test_functional.py 16.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import itertools

import numpy as np
import pytest

14
import megengine.core.ops.builtin as builtin
15 16
import megengine.core.tensor.dtype as dtype
import megengine.functional as F
M
Megvii Engine Team 已提交
17
from megengine import Parameter, Tensor, is_cuda_available, tensor
18
from megengine.core._trace_option import use_tensor_shape
19
from megengine.core.autodiff.grad import Grad
20
from megengine.core.tensor.utils import make_shape_tuple
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
from megengine.test import assertTensorClose


def _default_compare_fn(x, y):
    assertTensorClose(x.numpy(), y)


def opr_test(cases, func, compare_fn=_default_compare_fn, ref_fn=None, **kwargs):
    """
    func: the function to run opr.
    compare_fn: the function to compare the result and expected, use assertTensorClose if None.
    ref_fn: the function to generate expected data, should assign output if None.
    cases: the list which have dict element, the list length should be 2 for dynamic shape test.
           and the dict should have input,
           and should have output if ref_fn is None.
           should use list for multiple inputs and outputs for each case.
    kwargs: The additional kwargs for opr func.

    simple examples:

        dtype = np.float32
        cases = [{"input": [10, 20]}, {"input": [20, 30]}]
        opr_test(cases,
                 F.eye,
                 ref_fn=lambda n, m: np.eye(n, m).astype(dtype),
                 dtype=dtype)

    """

    def check_results(results, expected):
        if not isinstance(results, (tuple, list)):
            results = (results,)
        for r, e in zip(results, expected):
            compare_fn(r, e)

    def get_param(cases, idx):
        case = cases[idx]
        inp = case.get("input", None)
        outp = case.get("output", None)
        if inp is None:
            raise ValueError("the test case should have input")
        if not isinstance(inp, (tuple, list)):
            inp = (inp,)
        if ref_fn is not None and callable(ref_fn):
            outp = ref_fn(*inp)
        if outp is None:
            raise ValueError("the test case should have output or reference function")
        if not isinstance(outp, (tuple, list)):
            outp = (outp,)

        return inp, outp

    if len(cases) == 0:
        raise ValueError("should give one case at least")

    if not callable(func):
        raise ValueError("the input func should be callable")

    inp, outp = get_param(cases, 0)
    inp_tensor = [tensor(inpi) for inpi in inp]

    results = func(*inp_tensor, **kwargs)
    check_results(results, outp)


86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
def test_where():
    maskv0 = np.array([[1, 0], [0, 1]], dtype=np.bool_)
    xv0 = np.array([[1, np.inf], [np.nan, 4]], dtype=np.float32)
    yv0 = np.array([[5, 6], [7, 8]], dtype=np.float32)

    maskv1 = np.array([[1, 0, 1], [1, 0, 0], [1, 1, 0]], dtype=np.bool_)
    xv1 = np.array([[1, np.inf, 2], [0, np.nan, 4], [1, 5, 7]], dtype=np.float32)
    yv1 = np.array([[5, 6, 9], [2, 7, 8], [2, 1, 9]], dtype=np.float32)

    cases = [
        {"input": [maskv0, xv0, yv0]},
        {"input": [maskv1, xv1, yv1]},
    ]
    opr_test(cases, F.where, ref_fn=np.where)

    maskv2 = np.array([1, 1, 1], dtype=np.bool_)
    xv2 = np.array([1, 3, 2], dtype=np.float32)
    yv2 = np.array([5, 6, 9], dtype=np.float32)

    maskv3 = np.array([0, 0, 0], dtype=np.bool_)
    xv3 = np.array([1, 3, 2], dtype=np.float32)
    yv3 = np.array([5, 6, 9], dtype=np.float32)

    cases = [
        {"input": [maskv2, xv2, yv2]},
        {"input": [maskv3, xv3, yv3]},
    ]
    opr_test(cases, F.where, ref_fn=np.where)
114 115


116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
def test_dropout():
    data = tensor(np.ones(10, dtype=np.float32))
    out = F.dropout(data, 1.0 / 3.0, training=False)

    assert out.numpy().sum() >= 0.0


def test_matmul():
    shape1 = 3
    shape2 = 3
    shape3 = (3, 5)
    shape4 = (5, 6)
    data1 = np.random.random(shape1).astype("float32")
    data2 = np.random.random(shape2).astype("float32")
    data3 = np.random.random(shape3).astype("float32")
    data4 = np.random.random(shape4).astype("float32")

    cases = [
        {"input": [data1, data2]},
        {"input": [data2, data3]},
        {"input": [data3, data4]},
    ]
    opr_test(cases, F.matmul, ref_fn=np.matmul)

    batch_size = 10
    shape1 = (batch_size, 2, 3)
    shape2 = (batch_size, 3, 4)
    shape3 = (batch_size, 10, 4, 5)
    data1 = np.random.random(shape1).astype("float32")
    data2 = np.random.random(shape2).astype("float32")
    data3 = np.random.random(shape3).astype("float32")

    cases = [{"input": [data1, data2]}, {"input": [data2, data3]}]
    for i in range(0, batch_size):

        def compare_fn(x, y):
            x.numpy()[i, ...] == y

        opr_test(
            cases,
            F.matmul,
            compare_fn=compare_fn,
            ref_fn=lambda x, y: np.matmul(x[i, ...], y[i, ...]),
        )


162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
def test_interpolate():
    def linear_interpolate():
        inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2))

        out = F.interpolate(inp, scale_factor=2.0, mode="LINEAR")
        out2 = F.interpolate(inp, 4, mode="LINEAR")

        assertTensorClose(
            out.numpy(), np.array([[[1.0, 1.25, 1.75, 2.0]]], dtype=np.float32)
        )
        assertTensorClose(
            out2.numpy(), np.array([[[1.0, 1.25, 1.75, 2.0]]], dtype=np.float32)
        )

    def many_batch_interpolate():
        inp = tensor(np.arange(1, 9, dtype=np.float32).reshape(2, 1, 2, 2))

        out = F.interpolate(inp, [4, 4])
        out2 = F.interpolate(inp, scale_factor=2.0)

        assertTensorClose(out.numpy(), out2.numpy())

    def assign_corner_interpolate():
        inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2))

        out = F.interpolate(inp, [4, 4], align_corners=True)
        out2 = F.interpolate(inp, scale_factor=2.0, align_corners=True)

        assertTensorClose(out.numpy(), out2.numpy())

    def error_shape_linear_interpolate():
        inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2))

        with pytest.raises(ValueError):
            F.interpolate(inp, scale_factor=2.0, mode="LINEAR")

    def inappropriate_scale_linear_interpolate():
        inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2))

        with pytest.raises(ValueError):
            F.interpolate(inp, scale_factor=[2.0, 3.0], mode="LINEAR")

    linear_interpolate()
    many_batch_interpolate()
    assign_corner_interpolate()
    error_shape_linear_interpolate()
    inappropriate_scale_linear_interpolate()


def _save_to(self, name="grad"):
    def callback(tensor, grad):
        setattr(self, name, grad)

    return callback


def _gen_roi_inp():
    inp_feat = np.random.randn(2, 32, 256, 256)
    rois = np.zeros((4, 5))
    rois[:, 0] = [0, 0, 1, 1]
    rois[:, 1:3] = np.random.rand(4, 2) * 100
    rois[:, 3:] = np.random.rand(4, 2) * 100 + 150

    inp_feat = tensor(inp_feat)
    rois = tensor(rois)
    return inp_feat, rois


def test_roi_align():
    inp_feat, rois = _gen_roi_inp()
    grad = Grad().wrt(inp_feat, callback=_save_to(inp_feat))

    output_shape = (7, 7)
    out_feat = F.roi_align(
        inp_feat,
        rois,
        output_shape=output_shape,
        mode="average",
        spatial_scale=1.0 / 4,
        sample_points=2,
        aligned=True,
    )
244 245 246 247 248
    assert make_shape_tuple(out_feat.shape) == (
        rois.shape[0],
        inp_feat.shape[1],
        *output_shape,
    )
249 250

    grad(out_feat, tensor(F.ones_like(out_feat)))
251
    assert make_shape_tuple(inp_feat.grad.shape) == make_shape_tuple(inp_feat.shape)
252 253 254 255 256 257 258 259 260


def test_roi_pooling():
    inp_feat, rois = _gen_roi_inp()
    grad = Grad().wrt(inp_feat, callback=_save_to(inp_feat))
    output_shape = (7, 7)
    out_feat = F.roi_pooling(
        inp_feat, rois, output_shape=output_shape, mode="max", scale=1.0 / 4,
    )
261 262 263 264 265
    assert make_shape_tuple(out_feat.shape) == (
        rois.shape[0],
        inp_feat.shape[1],
        *output_shape,
    )
266 267

    grad(out_feat, tensor(F.ones_like(out_feat)))
268
    assert make_shape_tuple(inp_feat.grad.shape) == make_shape_tuple(inp_feat.shape)
269 270


271 272 273 274
def test_one_hot():
    def onehot_low_dimension():
        inp = tensor(np.arange(1, 4, dtype=np.int32))
        out = F.one_hot(inp, num_classes=4)
275

276 277 278
        assertTensorClose(
            out.numpy(), np.eye(4, dtype=np.int32)[np.arange(1, 4, dtype=np.int32)]
        )
279

280 281 282 283 284
    def onehot_high_dimension():
        arr = np.array(
            [[3, 2, 4, 4, 2, 4, 0, 4, 4, 1], [4, 1, 1, 3, 2, 2, 4, 2, 4, 3]],
            dtype=np.int32,
        )
285

286 287
        inp = tensor(arr)
        out = F.one_hot(inp, 10)
288

289
        assertTensorClose(out.numpy(), np.eye(10, dtype=np.int32)[arr])
290

291 292
    onehot_low_dimension()
    onehot_high_dimension()
293 294 295 296 297


def test_add_update():
    shape = (2, 3)
    v = np.random.random(shape).astype(np.float32)
M
Megvii Engine Team 已提交
298
    b = Tensor(v)
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314

    u = F.add_update(b, 1)
    assertTensorClose(u.numpy(), v + 1)
    u = F.add_update(b, 1)
    assertTensorClose(u.numpy(), v + 2)

    x = np.ones((2, 2), dtype=np.float32)
    y = x * 0.5
    dest = tensor(x)
    delta = tensor(y)
    r = F.add_update(dest, delta, alpha=0.9, beta=0.1, bias=0.1)
    assertTensorClose(r.numpy(), x * 0.9 + y * 0.1 + 0.1)


def test_add_update_params():
    b = np.random.random((2, 3)).astype(np.float32)
M
Megvii Engine Team 已提交
315
    y = Tensor(b)
316 317 318 319 320 321 322

    # @jit.trace
    def f(x):
        return F.add_update(y, x)

    f(np.zeros((2, 3)).astype(np.float32))

M
Megvii Engine Team 已提交
323
    z = Tensor(np.zeros((2, 3)).astype(np.float32))
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
    F.add_update(y, z, beta=0.1)

    res = f(np.ones((2, 3)).astype(np.float32))
    assertTensorClose(res.numpy(), b + 1)


def test_binary_cross_entropy():
    data1_shape = (2, 2)
    label1_shape = (2, 2)
    data2_shape = (2, 3)
    label2_shape = (2, 3)

    def sigmoid(x):
        return 1 / (1 + np.exp(-x))

    def compare_fn(x, y):
        assertTensorClose(x.numpy(), y, max_err=5e-4)

    np.random.seed(123)
    data1 = sigmoid(np.random.uniform(size=data1_shape).astype(np.float32))
    label1 = np.random.uniform(size=label1_shape).astype(np.float32)
    expect1 = np.array([0.6361], dtype=np.float32)

    np.random.seed(123)
    data2 = sigmoid(np.random.uniform(size=data2_shape).astype(np.float32))
    label2 = np.random.uniform(size=label2_shape).astype(np.float32)
    expect2 = np.array([0.6750], dtype=np.float32)

    cases = [
        {"input": [data1, label1], "output": expect1,},
        {"input": [data2, label2], "output": expect2,},
    ]
    opr_test(cases, F.binary_cross_entropy, compare_fn=compare_fn)


def test_hinge_loss():
    np.random.seed(123)
    # case with L1 norm
    cases = []
    for shape in [(2, 2), (2, 3)]:
        data = np.random.uniform(size=shape).astype(np.float32)
        label = 2 * np.random.randint(0, 1, size=shape).astype(np.float32) - 1
        expect = np.clip(0, np.inf, 1 - data * label).sum(axis=1).mean()
        cases.append({"input": [data, label], "output": expect})

    opr_test(cases, F.hinge_loss)

    # cases with L2 norm
    cases = []
    for shape in [(2, 2), (2, 3)]:
        data = np.random.uniform(size=shape).astype(np.float32)
        label = 2 * np.random.randint(0, 1, size=shape).astype(np.float32) - 1
        expect = ((np.clip(0, np.inf, 1 - data * label) ** 2).sum(axis=1)).mean()
        cases.append({"input": [data, label], "output": expect})

    def hinge_loss_with_l2_norm(pred, label):
        return F.hinge_loss(pred, label, "L2")

    opr_test(cases, hinge_loss_with_l2_norm)


def test_nms():
    x = np.array(
        [
            [0, 0, 100, 100],
            [10, 10, 100, 100],
            [50, 50, 100, 100],
            [100, 100, 150, 150],
        ],
        dtype=np.float32,
    )
    inp = tensor(x)
    scores = tensor([0.5, 0.8, 0.9, 0.6], dtype=np.float32)
397
    result = F.nms(inp, scores=scores, iou_thresh=0.5)
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
    np.testing.assert_equal(result.numpy(), np.array([2, 1, 3], dtype=np.int32))


def test_batched_nms():
    x = np.array(
        [
            [0, 0, 100, 100],
            [0.5, 0.5, 1.5, 1.5],
            [20, 20, 100, 100],
            [0.5, 0.5, 1.0, 1.0],
            [10, 10, 100, 100],
            [0.5, 0.5, 1.0, 1.0],
        ],
        dtype=np.float32,
    )
    inp = tensor(x)
    scores = tensor([0.6, 0.9, 0.5, 0.6, 0.8, 0.7], dtype=np.float32)
    idxs = tensor([0, 1, 0, 1, 0, 1], dtype=np.int32)
416
    results = F.batched_nms(inp, scores=scores, idxs=idxs, iou_thresh=0.5)
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
    np.testing.assert_equal(results.numpy(), np.array([1, 4, 5], dtype=np.int32))


def test_conv_bias():
    inp_scale = 1.5
    w_scale = 2.5
    outp_scale = 1.5
    inp_dtype = dtype.qint8(inp_scale)
    w_dtype = dtype.qint8(w_scale)
    b_dtype = dtype.qint32(inp_scale * w_scale)
    out_dtype = dtype.qint8(outp_scale)

    def run(
        N,
        IC,
        OC,
        IH,
        IW,
        KH,
        KW,
        PH,
        PW,
        SH,
        SW,
        has_bias=True,
        nonlinear_mode="IDENTITY",
    ):
        inp_v = np.random.normal(size=(N, IC, IH, IW))
        w_v = np.random.normal(size=(OC, IC, KW, KW))
        b_v = np.random.normal(size=(1, OC, 1, 1))
        inp_scale = dtype.get_scale(inp_dtype)
        w_scale = dtype.get_scale(w_dtype)
        b_scale = dtype.get_scale(b_dtype)

        inpv = dtype.convert_to_qint8(inp_v * inp_scale, inp_dtype)
        wv = dtype.convert_to_qint8(w_v * w_scale, w_dtype)
        bv = dtype.convert_to_qint32(b_v * b_scale, b_dtype)

        inp_int8 = tensor(inpv, dtype=inp_dtype)
        w_int8 = Parameter(wv, dtype=w_dtype)
        b_int32 = Parameter(bv, dtype=b_dtype)

        inp_fp32 = inp_int8.astype("float32")
        w_fp32 = w_int8.astype("float32")
        b_fp32 = b_int32.astype("float32")

        def convert_to_nchw4(var):
            var = F.reshape(
                var, (var.shape[0], var.shape[1] // 4, 4, var.shape[2], var.shape[3])
            )
467
            var = F.transpose(var, (0, 1, 3, 4, 2))
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
            return var

        def run_conv2d(inp, w, b):
            O = F.conv2d(
                inp, w, b if has_bias else None, stride=(SH, SW), padding=(PH, PW),
            )
            if nonlinear_mode == "RELU":
                return F.relu(O)
            else:
                return O

        def run_conv_bias(inp, w, b, format="NCHW"):
            b = b if has_bias else Parameter(np.zeros_like(b.numpy()))
            if format == "NCHW4":
                inp = convert_to_nchw4(inp)
                w = convert_to_nchw4(w)
                b = convert_to_nchw4(b)
            return F.conv_bias_activation(
                inp,
                w,
                b,
                stride=(SH, SW),
                padding=(PH, PW),
                format=format,
                dtype=out_dtype,
                nonlinear_mode=nonlinear_mode,
            )

        format = "NCHW4" if is_cuda_available() else "NCHW"

        expected = run_conv2d(inp_fp32, w_fp32, b_fp32)
        expected = expected.astype(out_dtype).astype("float32")
        result = run_conv_bias(inp_int8, w_int8, b_int32, format=format).astype(
            "float32"
        )
        if format == "NCHW4":
504
            result = F.transpose(result, (0, 1, 4, 2, 3))
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
        expected = F.flatten(expected)
        result = F.flatten(result)
        assertTensorClose(result.numpy(), expected.numpy(), max_err=outp_scale)

    run(1, 4, 4, 24, 33, 1, 1, 2, 3, 1, 1, False)
    run(10, 12, 24, 46, 46, 1, 1, 2, 1, 3, 1, False)
    run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, False)

    run(1, 4, 4, 24, 33, 1, 1, 2, 3, 1, 1)
    run(10, 12, 24, 46, 46, 1, 1, 2, 1, 3, 1)
    run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2)

    run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, False, "RELU")
    run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, True, "RELU")


def test_condtake():
    x = np.array([[1, 2, 3], [4, 5, 6]])
    y = np.array([[True, False, True], [False, True, True]])
    xx = tensor(x)
    yy = tensor(y)
    val, idx = F.cond_take(yy, xx)
    np.testing.assert_equal(val.numpy(), x[y])
    np.testing.assert_equal(idx.numpy(), np.where(y.reshape(-1))[0])
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545


def test_condtake_is_same():
    op1 = builtin.CondTake()
    op2 = builtin.CondTake()
    assert op1 == op2


def test_nms_is_same():
    op1 = builtin.NMSKeep(0.7, 100)
    op2 = builtin.NMSKeep(0.7, 100)
    op3 = builtin.NMSKeep(0.8, 100)
    op4 = builtin.NMSKeep(0.7, 200)
    assert op1 == op2
    assert op1 != op3
    assert op1 != op4
    assert op3 != op4