test_module.py 22.4 KB
Newer Older
1 2 3 4 5 6 7 8 9
# -*- coding: utf-8 -*-
from collections import OrderedDict
from io import BytesIO

import numpy as np
import pytest

import megengine as mge
import megengine.functional as F
M
Megvii Engine Team 已提交
10
from megengine import Parameter, Tensor, tensor
11
from megengine.device import get_device_count
12 13 14
from megengine.module import (
    BatchNorm1d,
    BatchNorm2d,
15
    Conv1d,
16
    Conv2d,
17
    Dropout,
18
    GroupNorm,
19
    Linear,
20
    MaxPool2d,
21 22
    Module,
    Sequential,
23
    Softmax,
24
)
25
from megengine.module.module import _access_structure
26
from megengine.quantization.quantize import quantize, quantize_qat
27
from megengine.traced_module import TracedModule, trace_module
28
from megengine.utils.module_utils import get_expand_structure, set_expand_structure
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57


class MLP(Module):
    def __init__(self):
        super().__init__()
        self.dense0 = Linear(28, 50)
        self.dense1 = Linear(50, 20)

    def forward(self, x):
        x = self.dense0(x)
        x = F.relu(x)
        x = self.dense1(x)
        return x


class MyModule(Module):
    class InnerModule(Module):
        def __init__(self):
            super().__init__()
            self.bn = BatchNorm2d(4)

        def forward(self, x):
            return self.bn(x)

    def __init__(self):
        super().__init__()
        self.i = self.InnerModule()
        self.bn = BatchNorm2d(4)
        self.param = Parameter(np.ones(1, dtype=np.float32))
M
Megvii Engine Team 已提交
58
        self.buff = Tensor(np.ones(1, dtype=np.float32))
59 60 61 62 63 64 65

    def forward(self, x):
        x = self.i(x)
        x = self.bn(x)
        return x


66 67
@pytest.mark.parametrize("test_traced_module", [True, False])
def test_module_api(test_traced_module):
68
    m = MyModule()
69 70 71 72 73 74 75 76 77
    if test_traced_module:
        buff = m.buff
        param = m.param
        m = trace_module(m, Tensor(np.random.random((1, 4, 16, 16))))
        assert "buff" not in m.__dict__
        assert "param" not in m.__dict__
        m.buff = buff
        m.param = param

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    assert list(m.children()) == [m.bn, m.i]
    assert list(m.named_children()) == [("bn", m.bn), ("i", m.i)]
    assert list(m.modules()) == [m, m.bn, m.i, m.i.bn]
    assert list(m.named_modules()) == [
        ("", m),
        ("bn", m.bn),
        ("i", m.i),
        ("i.bn", m.i.bn),
    ]
    assert list(m.named_modules(prefix="x")) == [
        ("x", m),
        ("x.bn", m.bn),
        ("x.i", m.i),
        ("x.i.bn", m.i.bn),
    ]
    assert list(m.buffers()) == [
        m.bn.running_mean,
        m.bn.running_var,
        m.buff,
        m.i.bn.running_mean,
        m.i.bn.running_var,
    ]
    assert list(m.buffers(recursive=False)) == [m.buff]
    assert list(m.named_buffers()) == [
        ("bn.running_mean", m.bn.running_mean),
        ("bn.running_var", m.bn.running_var),
        ("buff", m.buff),
        ("i.bn.running_mean", m.i.bn.running_mean),
        ("i.bn.running_var", m.i.bn.running_var),
    ]
    assert list(m.parameters()) == [
        m.bn.bias,
        m.bn.weight,
        m.i.bn.bias,
        m.i.bn.weight,
        m.param,
    ]
    assert list(m.named_parameters()) == [
        ("bn.bias", m.bn.bias),
        ("bn.weight", m.bn.weight),
        ("i.bn.bias", m.i.bn.bias),
        ("i.bn.weight", m.i.bn.weight),
        ("param", m.param),
    ]
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    assert list(m.tensors()) == [
        m.bn.bias,
        m.bn.running_mean,
        m.bn.running_var,
        m.bn.weight,
        m.buff,
        m.i.bn.bias,
        m.i.bn.running_mean,
        m.i.bn.running_var,
        m.i.bn.weight,
        m.param,
    ]
    assert list(m.named_tensors()) == [
        ("bn.bias", m.bn.bias),
        ("bn.running_mean", m.bn.running_mean),
        ("bn.running_var", m.bn.running_var),
        ("bn.weight", m.bn.weight),
        ("buff", m.buff),
        ("i.bn.bias", m.i.bn.bias),
        ("i.bn.running_mean", m.i.bn.running_mean),
        ("i.bn.running_var", m.i.bn.running_var),
        ("i.bn.weight", m.i.bn.weight),
        ("param", m.param),
    ]
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
    m.eval()
    assert (
        m.training == False
        and m.bn.training == False
        and m.i.training == False
        and m.i.bn.training == False
    )
    m.bn.train()
    assert m.training == False and m.bn.training == True and m.i.bn.training == False
    m.eval()
    m.i.train()
    assert (
        m.training == False
        and m.bn.training == False
        and m.i.training == True
        and m.i.bn.training == True
    )
    m.eval()
    m.train()
    assert m.training == True and m.bn.training == True and m.i.bn.training == True

    def fn(m):
        m.training = False

    m.apply(fn)
    assert m.bn.training == False and m.i.bn.training == False


174 175
@pytest.mark.parametrize("test_traced_module", [True, False])
def test_module_api_reuse_submodule(test_traced_module):
176
    m = MyModule()
177 178
    if test_traced_module:
        m = trace_module(m, Tensor(np.random.random((1, 4, 16, 16))))
179 180 181 182 183 184 185 186 187 188
    m.h = m.i  # pylint: disable=attribute-defined-outside-init
    assert list(m.modules()) == [m, m.bn, m.i, m.i.bn]
    assert list(m.named_modules()) == [
        ("", m),
        ("bn", m.bn),
        ("h", m.i),
        ("h.bn", m.i.bn),
    ]


189 190
@pytest.mark.parametrize("test_traced_module", [True, False])
def test_module_api_iterable_stability(test_traced_module):
191
    m = MyModule()
192 193
    if test_traced_module:
        m = trace_module(m, Tensor(np.random.random((1, 4, 16, 16))))
194 195 196 197 198
    l = list(m.modules())
    for _ in range(100):
        assert list(m.modules()) == l


199 200
@pytest.mark.parametrize("test_traced_module", [True, False])
def test_module_api_hooks(test_traced_module):
201
    net = MyModule()
202 203
    if test_traced_module:
        net = trace_module(net, Tensor(np.zeros((1, 4, 1, 1))))
204 205 206 207
    pre_hook_num = 0
    post_hook_num = 0
    hooks = []

208
    def pre_hook(_, inputs):
209 210 211 212 213
        nonlocal pre_hook_num
        pre_hook_num += 1
        modified_inputs = tuple(inp + 1 for inp in inputs)
        return modified_inputs

214
    def post_hook(_, __, outputs):
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
        nonlocal post_hook_num
        post_hook_num += 1
        outputs += 1
        return outputs

    net.apply(lambda module: hooks.append(module.register_forward_pre_hook(pre_hook)))
    net.apply(lambda module: hooks.append(module.register_forward_hook(post_hook)))

    shape = (1, 4, 1, 1)
    x = tensor(np.zeros(shape, dtype=np.float32))
    y = net(x)

    assert pre_hook_num == 4
    assert post_hook_num == 4
    mean1 = Parameter(np.zeros(shape), dtype=np.float32)
230
    bn1 = F.batch_norm(
231 232
        x + 3, mean1, Parameter(np.ones(shape), dtype=np.float32), training=True
    )
233
    np.testing.assert_allclose(
234 235 236
        net.i.bn.running_mean.numpy(), mean1.numpy(),
    )
    mean2 = Parameter(np.zeros(shape), dtype=np.float32)
237
    bn2 = F.batch_norm(
238 239
        bn1 + 3, mean2, Parameter(np.ones(shape), dtype=np.float32), training=True
    )
240
    np.testing.assert_allclose(
241 242
        net.bn.running_mean.numpy(), mean2.numpy(),
    )
243
    np.testing.assert_allclose((bn2 + 2).numpy(), y.numpy())
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277

    assert len(hooks) == 8
    for handler in hooks:
        handler.remove()
    y = net(x)
    assert pre_hook_num == 4
    assert post_hook_num == 4


class MyModule2(Module):
    class InnerModule(Module):
        def __init__(self):
            super().__init__()
            self.bn = BatchNorm2d(4)
            self.test_bool_key = {True: 1, False: 0}

        def forward(self, x):
            x = self.bn(x)

    def __init__(self):
        super().__init__()
        self.bn = BatchNorm2d(4)
        self.a = [
            BatchNorm2d(4),
            {"x": BatchNorm2d(4), "y": [BatchNorm2d(4), self.InnerModule()], "z": 0},
            (self.InnerModule(),),
        ]

    def forward(self, x):
        return x


def test_expand_structure():
    m = MyModule2()
278
    rst = [
279 280 281 282 283 284 285 286 287 288
        ("", m),
        ("a.0", m.a[0]),
        ("a.1.x", m.a[1]["x"]),
        ("a.1.y.0", m.a[1]["y"][0]),
        ("a.1.y.1", m.a[1]["y"][1]),
        ("a.1.y.1.bn", m.a[1]["y"][1].bn),
        ("a.2.0", m.a[2][0]),
        ("a.2.0.bn", m.a[2][0].bn),
        ("bn", m.bn),
    ]
289 290 291 292 293 294 295 296 297 298
    assert list(m.named_modules()) == rst

    for item in rst[1:]:
        assert get_expand_structure(m, item[0]) == item[1]

    for item in reversed(rst[1:]):
        if _access_structure(m, item[0], lambda p, k, o: isinstance(p, tuple)):
            continue
        set_expand_structure(m, item[0], "TEST_VALUE")
        assert get_expand_structure(m, item[0]) == "TEST_VALUE"
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371


def test_flatten_others():
    def be_others(obj):
        return not isinstance(obj, (Tensor, Module))

    m = MyModule2()
    assert len(list(m._flatten(with_key=True, predicate=be_others))) == 0


def test_flatten_with_parent():
    m = MyModule2()
    assert list(m.named_modules(with_parent=True)) == [
        ("", m, None),
        ("a.0", m.a[0], m),
        ("a.1.x", m.a[1]["x"], m),
        ("a.1.y.0", m.a[1]["y"][0], m),
        ("a.1.y.1", m.a[1]["y"][1], m),
        ("a.1.y.1.bn", m.a[1]["y"][1].bn, m.a[1]["y"][1]),
        ("a.2.0", m.a[2][0], m),
        ("a.2.0.bn", m.a[2][0].bn, m.a[2][0]),
        ("bn", m.bn, m),
    ]
    assert list(m.modules(with_parent=True)) == [
        (m, None),
        (m.a[0], m),
        (m.a[1]["x"], m),
        (m.a[1]["y"][0], m),
        (m.a[1]["y"][1], m),
        (m.a[1]["y"][1].bn, m.a[1]["y"][1]),
        (m.a[2][0], m),
        (m.a[2][0].bn, m.a[2][0]),
        (m.bn, m),
    ]


class MyModule3(Module):
    class InnerModule(Module):
        def __init__(self):
            super().__init__()
            self.bn = BatchNorm2d(4)

        def forward(self, x):
            x = self.bn(x)

    def __init__(self):
        super().__init__()
        self.bn = BatchNorm2d(4)
        self.seq = Sequential(BatchNorm2d(4), self.InnerModule(),)

    def forward(self, x):
        return x


def test_module_api_with_sequential():
    m = MyModule3()
    assert list(m.named_modules()) == [
        ("", m),
        ("bn", m.bn),
        ("seq", m.seq),
        ("seq.0", m.seq[0]),
        ("seq.1", m.seq[1]),
        ("seq.1.bn", m.seq[1].bn),
    ]


def test_sequential_named_children():
    modules = OrderedDict()
    modules["name0"] = Linear(20, 10)
    modules["name1"] = Linear(10, 5)
    modules["name2"] = Linear(5, 1)
    m = Sequential(modules)
    l = list(m.named_children())
372 373 374
    assert l[0][0] == "name0"
    assert l[1][0] == "name1"
    assert l[2][0] == "name2"
375 376 377 378


def test_state_dict():
    data_shape = (2, 28)
M
Megvii Engine Team 已提交
379
    data = tensor(np.random.random(data_shape))
380 381 382 383 384 385 386 387 388 389 390
    mlp = MLP()
    pred0 = mlp(data)

    with BytesIO() as fout:
        mge.save(mlp.state_dict(), fout)
        fout.seek(0)
        state_dict = mge.load(fout)
        state_dict["extra"] = None
        mlp1 = MLP()
        mlp1.load_state_dict(state_dict, strict=False)
        pred1 = mlp1(data)
391
        np.testing.assert_allclose(pred0.numpy(), pred1.numpy(), atol=5e-6)
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
        with pytest.raises(KeyError):
            mlp1.load_state_dict(state_dict)
        del state_dict["extra"]
        del state_dict["dense0.bias"]
        with pytest.raises(KeyError):
            mlp1.load_state_dict(state_dict)


class AssertModule(Module):
    def __init__(self):
        super().__init__()
        self.error_tensor_key = {True: tensor([]), False: 0}

    def forward(self, x):
        return x


def test_assert_message():
    with pytest.raises(
        AssertionError, match="keys for Tensor and Module must be str, error key: True"
    ):
413
        m = AssertModule()
414 415 416 417 418 419 420 421 422 423 424
        list(m._flatten())


class Simple(Module):
    def __init__(self):
        super().__init__()
        self.conv0 = Conv2d(1, 1, kernel_size=3, bias=False)
        self.conv1 = Conv2d(1, 1, kernel_size=3, bias=False)
        self.conv1.weight = self.conv0.weight

    def forward(self, inputs):
425 426 427
        x = self.conv0(inputs)
        y = self.conv1(inputs)
        return x + y
428 429


430 431
@pytest.mark.parametrize("test_traced_module", [True, False])
def test_shared_param(test_traced_module):
432
    net = Simple()
433 434
    if test_traced_module:
        net = trace_module(net, tensor(np.random.random((1, 1, 8, 8))))
435 436
    assert net.conv0.weight is net.conv1.weight
    data = tensor(np.random.random((1, 1, 8, 8)).astype(np.float32))
437
    np.testing.assert_allclose(net.conv0(data).numpy(), net.conv1(data).numpy())
438 439 440 441 442
    with BytesIO() as f:
        mge.save(net, f)
        f.seek(0)
        net1 = mge.load(f)
    assert net1.conv0.weight is net1.conv1.weight
443
    np.testing.assert_allclose(net1.conv0(data).numpy(), net1.conv1(data).numpy())
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480

    with BytesIO() as f:
        mge.save(net.conv0, f)
        f.seek(0)
        conv0 = mge.load(f)

    with BytesIO() as f:
        mge.save(net.conv1, f)
        f.seek(0)
        conv1 = mge.load(f)

    assert conv0.weight is not conv1.weight
    np.testing.assert_allclose(conv0(data).numpy(), conv1(data).numpy())


class Simple2(Module):
    def __init__(self):
        super().__init__()
        self.conv1 = Conv1d(1, 1, kernel_size=3, bias=False)
        self.conv0 = Conv1d(1, 1, kernel_size=3, bias=False)
        self.conv1.weight = self.conv0.weight

    def forward(self, inputs):
        pass


def test_shared_param_1d():
    net = Simple2()
    assert net.conv0.weight is net.conv1.weight
    data = tensor(np.random.random((1, 1, 8)).astype(np.float32))
    np.testing.assert_allclose(net.conv0(data).numpy(), net.conv1(data).numpy())
    with BytesIO() as f:
        mge.save(net, f)
        f.seek(0)
        net1 = mge.load(f)
    assert net1.conv0.weight is net1.conv1.weight
    np.testing.assert_allclose(net1.conv0(data).numpy(), net1.conv1(data).numpy())
481 482 483 484 485 486 487 488 489 490 491 492

    with BytesIO() as f:
        mge.save(net.conv0, f)
        f.seek(0)
        conv0 = mge.load(f)

    with BytesIO() as f:
        mge.save(net.conv1, f)
        f.seek(0)
        conv1 = mge.load(f)

    assert conv0.weight is not conv1.weight
493
    np.testing.assert_allclose(conv0(data).numpy(), conv1(data).numpy())
494 495


496 497
@pytest.mark.parametrize("test_traced_module", [True, False])
def test_pickle_module(test_traced_module):
498
    data_shape = (2, 28)
M
Megvii Engine Team 已提交
499
    data = tensor(np.random.random(data_shape))
500
    mlp = MLP()
501 502 503
    pred_gt = mlp(data)
    if test_traced_module:
        mlp = trace_module(mlp, data)
504 505 506 507 508
    # pickle before forward
    with BytesIO() as fout:
        mge.save(mlp, fout)
        fout.seek(0)
        mlp1 = mge.load(fout)
509 510
        if test_traced_module:
            assert type(mlp1) == TracedModule
511 512 513 514 515 516 517 518 519
        pred0 = mlp1(data)

    pred1 = mlp(data)

    # pickle after forward
    with BytesIO() as fout:
        mge.save(mlp, fout)
        fout.seek(0)
        mlp1 = mge.load(fout)
520 521
        if test_traced_module:
            assert type(mlp1) == TracedModule
522 523
        pred2 = mlp1(data)

524
    np.testing.assert_allclose(pred_gt.numpy(), pred1.numpy(), atol=5e-6)
525 526
    np.testing.assert_allclose(pred0.numpy(), pred1.numpy(), atol=5e-6)
    np.testing.assert_allclose(pred0.numpy(), pred2.numpy(), atol=5e-6)
527 528


529 530 531 532 533
def test_repr_basic():
    # test whether __repr__ can output correct information
    class ConvModel(Module):
        def __init__(self):
            super().__init__()
534 535 536 537
            self.conv1 = Conv2d(3, 128, 3, padding=1, bias=False)
            self.conv2 = Conv2d(3, 128, 3, dilation=2, bias=False)
            self.bn1 = BatchNorm1d(128)
            self.bn2 = BatchNorm2d(128)
538
            self.pooling = MaxPool2d(kernel_size=2, padding=0)
539 540 541 542 543 544 545 546 547 548 549 550
            modules = OrderedDict()
            modules["depthwise"] = Conv2d(256, 256, 3, 1, 0, groups=256, bias=False,)
            modules["pointwise"] = Conv2d(
                256, 256, kernel_size=1, stride=1, padding=0, bias=True,
            )
            self.submodule1 = Sequential(modules)
            self.list1 = [Dropout(drop_prob=0.1), [Softmax(axis=100)]]
            self.tuple1 = (
                Dropout(drop_prob=0.1),
                (Softmax(axis=100), Dropout(drop_prob=0.2)),
            )
            self.dict1 = {"Dropout": Dropout(drop_prob=0.1)}
551 552 553 554 555 556 557
            self.fc1 = Linear(512, 1024)

        def forward(self, inputs):
            pass

    ground_truth = (
        "ConvModel(\n"
558 559 560 561
        "  (conv1): Conv2d(3, 128, kernel_size=(3, 3), padding=(1, 1), bias=False)\n"
        "  (conv2): Conv2d(3, 128, kernel_size=(3, 3), dilation=(2, 2), bias=False)\n"
        "  (bn1): BatchNorm1d(128, eps=1e-05, momentum=0.9, affine=True, track_running_stats=True)\n"
        "  (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.9, affine=True, track_running_stats=True)\n"
562 563
        "  (pooling): MaxPool2d(kernel_size=2, stride=2, padding=0)\n"
        "  (submodule1): Sequential(\n"
564 565 566 567 568 569 570 571 572
        "    (depthwise): Conv2d(256, 256, kernel_size=(3, 3), groups=256, bias=False)\n"
        "    (pointwise): Conv2d(256, 256, kernel_size=(1, 1))\n"
        "  )\n"
        "  (list1.0): Dropout(drop_prob=0.1)\n"
        "  (list1.1.0): Softmax(axis=100)\n"
        "  (tuple1.0): Dropout(drop_prob=0.1)\n"
        "  (tuple1.1.0): Softmax(axis=100)\n"
        "  (tuple1.1.1): Dropout(drop_prob=0.2)\n"
        "  (dict1.Dropout): Dropout(drop_prob=0.1)\n"
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
        "  (fc1): Linear(in_features=512, out_features=1024, bias=True)\n"
        ")"
    )
    net = ConvModel()
    output = net.__repr__()
    assert output == ground_truth


def test_repr_module_reassign():
    # test whether __repr__ can deal with module reassign
    class ConvModel1(Module):
        def __init__(self):
            super().__init__()
            self.conv1 = Conv2d(3, 128, 3, bias=False)
            self.conv2 = Conv2d(3, 128, 3, padding=1, bias=False)
            self.conv1 = Conv2d(3, 256, 3, dilation=2, bias=False)

        def forward(self, inputs):
            pass

    ground_truth = (
        "ConvModel1(\n"
        "  (conv1): Conv2d(3, 256, kernel_size=(3, 3), dilation=(2, 2), bias=False)\n"
        "  (conv2): Conv2d(3, 128, kernel_size=(3, 3), padding=(1, 1), bias=False)\n"
        ")"
    )
    net = ConvModel1()
    output = net.__repr__()
    assert output == ground_truth


def test_repr_module_rereference():
    # test whether __repr__ can deal with module re-reference
    class ConvModel2(Module):
        def __init__(self):
            super().__init__()
            self.conv1 = Conv2d(3, 128, 3, bias=False)
            self.conv2 = self.conv1
            self.conv3 = self.conv1

        def forward(self, inputs):
            pass

    ground_truth = (
        "ConvModel2(\n"
        "  (conv1): Conv2d(3, 128, kernel_size=(3, 3), bias=False)\n"
        "  (conv2): Conv2d(3, 128, kernel_size=(3, 3), bias=False)\n"
        "  (conv3): Conv2d(3, 128, kernel_size=(3, 3), bias=False)\n"
        ")"
    )
    net = ConvModel2()
    output = net.__repr__()
    assert output == ground_truth


def test_repr_module_delete():
    # test whether __repr__ can deal with module delete
    class ConvModel3(Module):
        def __init__(self):
            super().__init__()
            self.conv1 = Conv2d(3, 128, 3, bias=False)
            self.softmax = Softmax(100)

        def forward(self, inputs):
            pass

    ground_truth = (
        "ConvModel3(\n"
        "  (conv1): Conv2d(3, 128, kernel_size=(3, 3), bias=False)\n"
        ")"
    )
    net = ConvModel3()
    del net.softmax
    output = net.__repr__()
    assert output == ground_truth
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678


def test_repr_module_reset_attr():
    class ResetAttrModule(Module):
        def __init__(self, flag):
            super().__init__()
            if flag:
                self.a = None
                self.a = Linear(3, 5)
            else:
                self.a = Linear(3, 5)
                self.a = None

        def forward(self, x):
            if self.a:
                x = self.a(x)
            return x

    ground_truth = [
        (
            "ResetAttrModule(\n"
            "  (a): Linear(in_features=3, out_features=5, bias=True)\n"
            ")"
        ),
        ("ResetAttrModule()"),
    ]

    m0 = ResetAttrModule(True)
    m1 = ResetAttrModule(False)
    output = [m0.__repr__(), m1.__repr__()]
    assert output == ground_truth
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702


def test_module_compatible():
    class Empty(Module):
        def forward(self):
            pass

    empty_module = Empty()
    old_attributes = set(
        [
            "_modules",
            "name",
            "training",
            "quantize_disabled",
            "_forward_pre_hooks",
            "_forward_hooks",
            "_name",
            "_short_name",
        ]
    )
    current_attributes = set(empty_module.__dict__.keys())
    assert (
        old_attributes == current_attributes
    ), "Add or delete attributes in Module class may break compatibility of pickle serialization"
703 704


705
@pytest.mark.skip(reason="pytest aborted")
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
def test_grou_norm():
    class OriginGroupNormFunc(Module):
        def __init__(self, num_groups, num_channels, eps=1e-5, affine=True, **kwargs):
            super().__init__(**kwargs)
            assert num_channels % num_groups == 0
            self.num_groups = num_groups
            self.num_channels = num_channels
            self.eps = eps
            self.affine = affine
            if self.affine:
                self.weight = Parameter(np.ones(num_channels, dtype=np.float32))
                self.bias = Parameter(np.zeros(num_channels, dtype=np.float32))
            else:
                self.weight = None
                self.bias = None

        def forward(self, x):
            N, C, H, W = x.shape
            x = x.reshape(N, self.num_groups, -1)
            mean = x.mean(axis=2, keepdims=True)
            var = (x * x).mean(axis=2, keepdims=True) - mean * mean
            x = (x - mean) / F.sqrt(var + self.eps)
            x = x.reshape(N, C, H, W)
            if self.affine:
                x = self.weight.reshape(1, -1, 1, 1) * x + self.bias.reshape(
                    1, -1, 1, 1
                )
            return x

    inp = np.random.randn(2, 256, 10, 16).astype("float32")
    mge_inp = Tensor(inp)
    mge_m = GroupNorm(32, 256)

    ori_inp = Tensor(inp)
    ori_m = OriginGroupNormFunc(32, 256)

    targets = np.array(2)
    mge_gm = mge.autodiff.GradManager().attach(mge_m.parameters())
    ori_gm = mge.autodiff.GradManager().attach(ori_m.parameters())

    for i in range(2):
        with mge_gm:
            mge_output = mge_m(mge_inp)
            loss = F.loss.square_loss(
                mge_output.sum(), mge.tensor(targets, dtype=np.float32)
            )
            mge_gm.backward(loss)

        with ori_gm:
            ori_output = ori_m(ori_inp)
            loss = F.loss.square_loss(
                ori_output.sum(), mge.tensor(targets, dtype=np.float32)
            )
            ori_gm.backward(loss)

        np.testing.assert_allclose(mge_output.numpy(), ori_output.numpy(), atol=1e-05)
        np.testing.assert_allclose(
            mge_m.weight.grad.numpy(), ori_m.weight.grad.numpy(), rtol=1e-03
        )
        np.testing.assert_allclose(
            mge_m.bias.grad.numpy(), ori_m.bias.grad.numpy(), rtol=1e-03
        )