tensor, is_cuda_available, tensor
19
from megengine.core._trace_option import use_tensor_shape
20
from megengine.core.autodiff.grad import Grad
21
from megengine.core.tensor.utils import make_shape_tuple
22 23


24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
def test_where():
    maskv0 = np.array([[1, 0], [0, 1]], dtype=np.bool_)
    xv0 = np.array([[1, np.inf], [np.nan, 4]], dtype=np.float32)
    yv0 = np.array([[5, 6], [7, 8]], dtype=np.float32)

    maskv1 = np.array([[1, 0, 1], [1, 0, 0], [1, 1, 0]], dtype=np.bool_)
    xv1 = np.array([[1, np.inf, 2], [0, np.nan, 4], [1, 5, 7]], dtype=np.float32)
    yv1 = np.array([[5, 6, 9], [2, 7, 8], [2, 1, 9]], dtype=np.float32)

    cases = [
        {"input": [maskv0, xv0, yv0]},
        {"input": [maskv1, xv1, yv1]},
    ]
    opr_test(cases, F.where, ref_fn=np.where)

    maskv2 = np.array([1, 1, 1], dtype=np.bool_)
    xv2 = np.array([1, 3, 2], dtype=np.float32)
    yv2 = np.array([5, 6, 9], dtype=np.float32)

    maskv3 = np.array([0, 0, 0], dtype=np.bool_)
    xv3 = np.array([1, 3, 2], dtype=np.float32)
    yv3 = np.array([5, 6, 9], dtype=np.float32)

    cases = [
        {"input": [maskv2, xv2, yv2]},
        {"input": [maskv3, xv3, yv3]},
    ]
    opr_test(cases, F.where, ref_fn=np.where)
52 53


54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
def test_dropout():
    data = tensor(np.ones(10, dtype=np.float32))
    out = F.dropout(data, 1.0 / 3.0, training=False)

    assert out.numpy().sum() >= 0.0


def test_matmul():
    shape1 = 3
    shape2 = 3
    shape3 = (3, 5)
    shape4 = (5, 6)
    data1 = np.random.random(shape1).astype("float32")
    data2 = np.random.random(shape2).astype("float32")
    data3 = np.random.random(shape3).astype("float32")
    data4 = np.random.random(shape4).astype("float32")

    cases = [
        {"input": [data1, data2]},
        {"input": [data2, data3]},
        {"input": [data3, data4]},
    ]
    opr_test(cases, F.matmul, ref_fn=np.matmul)

    batch_size = 10
    shape1 = (batch_size, 2, 3)
    shape2 = (batch_size, 3, 4)
    shape3 = (batch_size, 10, 4, 5)
    data1 = np.random.random(shape1).astype("float32")
    data2 = np.random.random(shape2).astype("float32")
    data3 = np.random.random(shape3).astype("float32")

    cases = [{"input": [data1, data2]}, {"input": [data2, data3]}]
    for i in range(0, batch_size):

        def compare_fn(x, y):
            x.numpy()[i, ...] == y

        opr_test(
            cases,
            F.matmul,
            compare_fn=compare_fn,
            ref_fn=lambda x, y: np.matmul(x[i, ...], y[i, ...]),
        )


100 101 102 103 104 105 106
def test_interpolate():
    def linear_interpolate():
        inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2))

        out = F.interpolate(inp, scale_factor=2.0, mode="LINEAR")
        out2 = F.interpolate(inp, 4, mode="LINEAR")

107
        np.testing.assert_allclose(
108 109
            out.numpy(), np.array([[[1.0, 1.25, 1.75, 2.0]]], dtype=np.float32)
        )
110
        np.testing.assert_allclose(
111 112 113 114 115 116 117 118 119
            out2.numpy(), np.array([[[1.0, 1.25, 1.75, 2.0]]], dtype=np.float32)
        )

    def many_batch_interpolate():
        inp = tensor(np.arange(1, 9, dtype=np.float32).reshape(2, 1, 2, 2))

        out = F.interpolate(inp, [4, 4])
        out2 = F.interpolate(inp, scale_factor=2.0)

120
        np.testing.assert_allclose(out.numpy(), out2.numpy())
121 122 123 124 125 126 127

    def assign_corner_interpolate():
        inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2))

        out = F.interpolate(inp, [4, 4], align_corners=True)
        out2 = F.interpolate(inp, scale_factor=2.0, align_corners=True)

128
        np.testing.assert_allclose(out.numpy(), out2.numpy())
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181

    def error_shape_linear_interpolate():
        inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2))

        with pytest.raises(ValueError):
            F.interpolate(inp, scale_factor=2.0, mode="LINEAR")

    def inappropriate_scale_linear_interpolate():
        inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2))

        with pytest.raises(ValueError):
            F.interpolate(inp, scale_factor=[2.0, 3.0], mode="LINEAR")

    linear_interpolate()
    many_batch_interpolate()
    assign_corner_interpolate()
    error_shape_linear_interpolate()
    inappropriate_scale_linear_interpolate()


def _save_to(self, name="grad"):
    def callback(tensor, grad):
        setattr(self, name, grad)

    return callback


def _gen_roi_inp():
    inp_feat = np.random.randn(2, 32, 256, 256)
    rois = np.zeros((4, 5))
    rois[:, 0] = [0, 0, 1, 1]
    rois[:, 1:3] = np.random.rand(4, 2) * 100
    rois[:, 3:] = np.random.rand(4, 2) * 100 + 150

    inp_feat = tensor(inp_feat)
    rois = tensor(rois)
    return inp_feat, rois


def test_roi_align():
    inp_feat, rois = _gen_roi_inp()
    grad = Grad().wrt(inp_feat, callback=_save_to(inp_feat))

    output_shape = (7, 7)
    out_feat = F.roi_align(
        inp_feat,
        rois,
        output_shape=output_shape,
        mode="average",
        spatial_scale=1.0 / 4,
        sample_points=2,
        aligned=True,
    )
182 183 184 185 186
    assert make_shape_tuple(out_feat.shape) == (
        rois.shape[0],
        inp_feat.shape[1],
        *output_shape,
    )
187 188

    grad(out_feat, tensor(F.ones_like(out_feat)))
189
    assert make_shape_tuple(inp_feat.grad.shape) == make_shape_tuple(inp_feat.shape)
190 191 192 193 194 195 196 197 198


def test_roi_pooling():
    inp_feat, rois = _gen_roi_inp()
    grad = Grad().wrt(inp_feat, callback=_save_to(inp_feat))
    output_shape = (7, 7)
    out_feat = F.roi_pooling(
        inp_feat, rois, output_shape=output_shape, mode="max", scale=1.0 / 4,
    )
199 200 201 202 203
    assert make_shape_tuple(out_feat.shape) == (
        rois.shape[0],
        inp_feat.shape[1],
        *output_shape,
    )
204 205

    grad(out_feat, tensor(F.ones_like(out_feat)))
206
    assert make_shape_tuple(inp_feat.grad.shape) == make_shape_tuple(inp_feat.shape)
207 208


209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
def test_adaptive_avg_pool2d():
    inp = tensor(np.arange(0, 16, dtype=np.float32).reshape(1, 1, 4, 4))
    oshp = (2, 2)
    grad = Grad().wrt(inp, callback=_save_to(inp))
    outp = F.adaptive_avg_pool2d(inp, oshp,)
    assert make_shape_tuple(outp.shape) == (inp.shape[0], inp.shape[1], *oshp,)
    np.testing.assert_equal(
        outp.numpy(), np.array([[[[2.5, 4.5], [10.5, 12.5]]]], dtype=np.float32)
    )

    grad(outp, tensor(F.ones_like(outp)))
    assert make_shape_tuple(inp.grad.shape) == make_shape_tuple(inp.shape)
    np.testing.assert_equal(
        inp.grad.numpy(),
        np.array(
            [
                [
                    [
                        [0.25, 0.25, 0.25, 0.25],
                        [0.25, 0.25, 0.25, 0.25],
                        [0.25, 0.25, 0.25, 0.25],
                        [0.25, 0.25, 0.25, 0.25],
                    ]
                ]
            ],
            dtype=np.float32,
        ),
    )


def test_adaptive_max_pool2d():
    inp = tensor(np.arange(0, 16, dtype=np.float32).reshape(1, 1, 4, 4))
    oshp = (2, 2)
    grad = Grad().wrt(inp, callback=_save_to(inp))
    outp = F.adaptive_max_pool2d(inp, oshp,)
    assert make_shape_tuple(outp.shape) == (inp.shape[0], inp.shape[1], *oshp,)
    np.testing.assert_equal(
        outp.numpy(), np.array([[[[5, 7], [13, 15]]]], dtype=np.float32)
    )

    grad(outp, tensor(F.ones_like(outp)))
    assert make_shape_tuple(inp.grad.shape) == make_shape_tuple(inp.shape)
    np.testing.assert_equal(
        inp.grad.numpy(),
        np.array(
            [
                [
                    [
                        [0.0, 0.0, 0.0, 0.0],
                        [0.0, 1.0, 0.0, 1.0],
                        [0.0, 0.0, 0.0, 0.0],
                        [0.0, 1.0, 0.0, 1.0],
                    ]
                ]
            ],
            dtype=np.float32,
        ),
    )


269 270 271 272
def test_one_hot():
    def onehot_low_dimension():
        inp = tensor(np.arange(1, 4, dtype=np.int32))
        out = F.one_hot(inp, num_classes=4)
273

274
        np.testing.assert_allclose(
275 276
            out.numpy(), np.eye(4, dtype=np.int32)[np.arange(1, 4, dtype=np.int32)]
        )
277

278 279 280 281 282
    def onehot_high_dimension():
        arr = np.array(
            [[3, 2, 4, 4, 2, 4, 0, 4, 4, 1], [4, 1, 1, 3, 2, 2, 4, 2, 4, 3]],
            dtype=np.int32,
        )
283

284 285
        inp = tensor(arr)
        out = F.one_hot(inp, 10)
286

287
        np.testing.assert_allclose(out.numpy(), np.eye(10, dtype=np.int32)[arr])
288

289 290
    onehot_low_dimension()
    onehot_high_dimension()
291 292 293 294 295


def test_add_update():
    shape = (2, 3)
    v = np.random.random(shape).astype(np.float32)
M
Megvii Engine Team 已提交
296
    b = Tensor(v)
297 298

    u = F.add_update(b, 1)
299
    np.testing.assert_allclose(u.numpy(), v + 1, atol=1e-6)
300
    u = F.add_update(b, 1)
301
    np.testing.assert_allclose(u.numpy(), v + 2, atol=1e-6)
302 303 304 305 306 307

    x = np.ones((2, 2), dtype=np.float32)
    y = x * 0.5
    dest = tensor(x)
    delta = tensor(y)
    r = F.add_update(dest, delta, alpha=0.9, beta=0.1, bias=0.1)
308
    np.testing.assert_allclose(r.numpy(), x * 0.9 + y * 0.1 + 0.1, atol=1e-6)
309 310 311 312


def test_add_update_params():
    b = np.random.random((2, 3)).astype(np.float32)
M
Megvii Engine Team 已提交
313
    y = Tensor(b)
314 315 316 317 318 319 320

    # @jit.trace
    def f(x):
        return F.add_update(y, x)

    f(np.zeros((2, 3)).astype(np.float32))

M
Megvii Engine Team 已提交
321
    z = Tensor(np.zeros((2, 3)).astype(np.float32))
322 323 324
    F.add_update(y, z, beta=0.1)

    res = f(np.ones((2, 3)).astype(np.float32))
325
    np.testing.assert_allclose(res.numpy(), b + 1)
326 327 328 329 330 331 332 333 334 335 336 337


def test_binary_cross_entropy():
    data1_shape = (2, 2)
    label1_shape = (2, 2)
    data2_shape = (2, 3)
    label2_shape = (2, 3)

    def sigmoid(x):
        return 1 / (1 + np.exp(-x))

    def compare_fn(x, y):
338
        np.testing.assert_allclose(x.numpy(), y, atol=5e-4)
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394

    np.random.seed(123)
    data1 = sigmoid(np.random.uniform(size=data1_shape).astype(np.float32))
    label1 = np.random.uniform(size=label1_shape).astype(np.float32)
    expect1 = np.array([0.6361], dtype=np.float32)

    np.random.seed(123)
    data2 = sigmoid(np.random.uniform(size=data2_shape).astype(np.float32))
    label2 = np.random.uniform(size=label2_shape).astype(np.float32)
    expect2 = np.array([0.6750], dtype=np.float32)

    cases = [
        {"input": [data1, label1], "output": expect1,},
        {"input": [data2, label2], "output": expect2,},
    ]
    opr_test(cases, F.binary_cross_entropy, compare_fn=compare_fn)


def test_hinge_loss():
    np.random.seed(123)
    # case with L1 norm
    cases = []
    for shape in [(2, 2), (2, 3)]:
        data = np.random.uniform(size=shape).astype(np.float32)
        label = 2 * np.random.randint(0, 1, size=shape).astype(np.float32) - 1
        expect = np.clip(0, np.inf, 1 - data * label).sum(axis=1).mean()
        cases.append({"input": [data, label], "output": expect})

    opr_test(cases, F.hinge_loss)

    # cases with L2 norm
    cases = []
    for shape in [(2, 2), (2, 3)]:
        data = np.random.uniform(size=shape).astype(np.float32)
        label = 2 * np.random.randint(0, 1, size=shape).astype(np.float32) - 1
        expect = ((np.clip(0, np.inf, 1 - data * label) ** 2).sum(axis=1)).mean()
        cases.append({"input": [data, label], "output": expect})

    def hinge_loss_with_l2_norm(pred, label):
        return F.hinge_loss(pred, label, "L2")

    opr_test(cases, hinge_loss_with_l2_norm)


def test_nms():
    x = np.array(
        [
            [0, 0, 100, 100],
            [10, 10, 100, 100],
            [50, 50, 100, 100],
            [100, 100, 150, 150],
        ],
        dtype=np.float32,
    )
    inp = tensor(x)
    scores = tensor([0.5, 0.8, 0.9, 0.6], dtype=np.float32)
395
    result = F.nms(inp, scores=scores, iou_thresh=0.5)
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
    np.testing.assert_equal(result.numpy(), np.array([2, 1, 3], dtype=np.int32))


def test_batched_nms():
    x = np.array(
        [
            [0, 0, 100, 100],
            [0.5, 0.5, 1.5, 1.5],
            [20, 20, 100, 100],
            [0.5, 0.5, 1.0, 1.0],
            [10, 10, 100, 100],
            [0.5, 0.5, 1.0, 1.0],
        ],
        dtype=np.float32,
    )
    inp = tensor(x)
    scores = tensor([0.6, 0.9, 0.5, 0.6, 0.8, 0.7], dtype=np.float32)
    idxs = tensor([0, 1, 0, 1, 0, 1], dtype=np.int32)
414
    results = F.batched_nms(inp, scores=scores, idxs=idxs, iou_thresh=0.5)
415 416 417
    np.testing.assert_equal(results.numpy(), np.array([1, 4, 5], dtype=np.int32))


418
@pytest.mark.skip(reason="cuda does not support nchw int8")
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
def test_conv_bias():
    inp_scale = 1.5
    w_scale = 2.5
    outp_scale = 1.5
    inp_dtype = dtype.qint8(inp_scale)
    w_dtype = dtype.qint8(w_scale)
    b_dtype = dtype.qint32(inp_scale * w_scale)
    out_dtype = dtype.qint8(outp_scale)

    def run(
        N,
        IC,
        OC,
        IH,
        IW,
        KH,
        KW,
        PH,
        PW,
        SH,
        SW,
        has_bias=True,
        nonlinear_mode="IDENTITY",
    ):
        inp_v = np.random.normal(size=(N, IC, IH, IW))
        w_v = np.random.normal(size=(OC, IC, KW, KW))
        b_v = np.random.normal(size=(1, OC, 1, 1))
        inp_scale = dtype.get_scale(inp_dtype)
        w_scale = dtype.get_scale(w_dtype)
        b_scale = dtype.get_scale(b_dtype)

        inpv = dtype.convert_to_qint8(inp_v * inp_scale, inp_dtype)
        wv = dtype.convert_to_qint8(w_v * w_scale, w_dtype)
        bv = dtype.convert_to_qint32(b_v * b_scale, b_dtype)

        inp_int8 = tensor(inpv, dtype=inp_dtype)
        w_int8 = Parameter(wv, dtype=w_dtype)
        b_int32 = Parameter(bv, dtype=b_dtype)

        inp_fp32 = inp_int8.astype("float32")
        w_fp32 = w_int8.astype("float32")
        b_fp32 = b_int32.astype("float32")

        def convert_to_nchw4(var):
            var = F.reshape(
                var, (var.shape[0], var.shape[1] // 4, 4, var.shape[2], var.shape[3])
            )
466
            var = F.transpose(var, (0, 1, 3, 4, 2))
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
            return var

        def run_conv2d(inp, w, b):
            O = F.conv2d(
                inp, w, b if has_bias else None, stride=(SH, SW), padding=(PH, PW),
            )
            if nonlinear_mode == "RELU":
                return F.relu(O)
            else:
                return O

        def run_conv_bias(inp, w, b, format="NCHW"):
            b = b if has_bias else Parameter(np.zeros_like(b.numpy()))
            if format == "NCHW4":
                inp = convert_to_nchw4(inp)
                w = convert_to_nchw4(w)
                b = convert_to_nchw4(b)
            return F.conv_bias_activation(
                inp,
                w,
                b,
                stride=(SH, SW),
                padding=(PH, PW),
                format=format,
                dtype=out_dtype,
                nonlinear_mode=nonlinear_mode,
            )

        format = "NCHW4" if is_cuda_available() else "NCHW"

        expected = run_conv2d(inp_fp32, w_fp32, b_fp32)
        expected = expected.astype(out_dtype).astype("float32")
        result = run_conv_bias(inp_int8, w_int8, b_int32, format=format).astype(
            "float32"
        )
        if format == "NCHW4":
503
            result = F.transpose(result, (0, 1, 4, 2, 3))
504 505
        expected = F.flatten(expected)
        result = F.flatten(result)
506
        np.testing.assert_allclose(result.numpy(), expected.numpy(), atol=outp_scale)
507 508 509 510 511 512 513 514 515 516 517 518 519

    run(1, 4, 4, 24, 33, 1, 1, 2, 3, 1, 1, False)
    run(10, 12, 24, 46, 46, 1, 1, 2, 1, 3, 1, False)
    run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, False)

    run(1, 4, 4, 24, 33, 1, 1, 2, 3, 1, 1)
    run(10, 12, 24, 46, 46, 1, 1, 2, 1, 3, 1)
    run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2)

    run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, False, "RELU")
    run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, True, "RELU")


520 521 522 523 524 525 526 527 528
def test_zero_stride_numpy_array():
    inp = np.random.randn(3, 224, 224).astype(np.float32)
    inp = inp[np.newaxis, :]

    inp = tensor(inp, dtype=np.float32)
    weight = tensor(np.random.randn(16, 3, 3, 3), dtype=np.float32)
    out = F.conv2d(inp, weight, None, (2, 2), (3, 3), (1, 1), 1)


529 530 531 532 533 534 535 536
def test_condtake():
    x = np.array([[1, 2, 3], [4, 5, 6]])
    y = np.array([[True, False, True], [False, True, True]])
    xx = tensor(x)
    yy = tensor(y)
    val, idx = F.cond_take(yy, xx)
    np.testing.assert_equal(val.numpy(), x[y])
    np.testing.assert_equal(idx.numpy(), np.where(y.reshape(-1))[0])
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553


def test_condtake_is_same():
    op1 = builtin.CondTake()
    op2 = builtin.CondTake()
    assert op1 == op2


def test_nms_is_same():
    op1 = builtin.NMSKeep(0.7, 100)
    op2 = builtin.NMSKeep(0.7, 100)
    op3 = builtin.NMSKeep(0.8, 100)
    op4 = builtin.NMSKeep(0.7, 200)
    assert op1 == op2
    assert op1 != op3
    assert op1 != op4
    assert op3 != op4
554 555