algos.cpp 23.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
/**
 * \file dnn/src/arm_common/conv_bias/int8x8x16/algos.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "src/arm_common/conv_bias/int8x8x16/algos.h"
#include "src/arm_common/conv_bias/int8x8x16/conv_direct.h"
#include "src/arm_common/conv_bias/int8x8x16/conv_stride2.h"

#include "midout.h"
#include "src/common/opr_delegate.h"
MIDOUT_DECL(megdnn_arm_common_conv_bias_int8816_kimpl)

#include <atomic>
#include <cstring>
#include <mutex>

using namespace megdnn;
using namespace arm_common;

namespace {
bool need_dst_copy_str1(
        const megdnn::fallback::ConvolutionImpl::NCBKernSizeParam& param) {
    if (param.osz[0] % 1 != 0 || param.osz[1] % 8 != 0)
        return true;
    return false;
}
bool need_src_copy_str1(
        const megdnn::fallback::ConvBiasImpl::NCBKernSizeParam& param) {
    auto&& fm = param.filter_meta;

    if (fm.padding[0] != 0 || fm.padding[1] != 0)
        return true;

    return need_dst_copy_str1(param);
}
void get_rectified_size_str1(size_t IH, size_t IW, size_t OH, size_t OW,
                             size_t PH, size_t PW, size_t& IH2, size_t& IW2,
                             size_t& OH2, size_t& OW2) {
    OH2 = OH;
    OW2 = (OW + 7) & ~7;
    IH2 = OH2 + (IH - OH) + 2 * PH;
    IW2 = OW2 + (IW - OW) + 2 * PW;
}
bool need_dst_copy_str2(
        const megdnn::fallback::ConvBiasImpl::NCBKernSizeParam& param) {
    // If the size of output is not multiples of 8, we need to copy it.
    if (param.osz[0] % 8 != 0 || param.osz[1] % 8 != 0)
        return true;
    return false;
}
bool need_src_copy_str2(
        const megdnn::fallback::ConvBiasImpl::NCBKernSizeParam& param) {
    auto&& fm = param.filter_meta;
    // If padding is not zero, we need to copy to eliminate padding effect.
    if (fm.padding[0] != 0 || fm.padding[1] != 0)
        return true;

    return need_dst_copy_str2(param);
}
void get_rectified_size_str2(size_t IH, size_t IW, size_t OH, size_t OW,
                             size_t FH, size_t FW, size_t PH, size_t PW,
                             size_t& IH2, size_t& IW2, size_t& OH2,
                             size_t& OW2) {
    MEGDNN_MARK_USED_VAR(PH);
    MEGDNN_MARK_USED_VAR(PW);
    OH2 = (OH + 7) & ~7;
    OW2 = (OW + 7) & ~7;
    IH2 = 2 * OH2 + FH - 2;
    IW2 = 2 * OW2 + FW - 2;
    // Because stride is 2, sometimes IH/W == IH/W2 + 1
    // Do a max update to handle this case.
    IH2 = std::max(IH2, IH);
    IW2 = std::max(IW2, IW);
}
}  // namespace

/* ===================== direct algo ===================== */
bool ConvBiasImpl::AlgoI8x8x16Direct::usable(
86
        const NCBKernSizeParam& param,
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
        AlgoSelectionStrategy algo_selection_strategy) const {
    MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8816_kimpl, 1, 0) {
        auto&& fm = param.filter_meta;
        auto FH = fm.spatial[0];
        bool aviliable =
                param.bias_mode == BiasMode::NO_BIAS &&
                param.nonlineMode == NonlineMode::IDENTITY &&
                fm.format == param::ConvBias::Format::NCHW && !fm.should_flip &&
                param.src_type.enumv() == DTypeEnum::Int8 &&
                param.filter_type.enumv() == DTypeEnum::Int8 &&
                param.dst_type.enumv() == DTypeEnum::Int16 &&
                fm.spatial_ndim == 2 && fm.dilation[0] == 1 &&
                fm.dilation[1] == 1 && fm.stride[0] == 1 && fm.stride[1] == 1 &&
                FH == fm.spatial[1] && (FH == 2 || FH == 3 || FH == 5);
        if (algo_selection_strategy ==
            ConvBiasImpl::AlgoSelectionStrategy::HEURISTIC) {
            bool large_group = param.filter_meta.group >= param.nr_threads;
            aviliable &= (large_group == m_large_group);
        }
        return aviliable;
    }
    MIDOUT_END();
    return false;
}
WorkspaceBundle ConvBiasImpl::AlgoI8x8x16Direct::get_bundle(
        const NCBKernSizeParam& param) const {
    auto&& fm = param.filter_meta;
    size_t nr_threads = param.nr_threads;
    size_t group = fm.group, batch = param.n;
    auto IC = fm.icpg, IH = param.isz[0], IW = param.isz[1];
    auto OH = param.osz[0], OW = param.osz[1];
    auto PH = fm.padding[0], PW = fm.padding[1];
    size_t OH2, OW2, IH2, IW2;
    get_rectified_size_str1(IH, IW, OH, OW, PH, PW, IH2, IW2, OH2, OW2);
    size_t part0 = 0u, part1 = 0u;
    if (need_src_copy_str1(param)) {
        part0 = m_large_group ? IC * IH2 * IW2 * sizeof(int8_t) * nr_threads
                              : IC * IH2 * IW2 * sizeof(int8_t) * group * batch;
    }
    if (need_dst_copy_str1(param)) {
        part1 = OH2 * OW2 * sizeof(int16_t) * nr_threads + 16;
    }
    return {nullptr, {part0, part1}};
}
size_t ConvBiasImpl::AlgoI8x8x16Direct::get_workspace(
132
        const NCBKernSizeParam& param) const {
133 134 135 136 137 138 139 140 141
    MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8816_kimpl, 1, 1) {
        auto bundle = get_bundle(param);
        return bundle.total_size_in_bytes();
    }
    MIDOUT_END();
    return 0;
}
//! Process one input channel copy padding
void ConvBiasImpl::AlgoI8x8x16Direct::copy_padding_kern(
142 143
        const WorkspaceBundle& bundle,
        const ConvBiasImpl::NCBKernParam& kern_param,
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
        const ConvBiasImpl::NCBKernIndex& ncb_index,
        const CpuNDRange& workspace_ids) {
    size_t IH = kern_param.isz[0];
    size_t IW = kern_param.isz[1];
    size_t IC = kern_param.filter_meta.icpg;
    size_t OH = kern_param.osz[0];
    size_t OW = kern_param.osz[1];
    size_t PH = kern_param.filter_meta.padding[0];
    size_t PW = kern_param.filter_meta.padding[1];
    size_t GROUP = kern_param.filter_meta.group;
    size_t OH2, OW2, IH2, IW2;
    get_rectified_size_str1(IH, IW, OH, OW, PH, PW, IH2, IW2, OH2, OW2);
    bool need_src_copy_var = need_src_copy_str1(kern_param);
    size_t padding_group_size = IH2 * IW2 * IC;

    //! Used for get the workspace offset
    size_t workspace_group_id = workspace_ids[0],
           workspace_batch_id = workspace_ids[1],
           channel_id = workspace_ids[2];
    size_t group_id = ncb_index.ndrange_id[0],
           batch_id = ncb_index.ndrange_id[1];
    const int8_t* sptr = kern_param.src<int8_t>(batch_id, group_id, channel_id);
    if (need_src_copy_var) {
        //! copy to sptr_base to eliminate padding effect
        int8_t* sptr_base = static_cast<int8_t*>(bundle.get(0)) +
                            workspace_group_id * padding_group_size +
                            workspace_batch_id * GROUP * padding_group_size +
                            channel_id * IH2 * IW2;
        std::memset(sptr_base, 0, sizeof(int8_t) * IH2 * IW2);
        rep(ih, IH) {
            std::memcpy(sptr_base + (ih + PH) * IW2 + PW, sptr + ih * IW,
                        sizeof(int8_t) * IW);
        }
    }
};
//! compute one output channel
void ConvBiasImpl::AlgoI8x8x16Direct::do_conv_kern(
181
        const WorkspaceBundle& bundle, const NCBKernParam& kern_param,
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
        const NCBKernIndex& ncb_index, const CpuNDRange& workspace_ids) {
    size_t OH = kern_param.osz[0];
    size_t OW = kern_param.osz[1];
    size_t IH = kern_param.isz[0];
    size_t IW = kern_param.isz[1];
    size_t FH = kern_param.filter_meta.spatial[0];
    size_t FW = kern_param.filter_meta.spatial[1];
    size_t IC = kern_param.filter_meta.icpg;
    size_t PH = kern_param.filter_meta.padding[0];
    size_t PW = kern_param.filter_meta.padding[1];
    size_t GROUP = kern_param.filter_meta.group;
    size_t OH2, OW2, IH2, IW2;
    get_rectified_size_str1(IH, IW, OH, OW, PH, PW, IH2, IW2, OH2, OW2);
    bool need_src_copy_var = need_src_copy_str1(kern_param);
    bool need_dst_copy_var = need_dst_copy_str1(kern_param);
    size_t padding_group_size = IH2 * IW2 * IC;
    //! Choose the compute kernel
    using Func =
            std::function<void(const int8_t*, const int8_t*, int16_t*, size_t,
                               size_t, size_t, size_t, size_t, size_t)>;
    Func fun_not_add_to_dst = nullptr, fun_add_to_dst = nullptr;
    if (FH == 2) {
        fun_not_add_to_dst =
                conv_bias::conv_direct_2x2_sc_int8_int8_int16<false>;
        fun_add_to_dst = conv_bias::conv_direct_2x2_sc_int8_int8_int16<true>;
    } else if (FH == 3) {
        fun_not_add_to_dst =
                conv_bias::conv_direct_3x3_sc_int8_int8_int16<false>;
        fun_add_to_dst = conv_bias::conv_direct_3x3_sc_int8_int8_int16<true>;
    } else if (FH == 5) {
        fun_not_add_to_dst =
                conv_bias::conv_direct_5x5_sc_int8_int8_int16<false>;
        fun_add_to_dst = conv_bias::conv_direct_5x5_sc_int8_int8_int16<true>;
    }

    //! Used for get the workspace offset
    size_t workspace_group_id = workspace_ids[0],
           workspace_batch_id = workspace_ids[1], oc = workspace_ids[2];

    size_t group_id = ncb_index.ndrange_id[0],
           batch_id = ncb_index.ndrange_id[1];

    const int8_t* sptr = kern_param.src<dt_int8>(batch_id, group_id);
    const int8_t* filter =
            kern_param.filter<dt_int8>(group_id) + oc * FH * FW * IC;
    int16_t* dst = kern_param.dst<dt_int16>(batch_id, group_id, oc);
    if (need_src_copy_var) {
        sptr = static_cast<int8_t*>(bundle.get(0)) +
               workspace_group_id * padding_group_size +
               workspace_batch_id * GROUP * padding_group_size;
    }
    int16_t* dptr = nullptr;
    if (need_dst_copy_var) {
        dptr = static_cast<int16_t*>(bundle.get(1)) +
               ncb_index.thread_id * OH2 * OW2;
    } else {
        dptr = dst;
    }
    fun_not_add_to_dst(sptr, filter, dptr, IH2, IW2, OH2, OW2, 0, 0);
    for (size_t ic = 1; ic < IC; ++ic) {
        fun_add_to_dst(sptr + ic * IH2 * IW2, filter + ic * FH * FW, dptr, IH2,
                       IW2, OH2, OW2, 0, 0);
    }
    if (need_dst_copy_var) {
        rep(oh, OH) {
            std::memcpy(dst + oh * OW, dptr + oh * OW2, sizeof(int16_t) * OW);
        }
    }
}
SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoI8x8x16Direct::get_kimpls(
        const NCBKernSizeParam& param) const {
    auto fm = param.filter_meta;
    size_t N = param.n;
    size_t IC = param.filter_meta.icpg;
    size_t OC = param.filter_meta.ocpg;
    size_t group = fm.group;
258
    WorkspaceBundle bundle = get_bundle(param);
259 260
    SmallVector<NCBKern> ret_kerns;
    if (m_large_group) {
261 262
        auto exec_one_group = [bundle](const NCBKernParam& kern_param,
                                        const NCBKernIndex& ncb_index) mutable {
263 264 265
            auto fm = kern_param.filter_meta;
            size_t IC = fm.icpg;
            size_t OC = fm.ocpg;
266
            bundle.set(kern_param.workspace_ptr);
267 268 269 270 271 272 273 274 275 276 277 278
            for (size_t ic = 0; ic < IC; ic++) {
                copy_padding_kern(bundle, kern_param, ncb_index,
                                  {ncb_index.thread_id, 0, ic});
            }
            for (size_t oc = 0; oc < OC; oc++) {
                do_conv_kern(bundle, kern_param, ncb_index,
                             {ncb_index.thread_id, 0, oc});
            }
        };
        ret_kerns.push_back({exec_one_group, {group, N, 1_z}});
    } else {
        auto copy_padding = [bundle](const NCBKernParam& kern_param,
279 280
                                     const NCBKernIndex& ncb_index) mutable {
            bundle.set(kern_param.workspace_ptr);
281 282 283 284 285
            copy_padding_kern(bundle, kern_param, ncb_index,
                              ncb_index.ndrange_id);
        };
        ret_kerns.push_back({copy_padding, {group, N, IC}});
        auto do_conv = [bundle](const NCBKernParam& kern_param,
286 287
                                const NCBKernIndex& ncb_index) mutable {
            bundle.set(kern_param.workspace_ptr);
288 289 290 291 292 293 294 295
            do_conv_kern(bundle, kern_param, ncb_index, ncb_index.ndrange_id);
        };
        ret_kerns.push_back({do_conv, {group, N, OC}});
    }
    return ret_kerns;
}
SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoI8x8x16Direct::dispatch_kerns(
296
        const NCBKernSizeParam& param) const {
297 298 299 300 301 302 303 304 305
    MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8816_kimpl, 1, 2) {
        return get_kimpls(param);
    }
    MIDOUT_END();
    return {};
}

/* ===================== stride-2 algo ===================== */
bool ConvBiasImpl::AlgoI8x8x16Stride2::usable(
306
        const NCBKernSizeParam& param,
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
        AlgoSelectionStrategy algo_selection_strategy) const {
    MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8816_kimpl, 2, 0) {
        auto&& fm = param.filter_meta;
        auto FH = fm.spatial[0];
        bool aviliable = param.bias_mode == BiasMode::NO_BIAS &&
                         param.nonlineMode == NonlineMode::IDENTITY &&
                         fm.format == param::ConvBias::Format::NCHW &&
                         !fm.should_flip &&
                         param.src_type.enumv() == DTypeEnum::Int8 &&
                         param.filter_type.enumv() == DTypeEnum::Int8 &&
                         param.dst_type.enumv() == DTypeEnum::Int16 &&
                         fm.dilation[0] == 1 && fm.dilation[1] == 1 &&
                         fm.stride[0] == 2 && fm.stride[1] == 2 &&
                         FH == fm.spatial[1] && (FH == 2 || FH == 3 || FH == 5);
        if (algo_selection_strategy ==
            ConvBiasImpl::AlgoSelectionStrategy::HEURISTIC) {
            bool large_group = param.filter_meta.group >= param.nr_threads;
            aviliable &= (large_group == m_large_group);
        }
        return aviliable;
    }
    MIDOUT_END();
    return false;
}
WorkspaceBundle ConvBiasImpl::AlgoI8x8x16Stride2::get_bundle(
        const NCBKernSizeParam& param) const {
    auto&& fm = param.filter_meta;
    size_t nr_threads = param.nr_threads;
    size_t group = fm.group, batch = param.n;
    auto IC = fm.icpg, IH = param.isz[0], IW = param.isz[1];
    auto OH = param.osz[0], OW = param.osz[1];
    auto PH = fm.padding[0], PW = fm.padding[1];
    auto FH = fm.spatial[0], FW = fm.spatial[1];
    size_t OH2, OW2, IH2, IW2;
    get_rectified_size_str2(IH, IW, OH, OW, FH, FW, PH, PW, IH2, IW2, OH2, OW2);
    size_t part0 = 0u, part1 = 0u;
    if (need_src_copy_str2(param)) {
        part0 = m_large_group ? IC * IH2 * IW2 * sizeof(int8_t) * nr_threads
                              : IC * IH2 * IW2 * sizeof(int8_t) * group * batch;
    }
    if (need_dst_copy_str2(param)) {
        part1 = OH2 * OW2 * sizeof(int16_t) * nr_threads + 16;
    }
    return {nullptr, {part0, part1}};
}
size_t ConvBiasImpl::AlgoI8x8x16Stride2::get_workspace(
353
        const NCBKernSizeParam& param) const {
354 355 356 357 358 359 360 361 362
    MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8816_kimpl, 2, 1) {
        auto bundle = get_bundle(param);
        return bundle.total_size_in_bytes();
    }
    MIDOUT_END();
    return 0;
}
//! Process one input channel copy padding
void ConvBiasImpl::AlgoI8x8x16Stride2::copy_padding_kern(
363 364
        const WorkspaceBundle& bundle,
        const ConvBiasImpl::NCBKernParam& kern_param,
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
        const ConvBiasImpl::NCBKernIndex& ncb_index,
        const CpuNDRange& workspace_ids) {
    size_t IH = kern_param.isz[0];
    size_t IW = kern_param.isz[1];
    size_t IC = kern_param.filter_meta.icpg;
    size_t OH = kern_param.osz[0];
    size_t OW = kern_param.osz[1];
    size_t PH = kern_param.filter_meta.padding[0];
    size_t PW = kern_param.filter_meta.padding[1];
    auto FH = kern_param.filter_meta.spatial[0],
         FW = kern_param.filter_meta.spatial[1];
    size_t GROUP = kern_param.filter_meta.group;
    size_t IH2, IW2, OH2, OW2;
    get_rectified_size_str2(IH, IW, OH, OW, FH, FW, PH, PW, IH2, IW2, OH2, OW2);
    bool need_src_copy_var = need_src_copy_str2(kern_param);
    size_t padding_group_size = IH2 * IW2 * IC;

    size_t workspace_group_id = workspace_ids[0],
           workspace_batch_id = workspace_ids[1],
           channel_id = workspace_ids[2];
    size_t group_id = ncb_index.ndrange_id[0],
           batch_id = ncb_index.ndrange_id[1];
    const int8_t* sptr = kern_param.src<int8_t>(batch_id, group_id, channel_id);
    if (need_src_copy_var) {
        //! copy to sptr_base to eliminate padding effect
        int8_t* sptr_base = static_cast<int8_t*>(bundle.get(0)) +
                            workspace_group_id * padding_group_size +
                            workspace_batch_id * GROUP * padding_group_size +
                            channel_id * IH2 * IW2;
        std::memset(sptr_base, 0, sizeof(int8_t) * IH2 * IW2);
        rep(ih, IH) {
            std::memcpy(sptr_base + (ih + PH) * IW2 + PW, sptr + ih * IW,
                        sizeof(int8_t) * IW);
        }
    }
};
//! compute one output channel
void ConvBiasImpl::AlgoI8x8x16Stride2::do_conv_kern(
403
        const WorkspaceBundle& bundle, const NCBKernParam& kern_param,
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
        const NCBKernIndex& ncb_index, const CpuNDRange& workspace_ids) {
    size_t OH = kern_param.osz[0];
    size_t OW = kern_param.osz[1];
    size_t IH = kern_param.isz[0];
    size_t IW = kern_param.isz[1];
    size_t FH = kern_param.filter_meta.spatial[0];
    size_t FW = kern_param.filter_meta.spatial[1];
    size_t IC = kern_param.filter_meta.icpg;
    size_t PH = kern_param.filter_meta.padding[0];
    size_t PW = kern_param.filter_meta.padding[1];
    size_t GROUP = kern_param.filter_meta.group;
    size_t IH2, IW2, OH2, OW2;
    get_rectified_size_str2(IH, IW, OH, OW, FH, FW, PH, PW, IH2, IW2, OH2, OW2);
    bool need_src_copy_var = need_src_copy_str2(kern_param);
    bool need_dst_copy_var = need_dst_copy_str2(kern_param);
    size_t padding_group_size = IH2 * IW2 * IC;
    //! Choose the compute kernel
    using Func =
            std::function<void(const int8_t*, const int8_t*, int16_t*, size_t,
                               size_t, size_t, size_t, size_t, size_t)>;
    Func fun_not_add_to_dst = nullptr, fun_add_to_dst = nullptr;
    if (FH == 2) {
        fun_not_add_to_dst =
                conv_bias::conv_stride2_2x2_sc_int8_int8_int16<false>;
        fun_add_to_dst = conv_bias::conv_stride2_2x2_sc_int8_int8_int16<true>;
    } else if (FH == 3) {
        fun_not_add_to_dst =
                conv_bias::conv_stride2_3x3_sc_int8_int8_int16<false>;
        fun_add_to_dst = conv_bias::conv_stride2_3x3_sc_int8_int8_int16<true>;
    } else if (FH == 5) {
        fun_not_add_to_dst =
                conv_bias::conv_stride2_5x5_sc_int8_int8_int16<false>;
        fun_add_to_dst = conv_bias::conv_stride2_5x5_sc_int8_int8_int16<true>;
    }

    //! Used for get the workspace offset
    size_t workspace_group_id = workspace_ids[0],
           workspace_batch_id = workspace_ids[1], oc = workspace_ids[2];
    size_t group_id = ncb_index.ndrange_id[0],
           batch_id = ncb_index.ndrange_id[1];
    const int8_t* sptr = kern_param.src<dt_int8>(batch_id, group_id);
    const int8_t* filter =
            kern_param.filter<dt_int8>(group_id) + oc * FH * FW * IC;
    int16_t* dst = kern_param.dst<dt_int16>(batch_id, group_id, oc);
    if (need_src_copy_var) {
        sptr = static_cast<int8_t*>(bundle.get(0)) +
               workspace_group_id * padding_group_size +
               workspace_batch_id * GROUP * padding_group_size;
    }
    int16_t* dptr = nullptr;
    if (need_dst_copy_var) {
        dptr = static_cast<int16_t*>(bundle.get(1)) +
               ncb_index.thread_id * OH2 * OW2;
    } else {
        dptr = dst;
    }
    fun_not_add_to_dst(sptr, filter, dptr, IH2, IW2, OH2, OW2, 0, 0);
    for (size_t ic = 1; ic < IC; ++ic) {
        fun_add_to_dst(sptr + ic * IH2 * IW2, filter + ic * FH * FW, dptr, IH2,
                       IW2, OH2, OW2, 0, 0);
    }
    if (need_dst_copy_var) {
        rep(oh, OH) {
            std::memcpy(dst + oh * OW, dptr + oh * OW2, sizeof(int16_t) * OW);
        }
    }
}
SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoI8x8x16Stride2::get_kimpls(
        const NCBKernSizeParam& param) const {
    auto fm = param.filter_meta;
    size_t N = param.n;
    size_t IC = param.filter_meta.icpg;
    size_t OC = param.filter_meta.ocpg;
    size_t group = fm.group;
478
    WorkspaceBundle bundle = get_bundle(param);
479 480
    SmallVector<NCBKern> ret_kerns;
    if (m_large_group) {
481 482
        auto exec_one_group = [bundle](const NCBKernParam& kern_param,
                                        const NCBKernIndex& ncb_index) mutable {
483 484 485
            auto fm = kern_param.filter_meta;
            size_t IC = fm.icpg;
            size_t OC = fm.ocpg;
486
            bundle.set(kern_param.workspace_ptr);
487 488 489 490 491 492 493 494 495 496 497 498
            for (size_t ic = 0; ic < IC; ic++) {
                copy_padding_kern(bundle, kern_param, ncb_index,
                                  {ncb_index.thread_id, 0, ic});
            }
            for (size_t oc = 0; oc < OC; oc++) {
                do_conv_kern(bundle, kern_param, ncb_index,
                             {ncb_index.thread_id, 0, oc});
            }
        };
        ret_kerns.push_back({exec_one_group, {group, N, 1_z}});
    } else {
        auto copy_padding = [bundle](const NCBKernParam& kern_param,
499 500
                                     const NCBKernIndex& ncb_index) mutable {
            bundle.set(kern_param.workspace_ptr);
501 502 503 504 505
            copy_padding_kern(bundle, kern_param, ncb_index,
                              ncb_index.ndrange_id);
        };
        ret_kerns.push_back({copy_padding, {group, N, IC}});
        auto do_conv = [bundle](const NCBKernParam& kern_param,
506 507
                                const NCBKernIndex& ncb_index) mutable {
            bundle.set(kern_param.workspace_ptr);
508 509 510 511 512 513 514 515
            do_conv_kern(bundle, kern_param, ncb_index, ncb_index.ndrange_id);
        };
        ret_kerns.push_back({do_conv, {group, N, OC}});
    }
    return ret_kerns;
}
SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoI8x8x16Stride2::dispatch_kerns(
516
        const NCBKernSizeParam& param) const {
517 518 519 520 521 522 523
    MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8816_kimpl, 2, 2) {
        return get_kimpls(param);
    }
    MIDOUT_END();
    return {};
}
bool ConvBiasImpl::AlgoI8x8x16Stride2Filter2::usable(
524
        const NCBKernSizeParam& param,
525 526 527 528 529 530 531 532 533 534 535 536
        AlgoSelectionStrategy /*algo_selection_strategy*/) const {
    MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8816_kimpl, 3, 0) {
        return param.bias_mode == BiasMode::NO_BIAS &&
               param.nonlineMode == NonlineMode::IDENTITY &&
               param.nr_threads == 1_z &&
               conv_bias::can_conv_int8x8x16_stride2_flt2(param);
    }
    MIDOUT_END();
    return false;
}

size_t ConvBiasImpl::AlgoI8x8x16Stride2Filter2::get_workspace(
537
        const NCBKernSizeParam& param) const {
538 539 540 541 542 543 544 545 546 547
    MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8816_kimpl, 3, 1) {
        return conv_bias::get_workspace_in_bytes_conv_int8x8x16_stride2_flt2(
                param);
    }
    MIDOUT_END();
    return 0;
}

SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoI8x8x16Stride2Filter2::dispatch_kerns(
548
        const NCBKernSizeParam& param) const {
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
    // return {conv_bias::conv_int8x8x16_stride2_flt2,true};
    auto kern = [](const NCBKernParam& param, const NCBKernIndex& ncb_index) {
        MIDOUT_BEGIN(megdnn_arm_common_conv_bias_int8816_kimpl, 3, 2) {
            auto ncb_param = param;
            ncb_param.src_ptr = param.src<void>(0, ncb_index.ndrange_id[0]);
            ncb_param.dst_ptr = param.dst<void>(0, ncb_index.ndrange_id[0]);
            ncb_param.filter_ptr = param.filter<void>(ncb_index.ndrange_id[0]);
            ncb_param.bias_ptr = param.bias<void>(0, ncb_index.ndrange_id[0]);
            conv_bias::conv_int8x8x16_stride2_flt2(ncb_param);
        }
        MIDOUT_END();
    };
    size_t group = param.filter_meta.group;
    return {{kern, {group, 1_z, 1_z}}};
}

// vim: syntax=cpp.doxygen