test_module.py 16.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import os
import tempfile
from collections import OrderedDict
from io import BytesIO

import numpy as np
import pytest

import megengine as mge
import megengine.functional as F
M
Megvii Engine Team 已提交
19
from megengine import Parameter, Tensor, tensor
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
from megengine.module import (
    BatchNorm1d,
    BatchNorm2d,
    Conv2d,
    Linear,
    Module,
    Sequential,
)
from megengine.quantization.quantize import quantize, quantize_qat
from megengine.test import assertTensorClose


class MLP(Module):
    def __init__(self):
        super().__init__()
        self.dense0 = Linear(28, 50)
        self.dense1 = Linear(50, 20)

    def forward(self, x):
        x = self.dense0(x)
        x = F.relu(x)
        x = self.dense1(x)
        return x


def has_gpu(num=1):
    try:
        mgb.comp_node("gpu{}".format(num - 1))
    except mgb.MegBrainError:
        return False

    return True


def randomNp(*args):
    for arg in args:
        assert isinstance(arg, int)
    return np.random.random(args)


def randomTorch(*args):
    import torch  # pylint: disable=import-outside-toplevel

    for arg in args:
        assert isinstance(arg, int)
    return torch.tensor(randomNp(*args), dtype=torch.float32)


def graph_mode(*modes):
    if not set(modes).issubset({"eager", "static"}):
        raise ValueError("graph mode must be in (eager, static)")

    def decorator(func):
        def wrapper(*args, **kwargs):
            if "eager" in set(modes):
                func(*args, **kwargs)
            if "static" in set(modes):
                with Graph() as cg:
                    cg.set_option("eager_evaluation", False)
                    func(*args, **kwargs)

        return wrapper

    return decorator


def _default_compare_fn(x, y):
    assertTensorClose(x.numpy(), y)


def opr_test(
    cases,
    func,
    mode=("eager", "static", "dynamic_shape"),
    compare_fn=_default_compare_fn,
    ref_fn=None,
    **kwargs
):
    """
    mode: the list of test mode which are eager, static and dynamic_shape
          will test all the cases if None.
    func: the function to run opr.
    compare_fn: the function to compare the result and expected, use assertTensorClose if None.
    ref_fn: the function to generate expected data, should assign output if None.
    cases: the list which have dict element, the list length should be 2 for dynamic shape test.
           and the dict should have input,
           and should have output if ref_fn is None.
           should use list for multiple inputs and outputs for each case.
    kwargs: The additional kwargs for opr func.

    simple examples:

        dtype = np.float32
        cases = [{"input": [10, 20]}, {"input": [20, 30]}]
        opr_test(cases,
                 F.eye,
                 ref_fn=lambda n, m: np.eye(n, m).astype(dtype),
                 dtype=dtype)

    """

    def check_results(results, expected):
        if not isinstance(results, Tuple):
            results = (results,)
        for r, e in zip(results, expected):
            compare_fn(r, e)

    def get_trace_fn(func, enabled, symbolic):
        jit.trace.enabled = enabled
        return jit.trace(func, symbolic=symbolic)

    def get_param(cases, idx):
        case = cases[idx]
        inp = case.get("input", None)
        outp = case.get("output", None)
        if inp is None:
            raise ValueError("the test case should have input")
        if not isinstance(inp, List):
            inp = (inp,)
        else:
            inp = tuple(inp)
        if ref_fn is not None and callable(ref_fn):
            outp = ref_fn(*inp)
        if outp is None:
            raise ValueError("the test case should have output or reference function")
        if not isinstance(outp, List):
            outp = (outp,)
        else:
            outp = tuple(outp)

        return inp, outp

    if not set(mode).issubset({"eager", "static", "dynamic_shape"}):
        raise ValueError("opr test mode must be in (eager, static, dynamic_shape)")

    if len(cases) == 0:
        raise ValueError("should give one case at least")

    if "dynamic_shape" in set(mode):
        if len(cases) != 2:
            raise ValueError("should give 2 cases for dynamic shape test")

    if not callable(func):
        raise ValueError("the input func should be callable")

    inp, outp = get_param(cases, 0)

    def run(*args, **kwargs):
        return func(*args, **kwargs)

    if "eager" in set(mode):
        f = get_trace_fn(run, False, False)
        results = f(*inp, **kwargs)
        check_results(results, outp)

    if "static" in set(mode) or "dynamic_shape" in set(mode):
        f = get_trace_fn(run, True, True)
        results = f(*inp, **kwargs)
        check_results(results, outp)
        if "dynamic_shape" in set(mode):
            inp, outp = get_param(cases, 1)
            results = f(*inp, **kwargs)
            check_results(results, outp)


class MyModule(Module):
    class InnerModule(Module):
        def __init__(self):
            super().__init__()
            self.bn = BatchNorm2d(4)

        def forward(self, x):
            return self.bn(x)

    def __init__(self):
        super().__init__()
        self.i = self.InnerModule()
        self.bn = BatchNorm2d(4)
        self.param = Parameter(np.ones(1, dtype=np.float32))
M
Megvii Engine Team 已提交
199
        self.buff = Tensor(np.ones(1, dtype=np.float32))
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466

    def forward(self, x):
        x = self.i(x)
        x = self.bn(x)
        return x


def test_module_api():
    m = MyModule()
    assert list(m.children()) == [m.bn, m.i]
    assert list(m.named_children()) == [("bn", m.bn), ("i", m.i)]
    assert list(m.modules()) == [m, m.bn, m.i, m.i.bn]
    assert list(m.named_modules()) == [
        ("", m),
        ("bn", m.bn),
        ("i", m.i),
        ("i.bn", m.i.bn),
    ]
    assert list(m.named_modules(prefix="x")) == [
        ("x", m),
        ("x.bn", m.bn),
        ("x.i", m.i),
        ("x.i.bn", m.i.bn),
    ]
    assert list(m.buffers()) == [
        m.bn.running_mean,
        m.bn.running_var,
        m.buff,
        m.i.bn.running_mean,
        m.i.bn.running_var,
    ]
    assert list(m.buffers(recursive=False)) == [m.buff]
    assert list(m.named_buffers()) == [
        ("bn.running_mean", m.bn.running_mean),
        ("bn.running_var", m.bn.running_var),
        ("buff", m.buff),
        ("i.bn.running_mean", m.i.bn.running_mean),
        ("i.bn.running_var", m.i.bn.running_var),
    ]
    assert list(m.parameters()) == [
        m.bn.bias,
        m.bn.weight,
        m.i.bn.bias,
        m.i.bn.weight,
        m.param,
    ]
    assert list(m.named_parameters()) == [
        ("bn.bias", m.bn.bias),
        ("bn.weight", m.bn.weight),
        ("i.bn.bias", m.i.bn.bias),
        ("i.bn.weight", m.i.bn.weight),
        ("param", m.param),
    ]
    m.eval()
    assert (
        m.training == False
        and m.bn.training == False
        and m.i.training == False
        and m.i.bn.training == False
    )
    m.bn.train()
    assert m.training == False and m.bn.training == True and m.i.bn.training == False
    m.eval()
    m.i.train()
    assert (
        m.training == False
        and m.bn.training == False
        and m.i.training == True
        and m.i.bn.training == True
    )
    m.eval()
    m.train()
    assert m.training == True and m.bn.training == True and m.i.bn.training == True

    def fn(m):
        m.training = False

    m.apply(fn)
    assert m.bn.training == False and m.i.bn.training == False


def test_module_api_reuse_submodule():
    m = MyModule()
    m.h = m.i  # pylint: disable=attribute-defined-outside-init
    assert list(m.modules()) == [m, m.bn, m.i, m.i.bn]
    assert list(m.named_modules()) == [
        ("", m),
        ("bn", m.bn),
        ("h", m.i),
        ("h.bn", m.i.bn),
    ]


def test_module_api_iterable_stability():
    m = MyModule()
    l = list(m.modules())
    for _ in range(100):
        assert list(m.modules()) == l


def test_module_api_hooks():
    net = MyModule()
    pre_hook_num = 0
    post_hook_num = 0
    hooks = []

    def pre_hook(module, inputs):
        nonlocal pre_hook_num
        pre_hook_num += 1
        modified_inputs = tuple(inp + 1 for inp in inputs)
        return modified_inputs

    def post_hook(module, inputs, outputs):
        nonlocal post_hook_num
        post_hook_num += 1
        outputs += 1
        return outputs

    net.apply(lambda module: hooks.append(module.register_forward_pre_hook(pre_hook)))
    net.apply(lambda module: hooks.append(module.register_forward_hook(post_hook)))

    shape = (1, 4, 1, 1)
    x = tensor(np.zeros(shape, dtype=np.float32))
    y = net(x)

    assert pre_hook_num == 4
    assert post_hook_num == 4
    mean1 = Parameter(np.zeros(shape), dtype=np.float32)
    bn1 = F.batch_norm2d(
        x + 3, mean1, Parameter(np.ones(shape), dtype=np.float32), training=True
    )
    assertTensorClose(
        net.i.bn.running_mean.numpy(), mean1.numpy(),
    )
    mean2 = Parameter(np.zeros(shape), dtype=np.float32)
    bn2 = F.batch_norm2d(
        bn1 + 3, mean2, Parameter(np.ones(shape), dtype=np.float32), training=True
    )
    assertTensorClose(
        net.bn.running_mean.numpy(), mean2.numpy(),
    )
    assertTensorClose((bn2 + 2).numpy(), y.numpy())

    assert len(hooks) == 8
    for handler in hooks:
        handler.remove()
    y = net(x)
    assert pre_hook_num == 4
    assert post_hook_num == 4


class MyModule2(Module):
    class InnerModule(Module):
        def __init__(self):
            super().__init__()
            self.bn = BatchNorm2d(4)
            self.test_bool_key = {True: 1, False: 0}

        def forward(self, x):
            x = self.bn(x)

    def __init__(self):
        super().__init__()
        self.bn = BatchNorm2d(4)
        self.a = [
            BatchNorm2d(4),
            {"x": BatchNorm2d(4), "y": [BatchNorm2d(4), self.InnerModule()], "z": 0},
            (self.InnerModule(),),
        ]

    def forward(self, x):
        return x


def test_expand_structure():
    m = MyModule2()
    assert list(m.named_modules()) == [
        ("", m),
        ("a.0", m.a[0]),
        ("a.1.x", m.a[1]["x"]),
        ("a.1.y.0", m.a[1]["y"][0]),
        ("a.1.y.1", m.a[1]["y"][1]),
        ("a.1.y.1.bn", m.a[1]["y"][1].bn),
        ("a.2.0", m.a[2][0]),
        ("a.2.0.bn", m.a[2][0].bn),
        ("bn", m.bn),
    ]


def test_flatten_others():
    def be_others(obj):
        return not isinstance(obj, (Tensor, Module))

    m = MyModule2()
    assert len(list(m._flatten(with_key=True, predicate=be_others))) == 0


def test_flatten_with_parent():
    m = MyModule2()
    assert list(m.named_modules(with_parent=True)) == [
        ("", m, None),
        ("a.0", m.a[0], m),
        ("a.1.x", m.a[1]["x"], m),
        ("a.1.y.0", m.a[1]["y"][0], m),
        ("a.1.y.1", m.a[1]["y"][1], m),
        ("a.1.y.1.bn", m.a[1]["y"][1].bn, m.a[1]["y"][1]),
        ("a.2.0", m.a[2][0], m),
        ("a.2.0.bn", m.a[2][0].bn, m.a[2][0]),
        ("bn", m.bn, m),
    ]
    assert list(m.modules(with_parent=True)) == [
        (m, None),
        (m.a[0], m),
        (m.a[1]["x"], m),
        (m.a[1]["y"][0], m),
        (m.a[1]["y"][1], m),
        (m.a[1]["y"][1].bn, m.a[1]["y"][1]),
        (m.a[2][0], m),
        (m.a[2][0].bn, m.a[2][0]),
        (m.bn, m),
    ]


class MyModule3(Module):
    class InnerModule(Module):
        def __init__(self):
            super().__init__()
            self.bn = BatchNorm2d(4)

        def forward(self, x):
            x = self.bn(x)

    def __init__(self):
        super().__init__()
        self.bn = BatchNorm2d(4)
        self.seq = Sequential(BatchNorm2d(4), self.InnerModule(),)

    def forward(self, x):
        return x


def test_module_api_with_sequential():
    m = MyModule3()
    assert list(m.named_modules()) == [
        ("", m),
        ("bn", m.bn),
        ("seq", m.seq),
        ("seq.0", m.seq[0]),
        ("seq.1", m.seq[1]),
        ("seq.1.bn", m.seq[1].bn),
    ]


def test_sequential_named_children():
    modules = OrderedDict()
    modules["name0"] = Linear(20, 10)
    modules["name1"] = Linear(10, 5)
    modules["name2"] = Linear(5, 1)
    m = Sequential(modules)
    l = list(m.named_children())
    assert l[0][0] == "layer_values.0"
    assert l[1][0] == "layer_values.1"
    assert l[2][0] == "layer_values.2"


def test_state_dict():
    data_shape = (2, 28)
M
Megvii Engine Team 已提交
467
    data = tensor(np.random.random(data_shape))
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
    mlp = MLP()
    pred0 = mlp(data)

    with BytesIO() as fout:
        mge.save(mlp.state_dict(), fout)
        fout.seek(0)
        state_dict = mge.load(fout)
        state_dict["extra"] = None
        mlp1 = MLP()
        mlp1.load_state_dict(state_dict, strict=False)
        pred1 = mlp1(data)
        assertTensorClose(pred0.numpy(), pred1.numpy(), max_err=5e-6)
        with pytest.raises(KeyError):
            mlp1.load_state_dict(state_dict)
        del state_dict["extra"]
        del state_dict["dense0.bias"]
        with pytest.raises(KeyError):
            mlp1.load_state_dict(state_dict)


class AssertModule(Module):
    def __init__(self):
        super().__init__()
        self.error_tensor_key = {True: tensor([]), False: 0}

    def forward(self, x):
        return x


def test_assert_message():
    m = AssertModule()
    with pytest.raises(
        AssertionError, match="keys for Tensor and Module must be str, error key: True"
    ):
        list(m._flatten())


class Simple(Module):
    def __init__(self):
        super().__init__()
        self.conv0 = Conv2d(1, 1, kernel_size=3, bias=False)
        self.conv1 = Conv2d(1, 1, kernel_size=3, bias=False)
        self.conv1.weight = self.conv0.weight

    def forward(self, inputs):
        pass


def test_shared_param():
    net = Simple()
    assert net.conv0.weight is net.conv1.weight
    data = tensor(np.random.random((1, 1, 8, 8)).astype(np.float32))
    assertTensorClose(net.conv0(data).numpy(), net.conv1(data).numpy())
    with BytesIO() as f:
        mge.save(net, f)
        f.seek(0)
        net1 = mge.load(f)
    assert net1.conv0.weight is net1.conv1.weight
    assertTensorClose(net1.conv0(data).numpy(), net1.conv1(data).numpy())

    with BytesIO() as f:
        mge.save(net.conv0, f)
        f.seek(0)
        conv0 = mge.load(f)

    with BytesIO() as f:
        mge.save(net.conv1, f)
        f.seek(0)
        conv1 = mge.load(f)

    assert conv0.weight is not conv1.weight
    assertTensorClose(conv0(data).numpy(), conv1(data).numpy())


def test_pickle_module():
    data_shape = (2, 28)
M
Megvii Engine Team 已提交
544
    data = tensor(np.random.random(data_shape))
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
    mlp = MLP()
    # pickle before forward
    with BytesIO() as fout:
        mge.save(mlp, fout)
        fout.seek(0)
        mlp1 = mge.load(fout)
        pred0 = mlp1(data)

    pred1 = mlp(data)

    # pickle after forward
    with BytesIO() as fout:
        mge.save(mlp, fout)
        fout.seek(0)
        mlp1 = mge.load(fout)
        pred2 = mlp1(data)

    assertTensorClose(pred0.numpy(), pred1.numpy(), max_err=5e-6)
    assertTensorClose(pred0.numpy(), pred2.numpy(), max_err=5e-6)


@pytest.mark.skip(reason="under development")
def test_dump_model():
    data_shape = (2, 28)
M
Megvii Engine Team 已提交
569
    data = Tensor(np.random.random(data_shape))
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
    mlp = MLP()
    pred = mlp(data)
    f = tempfile.NamedTemporaryFile(delete=False)
    f_name = f.name
    try:
        mge.dump(pred, f_name)
    finally:
        f.close()
        os.unlink(f_name)


def test_load_quantized():
    from megengine.core.tensor import dtype

    data_shape = (2, 28)
    data = tensor(np.random.random(data_shape), dtype="float32")
    data = data.astype(dtype.qint8(0.1))
    mlp = MLP()
    quantize_qat(mlp)
    quantize(mlp)
    mlp.dense0.weight = Parameter(mlp.dense0.weight.astype(dtype.qint8(0.001)).numpy())
    mlp.dense1.weight = Parameter(mlp.dense1.weight.astype(dtype.qint8(0.0002)).numpy())
    mlp.eval()
    pred0 = mlp(data)

    with BytesIO() as fout:
        mge.save(mlp.state_dict(), fout)
        fout.seek(0)
        checkpoint = mge.load(fout)
        # change mlp weight.
        mlp.dense0.weight = Parameter(
            mlp.dense0.weight.astype(dtype.qint8(0.00001)).numpy()
        )
        mlp.dense1.weight = Parameter(
            mlp.dense1.weight.astype(dtype.qint8(0.2)).numpy()
        )
        mlp.load_state_dict(checkpoint)
        pred1 = mlp(data)

    assertTensorClose(
        pred0.astype("float32").numpy(), pred1.astype("float32").numpy(), max_err=5e-6
    )