opr_impl.cpp 27.2 KB
Newer Older
1 2 3 4 5 6 7 8
/**
 * \file dnn/src/fallback/convolution/opr_impl.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
 */

#include "src/fallback/convolution/opr_impl.h"
#include "src/common/algo_chooser.h"
#include "src/common/metahelper.h"
#include "src/common/opr_delegate.h"
#include "src/common/utils.h"
#include "src/fallback/convolution/algos.h"
#include "src/fallback/convolution/run_conv.h"
#include "src/naive/convolution/helper.h"
#include "src/naive/handle.h"

#include "midout.h"

#include <cstring>

MIDOUT_DECL(megdnn_fb_conv_float)
MIDOUT_DECL(megdnn_fb_convbwd_float)

using namespace megdnn;
using namespace fallback;

namespace {
class NaiveConvolutionBackwardData final
        : public megdnn::ConvolutionBackwardData::Algorithm {
    bool is_reproducible() const override { return true; }
    const char* name() const override { return "NCBD"; }
};
NaiveConvolutionBackwardData naive_conv_backward_data;
uint8_t fallback_deconv_algo_type_storage;
uint8_t fallback_conv_algo_type_storage;

template <typename T>
void incr_ptr(T*& dst, ptrdiff_t delta) {
    dst = reinterpret_cast<T*>(reinterpret_cast<uintptr_t>(dst) + delta);
}
}  // namespace

class ConvolutionImpl::AlgoPack : NonCopyableObj {
    AlgoFallback algo_fallback;
    AlgoNaive algo_naive;
    SmallVector<std::unique_ptr<AlgoBase>> refhold;

public:
    AlgoPack() {
        static CpuOprDelegationStorage<1> storage;
        auto conv_bias_opr = storage.get<ConvBias, 0>();
        auto&& conv_bias_algo =
                static_cast<ConvBiasImpl*>(conv_bias_opr)->algo_pack();
        for (auto&& algorithm : conv_bias_algo) {
            // fallback algo
62
            refhold.emplace_back(new AlgoDefault(algorithm));
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
            all_algos.emplace_back(refhold.back().get());
        }

        all_algos.emplace_back(&algo_fallback);
        all_algos.emplace_back(&algo_naive);
    }
    SmallVector<AlgoBase*> all_algos;
};

void* const ConvolutionImpl::sm_fallback_conv_algo_type =
        &fallback_conv_algo_type_storage;

SmallVector<ConvolutionImpl::AlgoBase*> ConvolutionImpl::algo_pack() {
    static AlgoPack sl_algo_pack;
    return sl_algo_pack.all_algos;
}
bool ConvolutionImpl::is_naive_algo(ConvolutionImpl::Algorithm* algo) {
    return algo == nullptr || strcmp(algo->name(), "DEFAULT") == 0;
}
82 83

#define NCB_ALGO_FUNC(name, algo, param) \
84
    static_cast<AlgoBase*>(algo)->name(param)
85

86 87
void ConvolutionImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_in filter,
                           _megdnn_tensor_out dst,
88
                           const PreprocessedFilter* preprocessed_filter,
89
                           _megdnn_workspace workspace) {
90 91
    auto fparam = make_ncb_kern_param(src, filter, dst, preprocessed_filter,
                                      workspace);
92 93
    ConvolutionImpl::Algorithm* algo = get_algorithm(fparam, workspace.size);
    if (!is_naive_algo(algo) &&
94
        NCB_ALGO_FUNC(get_workspace, algo, fparam) <= workspace.size) {
95 96
        exec_with_ncb_kern(fparam, algo);
    } else {
97 98
        naive::ConvolutionForwardImpl::exec(src, filter, dst,
                                            preprocessed_filter, workspace);
99 100 101
    }
}

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
void ConvolutionImpl::exec_preprocess(const TensorLayout& src_layout,
                         _megdnn_tensor_in filter,
                         const TensorLayout& dst_layout,
                         PreprocessedFilter* preprocessed_filter,
                         _megdnn_workspace workspace) {
    //! exec_preprocess currently only support preprocess weights before exec,
    //! src/dst will be ignored, just set to nullptr
    TensorND src{nullptr, src_layout}, dst{nullptr, dst_layout};
    auto fparam = make_ncb_kern_param(src, filter, dst, preprocessed_filter,
                                      workspace);
    ConvolutionImpl::Algorithm* algo = get_algorithm(fparam, workspace.size);
    if (!is_naive_algo(algo) && NCB_ALGO_FUNC(get_preprocess_workspace, algo,
                                              fparam) <= workspace.size) {
        exec_preprocess_with_ncb_kern(fparam, algo);
    } else {
        naive::ConvolutionForwardImpl::exec_preprocess(
                src_layout, filter, dst_layout, preprocessed_filter, workspace);
    }
}

122 123 124 125
size_t ConvolutionImpl::get_workspace_in_bytes(
        const TensorLayout& src, const TensorLayout& filter,
        const TensorLayout& dst,
        const PreprocessedFilter* preprocessed_filter) {
126 127
    auto fparam =
            make_ncb_kern_size_param(src, filter, dst, preprocessed_filter);
128 129 130
    Algorithm* algo = get_algorithm(fparam);
    if (is_naive_algo(algo)) {
        return naive::ConvolutionForwardImpl::get_workspace_in_bytes(
131
                src, filter, dst, preprocessed_filter);
132
    } else {
133
        return NCB_ALGO_FUNC(get_workspace, algo, fparam);
134 135 136 137 138 139 140 141 142 143 144 145
    }
}

size_t ConvolutionImpl::get_preprocess_workspace_in_bytes(
        const TensorLayout& src, const TensorLayout& filter,
        const TensorLayout& dst) {
    auto fparam = make_ncb_kern_size_param(src, filter, dst, nullptr);
    Algorithm* algo = get_algorithm(fparam);
    if (is_naive_algo(algo)) {
        return naive::ConvolutionForwardImpl::get_preprocess_workspace_in_bytes(
                src, filter, dst);
    } else {
146
        return NCB_ALGO_FUNC(get_preprocess_workspace, algo, fparam);
147 148 149 150 151 152 153 154 155 156 157 158
    }
}

SmallVector<TensorLayout> ConvolutionImpl::deduce_preprocessed_filter_layout(
        const TensorLayout& src, const TensorLayout& filter,
        const TensorLayout& dst){
    auto fparam = make_ncb_kern_size_param(src, filter, dst, nullptr);
    Algorithm* algo = get_algorithm(fparam);
    if (is_naive_algo(algo)) {
        return naive::ConvolutionForwardImpl::deduce_preprocessed_filter_layout(
                src, filter, dst);
    } else {
159
        return NCB_ALGO_FUNC(deduce_preprocessed_filter_layout, algo, fparam);
160 161 162 163 164 165
    }
}

std::vector<ConvolutionImpl::Algorithm*> ConvolutionImpl::get_all_algorithms(
        const TensorLayout& src, const TensorLayout& filter,
        const TensorLayout& dst) {
166
    auto fparam = make_ncb_kern_size_param(src, filter, dst, nullptr);
167 168 169 170 171 172 173 174 175 176 177 178
    auto ret = get_all_algorithms_with_ncb(fparam);
    if (ret.empty()) {
        return naive::ConvolutionForwardImpl::get_all_algorithms(src, filter,
                                                                 dst);
    }
    return ret;
}

ConvolutionImpl::Algorithm* ConvolutionImpl::get_algorithm_heuristic(
        const TensorLayout& src, const TensorLayout& filter,
        const TensorLayout& dst, size_t workspace_limit_in_bytes,
        bool reproducible) {
179
    auto fparam = make_ncb_kern_size_param(src, filter, dst, nullptr);
180 181 182 183 184 185 186 187 188 189 190
    auto result = get_algorithm_heuristic_with_ncb(
            fparam, workspace_limit_in_bytes, reproducible);
    if (result == nullptr) {
        result = naive::ConvolutionForwardImpl::get_algorithm_heuristic(
                src, filter, dst, workspace_limit_in_bytes, reproducible);
    }
    return result;
}

ConvolutionImpl::NCBKernSizeParam ConvolutionImpl::make_ncb_kern_size_param(
        const TensorLayout& src, const TensorLayout& filter,
191 192
        const TensorLayout& dst,
        const PreprocessedFilter* preprocessed_filter) {
193 194 195 196 197 198 199 200
    auto safe_u32 = [](size_t v) -> uint32_t {
        megdnn_assert(v <= std::numeric_limits<uint32_t>::max(),
                      "value too large: %zu", v);
        return v;
    };
    size_t spatial_pos;
    if (param().format == Param::Format::NCHW88 ||
        param().format == Param::Format::NCHW8 ||
201
        param().format == Param::Format::NCHW4 ||
202
        param().format == Param::Format::NCHW44_DOT ||
203
        param().format == Param::Format::NCHW44) {
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
        spatial_pos = 2;
    } else if (param().format == Param::Format::NCHW ||
               param().format == Param::Format::NCHW_WINOGRAD) {
        spatial_pos = 2;
    } else if (param().format == Param::Format::NHWC) {
        spatial_pos = 1;
    } else {
        megdnn_assert(0, "invalid conv format %d",
                      static_cast<int>(param().format));
    }
    size_t nr_threads = static_cast<naive::HandleImpl*>(handle())
                                ->megcore_dispatcher()
                                ->nr_threads();

    return {safe_u32(src[0]),
            {{safe_u32(src[spatial_pos]), safe_u32(src[spatial_pos + 1])}},
            {{safe_u32(dst[spatial_pos]), safe_u32(dst[spatial_pos + 1])}},
            check_layout_fwd(src, filter, dst),
            src.dtype,
            filter.dtype,
            dst.dtype,
            src.stride[0],
            dst.stride[0],
            {src.stride[0], src.stride[1], src.stride[2], src.stride[3]},
            {dst.stride[0], dst.stride[1], dst.stride[2], dst.stride[3]},
            param().compute_mode,
230 231
            nr_threads,
            preprocessed_filter};
232 233 234 235
}

ConvolutionImpl::NCBKernParam ConvolutionImpl::make_ncb_kern_param(
        _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_out dst,
236
        const PreprocessedFilter* preprocessed_filter,
237 238
        _megdnn_workspace workspace) {
    NCBKernParam ret;
239 240
    static_cast<NCBKernSizeParam&>(ret) = make_ncb_kern_size_param(
            src.layout, filter.layout, dst.layout, preprocessed_filter);
241 242 243 244 245 246 247 248
    ret.src_ptr = src.raw_ptr;
    ret.filter_ptr = filter.raw_ptr;
    ret.dst_ptr = dst.raw_ptr;
    ret.workspace_ptr = workspace.raw_ptr;
    ret.workspace_size = workspace.size;
    return ret;
}

249 250
void ConvolutionImpl::exec_preprocess_with_ncb_kern(const NCBKernParam& param,
                                                    Algorithm* algo) {
251
    auto kerns = NCB_ALGO_FUNC(dispatch_preprocess_kern, algo, param);
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
    auto fallback_handle = handle();
    for (auto kernel : kerns) {
        megdnn_assert(
                param.filter_meta.format == Param::Format::NCHW ||
                        param.filter_meta.format == Param::Format::NHWC ||
                        param.filter_meta.format == Param::Format::NCHW88 ||
                        param.filter_meta.format == Param::Format::NCHW44,
                "invalid conv format");
        auto run = [param, kernel](size_t index, size_t thread_id) {
            CpuNDRange ndrange_id(kernel.global_size, index);
            kernel.kern(param, {thread_id, ndrange_id});
        };
        static_cast<naive::HandleImpl*>(fallback_handle)
                ->dispatch_kern(run, kernel.global_size.total_size());
    }
}

269 270
void ConvolutionImpl::exec_with_ncb_kern(const NCBKernParam& param,
                                         Algorithm* algo) {
271
    auto kerns = NCB_ALGO_FUNC(dispatch_kern, algo, param);
272 273
    auto fallback_handle = handle();
    for (auto kernel : kerns) {
274 275 276 277 278 279
        megdnn_assert(
                param.filter_meta.format == Param::Format::NCHW ||
                        param.filter_meta.format == Param::Format::NHWC ||
                        param.filter_meta.format == Param::Format::NCHW88 ||
                        param.filter_meta.format == Param::Format::NCHW44,
                "invalid conv format");
280
        auto run = [param, kernel](size_t index, size_t thread_id) {
281
            CpuNDRange ndrange_id(kernel.global_size, index);
282
            kernel.kern(param, {thread_id, ndrange_id});
283 284 285 286 287 288 289 290 291 292
        };
        static_cast<naive::HandleImpl*>(fallback_handle)
                ->dispatch_kern(run, kernel.global_size.total_size());
    }
}

ConvolutionImpl::Algorithm* ConvolutionImpl::get_algorithm_heuristic_with_ncb(
        const NCBKernSizeParam& param, size_t workspace_limit_in_bytes,
        bool reproducible) {
    for (auto i : get_all_algorithms_with_ncb(param)) {
293 294
        bool usable_reproducible =
                static_cast<AlgoBase*>(i)->usable_reproducible(
295 296 297
                        param, AlgoSelectionStrategy::HEURISTIC, reproducible);
        if (usable_reproducible && NCB_ALGO_FUNC(get_workspace, i, param) <=
                                           workspace_limit_in_bytes) {
298 299 300 301 302 303 304 305 306 307 308
            return i;
        }
    }
    return nullptr;
}

std::vector<ConvolutionImpl::Algorithm*>
ConvolutionImpl::get_all_algorithms_with_ncb(const NCBKernSizeParam& param) {
    std::vector<Algorithm*> ret;
    std::vector<Algorithm*> prefer_algos;
    for (auto&& i : algo_pack()) {
309 310
        if (i->usable(param, AlgoSelectionStrategy::FULL_RUN)) {
            if (i->is_preferred(param)) {
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
                prefer_algos.push_back(i);
            } else {
                ret.push_back(i);
            }
        }
    }
    std::reverse(prefer_algos.begin(), prefer_algos.end());
    //! Prefer algo inserted from begin
    ret.insert(ret.begin(), prefer_algos.begin(), prefer_algos.end());
    return ret;
}

ConvolutionImpl::Algorithm* ConvolutionImpl::get_algorithm(
        const NCBKernSizeParam& param, size_t workspace_size) {
    if (auto set = execution_policy().algorithm) {
        return set;
    }
    if (!m_prev_selected_algo ||
        memcmp(&m_prev_selected_algo_sizep, &param, sizeof(NCBKernSizeParam))) {
        m_prev_selected_algo =
                get_algorithm_heuristic_with_ncb(param, workspace_size);
        m_prev_selected_algo_sizep = param;
    }
    return m_prev_selected_algo;
}

const char* ConvolutionImpl::get_algorithm_set_name() const {
    // fallback version 0
    return "F0";
}

/* ===================== ConvolutionBackwardData ===================== */

void* const ConvolutionBackwardDataImpl::sm_fallback_deconv_algo_type =
        &fallback_deconv_algo_type_storage;

struct ConvolutionBackwardDataImpl::AlgoPack {
    AlgoDirect direct;
    AlgoMatrixMul matmul;
};
ConvolutionBackwardDataImpl::AlgoPack ConvolutionBackwardDataImpl::sm_algo_pack;

void ConvolutionBackwardDataImpl::exec(_megdnn_tensor_in filter,
                                       _megdnn_tensor_in diff,
                                       _megdnn_tensor_out grad,
                                       _megdnn_workspace workspace) {
    if (param().format == param::Convolution::Format::NHWCD4 ||
        param().format == param::Convolution::Format::NCHW4) {
        return naive::ConvolutionBackwardDataImpl::exec(filter, diff, grad,
                                                        workspace);
    }
    auto fparam = make_ncb_kern_param(filter, diff, grad, workspace);
    return exec_with_ncb_kern(fparam);
}

size_t ConvolutionBackwardDataImpl::get_workspace_in_bytes(
        const TensorLayout& filter, const TensorLayout& diff,
        const TensorLayout& grad) {
    if (param().format == param::Convolution::Format::NHWCD4 ||
        param().format == param::Convolution::Format::NCHW4) {
        return naive::ConvolutionBackwardDataImpl::get_workspace_in_bytes(
                filter, diff, grad);
    }
    auto fparam = make_ncb_kern_size_param(filter, diff, grad);
    return get_workspace_with_ncb(fparam);
}

std::vector<ConvolutionBackwardDataImpl::Algorithm*>
ConvolutionBackwardDataImpl::get_all_algorithms(const TensorLayout& filter,
                                                const TensorLayout& diff,
                                                const TensorLayout& grad) {
    if (param().format == param::Convolution::Format::NHWCD4 ||
        param().format == param::Convolution::Format::NCHW4) {
        return naive::ConvolutionBackwardDataImpl::get_all_algorithms(
                filter, diff, grad);
    }
    auto fparam = make_ncb_kern_size_param(filter, diff, grad);
    auto ret = get_all_algorithms_with_ncb(fparam);
    megdnn_assert(!ret.empty(), "no usable conv fwd algorithm");
    return ret;
}

ConvolutionBackwardDataImpl::Algorithm*
ConvolutionBackwardDataImpl::get_algorithm_heuristic(
        const TensorLayout& filter, const TensorLayout& diff,
        const TensorLayout& grad, size_t workspace_limit_in_bytes,
        bool reproducible) {
    if (param().format == param::Convolution::Format::NHWCD4 ||
        param().format == param::Convolution::Format::NCHW4) {
        return naive::ConvolutionBackwardDataImpl::get_algorithm_heuristic(
                filter, diff, grad, workspace_limit_in_bytes, reproducible);
    }
    auto fparam = make_ncb_kern_size_param(filter, diff, grad);
    return get_algorithm_heuristic_with_ncb(fparam, workspace_limit_in_bytes,
                                            reproducible);
}

ConvolutionBackwardDataImpl::NCBKernSizeParam
ConvolutionBackwardDataImpl::make_ncb_kern_size_param(
        const TensorLayout& filter, const TensorLayout& diff,
        const TensorLayout& grad) {
    auto safe_u32 = [](size_t v) -> uint32_t {
        megdnn_assert(v <= std::numeric_limits<uint32_t>::max(),
                      "value too large: %zu", v);
        return v;
    };
    size_t spatial_pos;
    if (param().format == Param::Format::NCHW) {
        spatial_pos = 2;
    } else {
        megdnn_assert(param().format == Param::Format::NHWC,
                      "invalid conv format");
        spatial_pos = 1;
    }
    auto grad_fwd = grad;
    auto filter_fwd = filter;
    auto diff_fwd = diff;

    std::swap(grad_fwd.dtype, diff_fwd.dtype);

    return {
            safe_u32(diff[0]),
            {{safe_u32(diff[spatial_pos]), safe_u32(diff[spatial_pos + 1])}},
            {{safe_u32(grad[spatial_pos]), safe_u32(grad[spatial_pos + 1])}},
            check_layout_fwd(grad_fwd, filter_fwd, diff_fwd),
            diff.dtype,
            filter.dtype,
            grad.dtype,
            diff,
            filter,
            grad,
            diff.stride[0],
            grad.stride[0],
            0,
            0,
            0,
            param().compute_mode,
    };
}

ConvolutionBackwardDataImpl::NCBKernParam
ConvolutionBackwardDataImpl::make_ncb_kern_param(_megdnn_tensor_in filter,
                                                 _megdnn_tensor_in diff,
                                                 _megdnn_tensor_out grad,
                                                 _megdnn_workspace workspace) {
    NCBKernParam ret;
    static_cast<NCBKernSizeParam&>(ret) =
            make_ncb_kern_size_param(filter.layout, diff.layout, grad.layout);

    auto required_workspace_in_bytes = get_workspace_with_ncb(ret);
    megdnn_assert(workspace.size >= required_workspace_in_bytes,
                  "required workspace: %zu; provided workspace: %zu",
                  required_workspace_in_bytes, workspace.size);
    ret.filter_ptr = filter.raw_ptr;
    ret.diff_ptr = diff.raw_ptr;
    ret.grad_ptr = grad.raw_ptr;
    ret.workspace_ptr = workspace.raw_ptr;
    ret.workspace_size = workspace.size;
    return ret;
}

void ConvolutionBackwardDataImpl::exec_with_ncb_kern(
        const NCBKernParam& param) {
    auto p1g = param;
    auto group = p1g.filter_meta.group;
    p1g.filter_meta.group = 1;
    auto algo = get_algorithm(p1g);
    auto kptr = ncb_1g_dispatch_kern(algo, p1g);
    if (algo == &naive_conv_backward_data || group == 1) {
        auto run = [kptr, param]() { kptr(param); };
        static_cast<naive::HandleImpl*>(handle())->dispatch_kern(run);
    } else {
        megdnn_assert(p1g.filter_meta.format == Param::Format::NCHW ||
                              p1g.filter_meta.format == Param::Format::NHWC,
                      "invalid conv format");
        auto run = [kptr, p1g_orig = p1g, group]() {
            auto p1g = p1g_orig;
            ptrdiff_t istrd, fstrd, ostrd;
            fstrd = p1g.filter_meta.icpg * p1g.filter_meta.ocpg *
                    p1g.filter_meta.spatial[0] * p1g.filter_meta.spatial[1] *
                    p1g.filter_type.size();
            istrd = p1g.filter_meta.ocpg * p1g.diff_type.size();
            ostrd = p1g.filter_meta.icpg * p1g.grad_type.size();
            p1g.diff_extra_mem_size =
                    (group - 1) * p1g.filter_meta.ocpg * p1g.diff_type.size();
            p1g.filter_extra_mem_size =
                    (group - 1) * p1g.filter_meta.icpg * p1g.filter_meta.ocpg *
                    p1g.filter_meta.spatial[0] * p1g.filter_meta.spatial[1] *
                    p1g.filter_type.size();
            p1g.grad_extra_mem_size =
                    (group - 1) * p1g.filter_meta.icpg * p1g.grad_type.size();
            if (p1g.filter_meta.format == Param::Format::NCHW) {
                istrd *= p1g.isz[0] * p1g.isz[1];
                ostrd *= p1g.osz[0] * p1g.osz[1];
                p1g.diff_extra_mem_size *= p1g.isz[0] * p1g.isz[1];
                p1g.grad_extra_mem_size *= p1g.osz[0] * p1g.osz[1];
            } else {
                // must be NHWC. No action performed.
            }
            for (size_t i = 0; i < group; ++i) {
                kptr(p1g);
                incr_ptr(p1g.diff_ptr, istrd);
                incr_ptr(p1g.filter_ptr, fstrd);
                incr_ptr(p1g.grad_ptr, ostrd);
                p1g.diff_extra_mem_size -= istrd;
                p1g.filter_extra_mem_size -= fstrd;
                p1g.grad_extra_mem_size -= ostrd;
            }
        };
        static_cast<naive::HandleImpl*>(handle())->dispatch_kern(run);
    }
}

size_t ConvolutionBackwardDataImpl::get_workspace_with_ncb(
        const NCBKernSizeParam& param) {
    if (param.filter_meta.group != 1) {
        auto p1g = param;
        p1g.filter_meta.group = 1;
        return ncb_1g_get_workspace(get_algorithm(p1g), p1g);
    }
    return ncb_1g_get_workspace(get_algorithm(param), param);
}

std::vector<ConvolutionBackwardDataImpl::Algorithm*>
ConvolutionBackwardDataImpl::get_all_algorithms_with_ncb(
        const NCBKernSizeParam& param) {
    if (param.filter_meta.group != 1) {
        auto p1g = param;
        p1g.filter_meta.group = 1;
        return ncb_1g_get_all_algorithms(p1g);
    }
    return ncb_1g_get_all_algorithms(param);
}

ConvolutionBackwardDataImpl::Algorithm*
ConvolutionBackwardDataImpl::get_algorithm_heuristic_with_ncb(
        const NCBKernSizeParam& param, size_t workspace_limit_in_bytes,
        bool reproducible) {
    if (param.filter_meta.group != 1) {
        auto p1g = param;
        p1g.filter_meta.group = 1;
        return ncb_1g_get_algorithm_heuristic(p1g, workspace_limit_in_bytes,
                                              reproducible);
    }
    return ncb_1g_get_algorithm_heuristic(param, workspace_limit_in_bytes,
                                          reproducible);
}

size_t ConvolutionBackwardDataImpl::ncb_1g_get_workspace(
        Algorithm* algo, const NCBKernSizeParam& param) {
    megdnn_assert(param.filter_meta.group == 1);
    if (algo->type() == sm_fallback_deconv_algo_type) {
        return static_cast<AlgoBase*>(algo)->get_workspace(this, param);
    }
    megdnn_assert(algo == &naive_conv_backward_data);
    return 0;
}

ConvolutionBackwardDataImpl::ncb_kern_t
ConvolutionBackwardDataImpl::ncb_1g_dispatch_kern(
        Algorithm* algo, const NCBKernSizeParam& param) {
    megdnn_assert(param.filter_meta.group == 1);

    if (algo->type() == sm_fallback_deconv_algo_type) {
        return static_cast<AlgoBase*>(algo)->dispatch_kern(this, param);
    }

    if (algo == &naive_conv_backward_data) {
#define cb(_dt)                                                    \
    do {                                                           \
        if (param.filter_type.enumv() == DTypeTrait<_dt>::enumv) { \
            MIDOUT_BEGIN(megdnn_fb_convbwd_float,                  \
                         midout_iv(DTypeTrait<_dt>::enumv)) {      \
                using ctype = DTypeTrait<_dt>::ctype;              \
                return kern_naive<ctype, ctype, ctype>;            \
            }                                                      \
            MIDOUT_END();                                          \
        }                                                          \
    } while (0);
        MEGDNN_FOREACH_COMPUTING_DTYPE_FLOAT(cb);
#undef cb
#define cb(dt_src, dt_dst)                                            \
    do {                                                              \
        if (param.diff_type.enumv() == DTypeTrait<dt_src>::enumv &&   \
            param.filter_type.enumv() == DTypeTrait<dt_src>::enumv && \
            param.grad_type.enumv() == DTypeTrait<dt_dst>::enumv) {   \
            return kern_naive<DTypeTrait<dt_src>::ctype,              \
                              DTypeTrait<dt_src>::ctype,              \
                              DTypeTrait<dt_dst>::ctype>;             \
        }                                                             \
    } while (0);
        cb(dtype::Int8, dtype::Int32) cb(dtype::Quantized8Asymm,
                                         dtype::QuantizedS32)
                cb(dtype::QuantizedS8, dtype::QuantizedS32) megdnn_throw(
                        "unsupported data type on ConvolutionBackwardData");
#undef cb
    }
    megdnn_throw(
            megdnn_mangle("no suitable ConvolutionBackwardData algorithm"));
}

bool ConvolutionBackwardDataImpl::is_matrix_mul_preferred(
        const NCBKernSizeParam& param) {
    auto&& fm = param.filter_meta;
    auto OC = fm.ocpg, IC = fm.icpg;

    return (OC * IC >= 32) ||
           (fm.spatial[0] == 1 && fm.spatial[1] == 1 && fm.padding[0] == 0 &&
            fm.padding[1] == 0 && fm.stride[0] == 1 && fm.stride[1] == 1);
}

std::vector<ConvolutionBackwardDataImpl::Algorithm*>
ConvolutionBackwardDataImpl::ncb_1g_get_all_algorithms(
        const NCBKernSizeParam& param) {
    std::vector<Algorithm*> ret;
    ret.reserve(2);
    ret.push_back(&naive_conv_backward_data);

    // insert from lowest to highest preference
    AlgoBase* cand[2] = {nullptr};

    if (param.filter_meta.group == 1 && param.filter_meta.dilation[0] == 1 &&
        param.filter_meta.dilation[1] == 1) {
        // we currently only have non-dilated algos
        if (param.filter_type.enumv() == DTypeEnum::Float32) {
            if (is_matrix_mul_preferred(param)) {
                cand[0] = &sm_algo_pack.direct;
                cand[1] = &sm_algo_pack.matmul;
            } else {
                cand[0] = &sm_algo_pack.matmul;
                cand[1] = &sm_algo_pack.direct;
            }
        } else {
            cand[0] = &sm_algo_pack.matmul;
        }
    }
    for (auto i : cand) {
        if (i && i->usable(this, param)) {
            ret.push_back(i);
        }
    }

    std::reverse(ret.begin(), ret.end());
    return ret;
}

ConvolutionBackwardDataImpl::Algorithm*
ConvolutionBackwardDataImpl::ncb_1g_get_algorithm_heuristic(
        const NCBKernSizeParam& param, size_t workspace_limit_in_bytes,
        bool reproducible) {
    for (auto i : ncb_1g_get_all_algorithms(param)) {
        if (ncb_1g_get_workspace(i, param) <= workspace_limit_in_bytes) {
            if (reproducible) {
                if (i->is_reproducible()) {
                    return i;
                }
            } else {
                return i;
            }
        }
    }
    megdnn_assert(0,
                  "no suitable algorithm found within given workspace limit");
}

ConvolutionBackwardDataImpl::Algorithm*
ConvolutionBackwardDataImpl::get_algorithm(const NCBKernSizeParam& param) {
    if (auto set = execution_policy().algorithm) {
        return set;
    }
    if (!m_prev_selected_algo ||
        memcmp(&m_prev_selected_algo_sizep, &param, sizeof(NCBKernSizeParam))) {
        m_prev_selected_algo = ncb_1g_get_algorithm_heuristic(
                param, std::numeric_limits<size_t>::max());
        m_prev_selected_algo_sizep = param;
    }
    return m_prev_selected_algo;
}

const char* ConvolutionBackwardDataImpl::get_algorithm_set_name() const {
    // fallback version 0
    return "FALLBACK_CONVOLUTION_BACKWARD_DATA_IMPL0";
}

// vim: syntax=cpp.doxygen