/** * \file dnn/src/cuda/matrix_mul/cublas_lt.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #include "./algos.h" #include "src/cuda/handle.h" #include "src/cuda/utils.h" #include "src/cuda/matrix_mul/cublasLt_wrapper.h" #if CUDA_VERSION >= 10010 using namespace megdnn; using namespace cuda; bool MatrixMulForwardImpl::AlgoCuBlasLt::is_available( const SizeArgs& args) const { if (args.opr->param().format != param::MatrixMul::Format::DEFAULT) return false; if (args.layout_a.dtype.enumv() == DTypeEnum::Quantized4Asymm || args.layout_a.dtype.enumv() == DTypeEnum::BFloat16) return false; CUBLASLTMatmulDesc::SizeArgs ltArgs(args); return CUBLASLTMatmulDesc(ltArgs).is_available(ltArgs, INT_MAX); } size_t MatrixMulForwardImpl::AlgoCuBlasLt::get_workspace_in_bytes( const SizeArgs& args) const { CUBLASLTMatmulDesc::SizeArgs ltArgs(args); cublasLtMatmulAlgo_t algo; CUBLASLTMatmulDesc desc(ltArgs); desc.get_algorithm_heuristic(ltArgs, INT_MAX, algo); return desc.get_workspace_bundle(ltArgs, algo).total_size_in_bytes(); } void MatrixMulForwardImpl::AlgoCuBlasLt::exec(const ExecArgs& args) const { CUBLASLTMatmulDesc::SizeArgs ltArgs(args); cublasLtMatmulAlgo_t algo; CUBLASLTMatmulDesc desc(ltArgs); auto&& handle = ltArgs.handle; auto&& stream = handle->stream(); auto&& cublasLt_handle = handle->cublasLt_handle(); desc.get_algorithm_heuristic(ltArgs, INT_MAX, algo); auto&& ws_bundle = desc.get_workspace_bundle(ltArgs, algo); ws_bundle.set(args.workspace.raw_ptr); auto sgemm = [&]() { auto zero = handle->zero_device(); auto one = handle->one_device(); megdnn_assert(ws_bundle.nr_workspace() == 1, "workspace bundle size should be 1(ws_algo)"); cublas_check(cublasLtMatmul(cublasLt_handle, desc.matmul_desc, one, static_cast(args.tensor_b.ptr()), desc.layout_b, static_cast(args.tensor_a.ptr()), desc.layout_a, zero, static_cast(args.tensor_c.ptr()), desc.layout_c, static_cast(args.tensor_c.ptr()), desc.layout_c, &algo, ws_bundle.get(0), ws_bundle.get_size(0), stream )); }; auto hgemm = [&]() { auto zero_half = handle->zero_device_h(); auto one_half = handle->one_device_h(); megdnn_assert(ws_bundle.nr_workspace() == 1, "workspace bundle size should be 1(ws_algo)"); cublas_check(cublasLtMatmul(cublasLt_handle, desc.matmul_desc, one_half, static_cast(args.tensor_b.raw_ptr), desc.layout_b, static_cast(args.tensor_a.raw_ptr), desc.layout_a, zero_half, static_cast(args.tensor_c.raw_ptr), desc.layout_c, static_cast<__half *>(args.tensor_c.raw_ptr), desc.layout_c, &algo, ws_bundle.get(0), ws_bundle.get_size(0), stream )); }; auto igemm = [&]() { auto zero = handle->zero_device(); auto one = handle->one_device(); megdnn_assert(ws_bundle.nr_workspace() == 4, "workspace bundle size should be 4(ws_algo, ws_a, ws_b, ws_c)"); void *ws_b = ws_bundle.get(1); void *ws_a = ws_bundle.get(2); void *ws_c = ws_bundle.get(3); int32_t pm=CUBLAS_POINTER_MODE_DEVICE; cublasOperation_t trans_a=CUBLAS_OP_T, trans_c=CUBLAS_OP_N; cublasLtMatrixTransformDesc_t transform_desc = nullptr; cublas_check(cublasLtMatrixTransformDescCreate(&transform_desc, CUDA_R_32F)); cublas_check(cublasLtMatrixTransformDescSetAttribute(transform_desc, CUBLASLT_MATRIX_TRANSFORM_DESC_POINTER_MODE, &pm, sizeof(pm))); cublas_check(cublasLtMatrixTransform(cublasLt_handle, transform_desc, one, args.tensor_b.raw_ptr, desc.layout_b, zero, nullptr, nullptr, ws_b, desc.layout_trans_b, stream)); cublas_check(cublasLtMatrixTransformDescSetAttribute(transform_desc, CUBLASLT_MATRIX_TRANSFORM_DESC_TRANSA, &trans_a, sizeof(trans_a))); cublas_check(cublasLtMatrixTransform(cublasLt_handle, transform_desc, one, args.tensor_a.raw_ptr, desc.layout_a, zero, nullptr, nullptr, ws_a, desc.layout_trans_a, stream)); cublas_check(cublasLtMatmul(cublasLt_handle, desc.matmul_desc, one, ws_b, desc.layout_trans_b, ws_a, desc.layout_trans_a, zero, ws_c, desc.layout_trans_c, ws_c, desc.layout_trans_c, &algo, ws_bundle.get(0), ws_bundle.get_size(0), stream)); cublas_check(cublasLtMatrixTransformDescSetAttribute(transform_desc, CUBLASLT_MATRIX_TRANSFORM_DESC_TRANSA, &trans_c, sizeof(trans_c))); cublas_check(cublasLtMatrixTransform(cublasLt_handle, transform_desc, one, ws_c, desc.layout_trans_c, zero, nullptr, nullptr, args.tensor_c.raw_ptr, desc.layout_c, stream)); cublas_check(cublasLtMatrixTransformDescDestroy(transform_desc)); }; #if CUDA_VERSION >= 11000 switch (desc.dt_compute) { case CUBLAS_COMPUTE_16F: hgemm(); break; case CUBLAS_COMPUTE_32F: sgemm(); break; case CUBLAS_COMPUTE_32I: igemm(); break; default: megdnn_throw("compute type must be float16/float32/int32"); } #else switch (desc.dt_compute) { case CUDA_R_16F: hgemm(); break; case CUDA_R_32F: sgemm(); break; case CUDA_R_32I: igemm(); break; default: megdnn_throw("compute type must be float16/float32/int32"); } #endif } #endif // vim: syntax=cpp.doxygen