cublas_lt.cpp 6.3 KB
Newer Older
1 2 3 4
/**
 * \file dnn/src/cuda/matrix_mul/cublas_lt.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "./algos.h"
#include "src/cuda/handle.h"
#include "src/cuda/utils.h"
#include "src/cuda/matrix_mul/cublasLt_wrapper.h"
#if CUDA_VERSION >= 10010
using namespace megdnn;
using namespace cuda;

bool MatrixMulForwardImpl::AlgoCuBlasLt::is_available(
21
        const SizeArgs& args) const {
22 23
    if (args.opr->param().format != param::MatrixMul::Format::DEFAULT)
        return false;
24 25
    if (args.layout_a.dtype.enumv() == DTypeEnum::Quantized4Asymm ||
        args.layout_a.dtype.enumv() == DTypeEnum::BFloat16)
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
        return false;
    CUBLASLTMatmulDesc::SizeArgs ltArgs(args);
    return CUBLASLTMatmulDesc(ltArgs).is_available(ltArgs, INT_MAX);
}
size_t MatrixMulForwardImpl::AlgoCuBlasLt::get_workspace_in_bytes(
        const SizeArgs& args) const {
    CUBLASLTMatmulDesc::SizeArgs ltArgs(args);
    cublasLtMatmulAlgo_t algo;
    CUBLASLTMatmulDesc desc(ltArgs);
    desc.get_algorithm_heuristic(ltArgs, INT_MAX, algo);
    return desc.get_workspace_bundle(ltArgs, algo).total_size_in_bytes();
}
void MatrixMulForwardImpl::AlgoCuBlasLt::exec(const ExecArgs& args) const {
    CUBLASLTMatmulDesc::SizeArgs ltArgs(args);
    cublasLtMatmulAlgo_t algo;
    CUBLASLTMatmulDesc desc(ltArgs);
    auto&& handle = ltArgs.handle;
    auto&& stream = handle->stream();
    auto&& cublasLt_handle = handle->cublasLt_handle();
    desc.get_algorithm_heuristic(ltArgs, INT_MAX, algo);
    auto&& ws_bundle = desc.get_workspace_bundle(ltArgs, algo);
    ws_bundle.set(args.workspace.raw_ptr);

    auto sgemm = [&]() {
        auto zero = handle->zero_device();
        auto one = handle->one_device();
        megdnn_assert(ws_bundle.nr_workspace() == 1,
            "workspace bundle size should be 1(ws_algo)");
        cublas_check(cublasLtMatmul(cublasLt_handle,
            desc.matmul_desc,
            one,
            static_cast<void *>(args.tensor_b.ptr<dt_float32>()), desc.layout_b,
            static_cast<void *>(args.tensor_a.ptr<dt_float32>()), desc.layout_a,
            zero,
            static_cast<void *>(args.tensor_c.ptr<dt_float32>()), desc.layout_c,
            static_cast<void *>(args.tensor_c.ptr<dt_float32>()), desc.layout_c,
            &algo,
            ws_bundle.get(0), ws_bundle.get_size(0),
            stream
        ));
    };
    auto hgemm = [&]() {
        auto zero_half = handle->zero_device_h();
        auto one_half = handle->one_device_h();
        megdnn_assert(ws_bundle.nr_workspace() == 1,
            "workspace bundle size should be 1(ws_algo)");
        cublas_check(cublasLtMatmul(cublasLt_handle,
            desc.matmul_desc,
            one_half,
            static_cast<const __half*>(args.tensor_b.raw_ptr), desc.layout_b,
            static_cast<const __half*>(args.tensor_a.raw_ptr), desc.layout_a,
            zero_half,
            static_cast<const __half*>(args.tensor_c.raw_ptr), desc.layout_c,
            static_cast<__half *>(args.tensor_c.raw_ptr), desc.layout_c,
            &algo,
            ws_bundle.get(0), ws_bundle.get_size(0),
            stream
        ));
    };
    auto igemm = [&]() {
        auto zero = handle->zero_device();
        auto one = handle->one_device();
        megdnn_assert(ws_bundle.nr_workspace() == 4,
            "workspace bundle size should be 4(ws_algo, ws_a, ws_b, ws_c)");
        void *ws_b = ws_bundle.get(1);
        void *ws_a = ws_bundle.get(2);
        void *ws_c = ws_bundle.get(3);
        int32_t pm=CUBLAS_POINTER_MODE_DEVICE;
        cublasOperation_t trans_a=CUBLAS_OP_T, trans_c=CUBLAS_OP_N;
        cublasLtMatrixTransformDesc_t transform_desc = nullptr;
        cublas_check(cublasLtMatrixTransformDescCreate(&transform_desc, CUDA_R_32F));
        cublas_check(cublasLtMatrixTransformDescSetAttribute(transform_desc,
            CUBLASLT_MATRIX_TRANSFORM_DESC_POINTER_MODE, &pm, sizeof(pm)));
        cublas_check(cublasLtMatrixTransform(cublasLt_handle, transform_desc,
            one, args.tensor_b.raw_ptr, desc.layout_b,
            zero, nullptr, nullptr,
            ws_b, desc.layout_trans_b,
            stream));
        cublas_check(cublasLtMatrixTransformDescSetAttribute(transform_desc,
            CUBLASLT_MATRIX_TRANSFORM_DESC_TRANSA, &trans_a, sizeof(trans_a)));
        cublas_check(cublasLtMatrixTransform(cublasLt_handle, transform_desc,
            one, args.tensor_a.raw_ptr, desc.layout_a,
            zero, nullptr, nullptr,
            ws_a, desc.layout_trans_a,
            stream));
        cublas_check(cublasLtMatmul(cublasLt_handle, desc.matmul_desc,
            one,
            ws_b, desc.layout_trans_b,
            ws_a, desc.layout_trans_a,
            zero,
            ws_c, desc.layout_trans_c,
            ws_c, desc.layout_trans_c,
            &algo,
            ws_bundle.get(0),
            ws_bundle.get_size(0),
            stream));
        cublas_check(cublasLtMatrixTransformDescSetAttribute(transform_desc,
            CUBLASLT_MATRIX_TRANSFORM_DESC_TRANSA, &trans_c, sizeof(trans_c)));
        cublas_check(cublasLtMatrixTransform(cublasLt_handle, transform_desc,
            one, ws_c, desc.layout_trans_c,
            zero, nullptr, nullptr,
            args.tensor_c.raw_ptr, desc.layout_c,
            stream));
        cublas_check(cublasLtMatrixTransformDescDestroy(transform_desc));
    };
131 132 133 134 135 136 137 138 139 140 141 142
#if CUDA_VERSION >= 11000
    switch (desc.dt_compute) {
        case CUBLAS_COMPUTE_16F:
            hgemm();
            break;
        case CUBLAS_COMPUTE_32F:
            sgemm();
            break;
        case CUBLAS_COMPUTE_32I:
            igemm();
            break;
        default:
M
Megvii Engine Team 已提交
143
            megdnn_throw("compute type must be float16/float32/int32");
144 145 146
    }
#else
    switch (desc.dt_compute) {
147 148 149 150 151 152 153 154 155 156
        case CUDA_R_16F:
            hgemm();
            break;
        case CUDA_R_32F:
            sgemm();
            break;
        case CUDA_R_32I:
            igemm();
            break;
        default:
M
Megvii Engine Team 已提交
157
            megdnn_throw("compute type must be float16/float32/int32");
158
    }
159
#endif
160 161 162
}
#endif
// vim: syntax=cpp.doxygen