algos.cpp 20.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/**
 * \file dnn/src/arm_common/conv_bias/f16/algos.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "src/arm_common/conv_bias/f16/algos.h"
#include "src/arm_common/conv_bias/direct/multi_thread_common.h"
#include "src/arm_common/conv_bias/f16/direct.h"
#include "src/arm_common/conv_bias/f16/do_conv_stride1.h"
#include "src/arm_common/conv_bias/f16/strategy.h"
#include "src/arm_common/conv_bias/img2col_helper.h"
#include "src/arm_common/conv_bias/postprocess_helper.h"
#include "src/common/opr_delegate.h"
#include "src/fallback/conv_bias/common.h"
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
#include "midout.h"
MIDOUT_DECL(megdnn_arm_common_winograd_fp16)
using namespace megdnn;
using namespace arm_common;

/* ======================= AlgoFP16WinogradF23 ======================== */

bool ConvBiasImpl::AlgoFP16WinogradF23::usable(
30
         const NCBKernSizeParam& param,
31 32 33 34 35
        AlgoSelectionStrategy /*algo_selection_strategy*/) const {
    MEGDNN_MARK_USED_VAR(param);
    MIDOUT_BEGIN(megdnn_arm_common_winograd_fp16, 0, 0) {
        using Strategy = winograd::winograd_2x3_4x4_f16;
        Strategy strategy(param.src_type, param.filter_type, param.dst_type);
36 37 38
        auto&& matmul_param = megdnn::winograd::ConvBias<Strategy>(
                                      strategy, m_tile_size, param)
                                      .get_matmul_kern_param(param);
39
        return m_matmul_algo->usable(matmul_param) &&
40 41
               (param.filter_meta.format == param::ConvBias::Format::NCHW ||
                (param.filter_meta.format ==
42
                         param::ConvBias::Format::NCHW_WINOGRAD &&
43
                 param.output_block_size == 2 &&
44 45
                 param.winograd_matmul_format ==
                         param::MatrixMul::Format::DEFAULT)) &&
46
               !param.filter_meta.should_flip &&
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
               (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
                param.filter_meta.spatial[0] == 3) &&
               (param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
                param.filter_meta.stride[0] == 1) &&
               (param.filter_meta.dilation[0] ==
                        param.filter_meta.dilation[1] &&
                param.filter_meta.dilation[0] == 1) &&
               param.compute_mode == param::ConvBias::ComputeMode::DEFAULT &&
               param.src_type.enumv() == DTypeEnum::Float16 &&
               param.filter_meta.icpg % 4 == 0 &&
               param.filter_meta.ocpg % 4 == 0;
    }
    MIDOUT_END();
    return false;
}

63 64 65 66
MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP16WinogradF23,
                                    winograd::winograd_2x3_4x4_f16,
                                    megdnn_arm_common_winograd_fp16,
                                    param::MatrixMul::Format::DEFAULT);
67 68 69 70

/* ======================= AlgoFP16WinogradF45 ======================== */

bool ConvBiasImpl::AlgoFP16WinogradF45::usable(
71
        const NCBKernSizeParam& param,
72 73 74 75 76
        AlgoSelectionStrategy /*algo_selection_strategy*/) const {
    MEGDNN_MARK_USED_VAR(param);
    MIDOUT_BEGIN(megdnn_arm_common_winograd_fp16, 1, 0) {
        using Strategy = winograd::winograd_4x5_1x1_f16;
        Strategy strategy(param.src_type, param.filter_type, param.dst_type);
77 78 79
        auto&& matmul_param = megdnn::winograd::ConvBias<Strategy>(
                                      strategy, m_tile_size, param)
                                      .get_matmul_kern_param(param);
80
        return m_matmul_algo->usable(matmul_param) &&
81 82
               (param.filter_meta.format == param::ConvBias::Format::NCHW ||
                (param.filter_meta.format ==
83
                         param::ConvBias::Format::NCHW_WINOGRAD &&
84
                 param.output_block_size == 4 &&
85 86
                 param.winograd_matmul_format ==
                         param::MatrixMul::Format::DEFAULT)) &&
87
               !param.filter_meta.should_flip &&
88 89 90 91 92 93 94 95 96 97 98 99 100 101
               (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
                param.filter_meta.spatial[0] == 5) &&
               (param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
                param.filter_meta.stride[0] == 1) &&
               (param.filter_meta.dilation[0] ==
                        param.filter_meta.dilation[1] &&
                param.filter_meta.dilation[0] == 1) &&
               param.compute_mode == param::ConvBias::ComputeMode::DEFAULT &&
               param.src_type.enumv() == DTypeEnum::Float16;
    }
    MIDOUT_END();
    return false;
}

102 103 104 105
MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP16WinogradF45,
                                    winograd::winograd_4x5_1x1_f16,
                                    megdnn_arm_common_winograd_fp16,
                                    param::MatrixMul::Format::DEFAULT);
106 107 108 109

/* ======================= AlgoFP16WinogradF63 ======================== */

bool ConvBiasImpl::AlgoFP16WinogradF63::usable(
110
        const NCBKernSizeParam& param,
111 112 113 114 115
        AlgoSelectionStrategy /*algo_selection_strategy*/) const {
    MEGDNN_MARK_USED_VAR(param);
    MIDOUT_BEGIN(megdnn_arm_common_winograd_fp16, 2, 0) {
        using Strategy = winograd::winograd_6x3_1x1_f16;
        Strategy strategy(param.src_type, param.filter_type, param.dst_type);
116 117 118
        auto&& matmul_param = megdnn::winograd::ConvBias<Strategy>(
                                      strategy, m_tile_size, param)
                                      .get_matmul_kern_param(param);
119
        return m_matmul_algo->usable(matmul_param) &&
120 121
               (param.filter_meta.format == param::ConvBias::Format::NCHW ||
                (param.filter_meta.format ==
122
                         param::ConvBias::Format::NCHW_WINOGRAD &&
123
                 param.output_block_size == 6 &&
124 125
                 param.winograd_matmul_format ==
                         param::MatrixMul::Format::DEFAULT)) &&
126
               !param.filter_meta.should_flip &&
127 128 129 130 131 132 133 134 135 136 137 138 139 140
               (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
                param.filter_meta.spatial[0] == 3) &&
               (param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
                param.filter_meta.stride[0] == 1) &&
               (param.filter_meta.dilation[0] ==
                        param.filter_meta.dilation[1] &&
                param.filter_meta.dilation[0] == 1) &&
               param.compute_mode == param::ConvBias::ComputeMode::DEFAULT &&
               param.src_type.enumv() == DTypeEnum::Float16;
    }
    MIDOUT_END();
    return false;
}

141 142 143 144
MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP16WinogradF63,
                                    winograd::winograd_6x3_1x1_f16,
                                    megdnn_arm_common_winograd_fp16,
                                    param::MatrixMul::Format::DEFAULT);
145 146 147 148

/* ======================= AlgoFP16WinogradF23_8x8 ======================== */

bool ConvBiasImpl::AlgoFP16WinogradF23_8x8::usable(
149
        const NCBKernSizeParam& param,
150 151 152 153 154 155
        AlgoSelectionStrategy /*algo_selection_strategy*/) const {
    MEGDNN_MARK_USED_VAR(param);
    MIDOUT_BEGIN(megdnn_arm_common_winograd_fp16, 3, 0) {
        if (param.filter_meta.icpg % 8 != 0 || param.filter_meta.ocpg % 8 != 0)
            return false;
        using Strategy = winograd::winograd_2x3_8x8_f16;
156
        using PackMode = fallback::MatrixMulImpl::AlgoBase::PackMode;
157 158 159 160
        Strategy strategy(param.src_type, param.filter_type, param.dst_type);
        auto&& matmul_param =
                megdnn::winograd::ConvBias<Strategy,
                                           param::MatrixMul::Format::MK8>(
161
                        strategy, m_tile_size, param)
162 163
                        .get_matmul_kern_param(param);
        return m_matmul_algo->usable(matmul_param) &&
164
               m_matmul_algo->packmode() == PackMode::NO_PACK &&
165 166
               (param.filter_meta.format == param::ConvBias::Format::NCHW ||
                (param.filter_meta.format ==
167
                         param::ConvBias::Format::NCHW_WINOGRAD &&
168
                 param.output_block_size == 2 &&
169 170
                 param.winograd_matmul_format ==
                         param::MatrixMul::Format::MK8)) &&
171
               !param.filter_meta.should_flip &&
172 173 174 175 176 177 178 179 180 181 182 183 184 185
               (param.filter_meta.spatial[0] == param.filter_meta.spatial[1] &&
                param.filter_meta.spatial[0] == 3) &&
               (param.filter_meta.stride[0] == param.filter_meta.stride[1] &&
                param.filter_meta.stride[0] == 1) &&
               (param.filter_meta.dilation[0] ==
                        param.filter_meta.dilation[1] &&
                param.filter_meta.dilation[0] == 1) &&
               param.compute_mode == param::ConvBias::ComputeMode::DEFAULT &&
               param.src_type.enumv() == DTypeEnum::Float16;
    }
    MIDOUT_END();
    return false;
}

186 187 188 189
MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(AlgoFP16WinogradF23_8x8,
                                    winograd::winograd_2x3_8x8_f16,
                                    megdnn_arm_common_winograd_fp16,
                                    param::MatrixMul::Format::MK8);
190 191 192 193 194 195

/*========================from Convolution=============================*/

MIDOUT_DECL(megdnn_arm_common_conv_bias_fp16_kimpl)

bool ConvBiasImpl::AlgoF16Direct::usable(
196
        const NCBKernSizeParam& param,
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
        AlgoSelectionStrategy algo_selection_strategy) const {
    MIDOUT_BEGIN(megdnn_arm_common_conv_bias_fp16_kimpl, 0, 0) {
        auto&& fm = param.filter_meta;
        auto FH = fm.spatial[0];
        auto SH = fm.stride[0], SW = fm.stride[1];
        // the condition ``param.isz[0]*param.isz[1] >= 8'' and
        // ``param.osz[0]*param.osz[1] >= 8'' comes from the fact that the
        // kernel may have access to up to 8 fp16 after the end of the memory
        // chunk.
        bool aviliable = fm.format == param::ConvBias::Format::NCHW &&
                         param.src_type.enumv() == DTypeEnum::Float16 &&
                         param.filter_type.enumv() == DTypeEnum::Float16 &&
                         param.dst_type.enumv() == DTypeEnum::Float16 &&
                         fm.spatial_ndim == 2 && fm.dilation[0] == 1 &&
                         fm.dilation[1] == 1 &&
                         param.isz[0] * param.isz[1] >= 8 &&
                         param.osz[0] * param.osz[1] >= 8 && FH <= 7 &&
                         SH == 1 && SW == 1;
        if (algo_selection_strategy == AlgoSelectionStrategy::HEURISTIC) {
            bool large_group = param.filter_meta.group >= param.nr_threads;
            aviliable &= (large_group == m_large_group);
        }
        return aviliable;
    }
    MIDOUT_END();
    return false;
}

size_t ConvBiasImpl::AlgoF16Direct::get_workspace(
226
        const NCBKernSizeParam& param) const {
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
    MIDOUT_BEGIN(megdnn_arm_common_conv_bias_fp16_kimpl, 0, 1) {
        auto wbundle =
                MultithreadDirectConvCommon<dt_float16, __fp16>::get_bundle(
                        param, m_large_group);
        return wbundle.total_size_in_bytes();
    }
    MIDOUT_END();
    return 0;
}

SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoF16Direct::get_kimpls(
        const NCBKernSizeParam& param) const {
    auto fm = param.filter_meta;
    size_t N = param.n;
    size_t IC = param.filter_meta.icpg;
    size_t OC = param.filter_meta.ocpg;
    size_t group = fm.group;
244
    WorkspaceBundle bundle =
245 246 247 248 249 250 251
            MultithreadDirectConvCommon<dt_float16, __fp16>::get_bundle(
                    param, m_large_group);
    SmallVector<NCBKern> ret_kerns;
    //! When group >= nr_threads, treat it as large_group, each thread process
    //! one group for better performance
    if (m_large_group) {
        //! Channel wise conv and big groups
252 253
        auto exec_one_group = [bundle](const NCBKernParam& kern_param,
                                        const NCBKernIndex& ncb_index) mutable {
254 255 256
            auto fm = kern_param.filter_meta;
            size_t IC = fm.icpg;
            size_t OC = fm.ocpg;
257
            bundle.set(kern_param.workspace_ptr);
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
            if (fm.should_flip) {
                for (size_t oc = 0; oc < OC; oc++) {
                    MultithreadDirectConvCommon<dt_float16, __fp16>::
                            weight_flip_kern(bundle, kern_param, ncb_index,
                                             {ncb_index.thread_id, 0, oc});
                }
            }
            for (size_t ic = 0; ic < IC; ic++) {
                MultithreadDirectConvCommon<dt_float16, __fp16>::
                        copy_padding_kern(bundle, kern_param, ncb_index,
                                          {ncb_index.thread_id, 0, ic});
            }
            for (size_t oc = 0; oc < OC; oc++) {
                MultithreadDirectConvCommon<dt_float16, __fp16>::do_conv_kern(
                        bundle, kern_param, ncb_index,
                        fp16::conv_bias::kern_direct_f16,
                        {ncb_index.thread_id, 0, oc});
            }
        };
        ret_kerns.push_back({exec_one_group, {group, N, 1_z}});
    } else {
        if (fm.should_flip) {
            auto weight_flip = [bundle](const NCBKernParam& kern_param,
281 282
                                        const NCBKernIndex& ncb_index) mutable {
                bundle.set(kern_param.workspace_ptr);
283 284 285 286 287 288 289
                MultithreadDirectConvCommon<dt_float16, __fp16>::
                        weight_flip_kern(bundle, kern_param, ncb_index,
                                         ncb_index.ndrange_id);
            };
            ret_kerns.push_back({weight_flip, {group, 1_z, OC}});
        }
        auto copy_padding = [bundle](const NCBKernParam& kern_param,
290 291
                                     const NCBKernIndex& ncb_index) mutable {
            bundle.set(kern_param.workspace_ptr);
292 293 294 295 296
            MultithreadDirectConvCommon<dt_float16, __fp16>::copy_padding_kern(
                    bundle, kern_param, ncb_index, ncb_index.ndrange_id);
        };
        ret_kerns.push_back({copy_padding, {group, N, IC}});
        auto do_conv = [bundle](const NCBKernParam& kern_param,
297 298
                                const NCBKernIndex& ncb_index) mutable {
            bundle.set(kern_param.workspace_ptr);
299 300 301 302 303 304 305 306 307 308
            MultithreadDirectConvCommon<dt_float16, __fp16>::do_conv_kern(
                    bundle, kern_param, ncb_index,
                    fp16::conv_bias::kern_direct_f16, ncb_index.ndrange_id);
        };
        ret_kerns.push_back({do_conv, {group, N, OC}});
    }
    return ret_kerns;
}

SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoF16Direct::dispatch_kerns(
309
        const NCBKernSizeParam& param) const {
310 311 312 313 314 315 316 317 318 319
    MIDOUT_BEGIN(megdnn_arm_common_conv_bias_fp16_kimpl, 0, 1) {
        return get_kimpls(param);
    }
    MIDOUT_END();
    return {};
}

/* ===================== stride-1 algo ===================== */

bool ConvBiasImpl::AlgoF16DirectStride1::usable(
320
        const NCBKernSizeParam& param,
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
        AlgoSelectionStrategy algo_selection_strategy) const {
    MIDOUT_BEGIN(megdnn_arm_common_conv_bias_fp16_kimpl, 1, 0) {
        auto&& fm = param.filter_meta;
        auto FH = fm.spatial[0];
        bool aviliable =
                param.filter_meta.format == param::ConvBias::Format::NCHW &&
                param.src_type.enumv() == DTypeEnum::Float16 &&
                param.filter_type.enumv() == DTypeEnum::Float16 &&
                param.dst_type.enumv() == DTypeEnum::Float16 &&
                !fm.should_flip && fm.spatial_ndim == 2 &&
                fm.dilation[0] == 1 && fm.dilation[1] == 1 &&
                fm.stride[0] == 1 && fm.stride[1] == 1 && FH == fm.spatial[1] &&
                (FH == 2 || FH == 3 || FH == 5);
        if (algo_selection_strategy ==
            ConvBiasImpl::AlgoSelectionStrategy::HEURISTIC) {
            bool large_group = param.filter_meta.group >= param.nr_threads;
            aviliable &= (large_group == m_large_group);
        }
        return aviliable;
    }
    MIDOUT_END();
    return false;
}

SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoF16DirectStride1::get_kimpls(
        const NCBKernSizeParam& param) const {
    auto fm = param.filter_meta;
    auto FH = fm.spatial[0];
    size_t N = param.n;
    size_t IC = param.filter_meta.icpg;
    size_t OC = param.filter_meta.ocpg;
    size_t group = fm.group;
    using Func = std::function<void(const __fp16*, const __fp16*, __fp16*,
                                    size_t, size_t, size_t, size_t, size_t)>;
    Func conv_kern_function = nullptr;

#define SWITCH_KERN()                                                     \
    switch (FH) {                                                         \
        case 2:                                                           \
            conv_kern_function = fp16::conv_stride1::do_conv_2x2_stride1; \
            break;                                                        \
        case 3:                                                           \
            conv_kern_function = fp16::conv_stride1::do_conv_3x3_stride1; \
            break;                                                        \
        case 5:                                                           \
            conv_kern_function = fp16::conv_stride1::do_conv_5x5_stride1; \
            break;                                                        \
    }
    SWITCH_KERN();

372
    WorkspaceBundle bundle =
373 374 375 376 377 378 379
            MultithreadDirectConvCommon<dt_float16, __fp16>::get_bundle_stride(
                    param, m_large_group);
    SmallVector<NCBKern> ret_kerns;
    //! When group >= nr_threads, treat it as large_group, each thread process
    //! one group for better performance
    if (m_large_group) {
        //! Channel wise conv and big groups
380
        auto exec_one_group = [bundle, conv_kern_function](
381
                                      const NCBKernParam& kern_param,
382
                                      const NCBKernIndex& ncb_index) mutable {
383 384 385
            auto fm = kern_param.filter_meta;
            size_t IC = fm.icpg;
            size_t OC = fm.ocpg;
386
            bundle.set(kern_param.workspace_ptr);
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
            for (size_t ic = 0; ic < IC; ic++) {
                MultithreadDirectConvCommon<dt_float16, __fp16>::
                        copy_padding_kern_stride(bundle, kern_param, ncb_index,
                                                 {ncb_index.thread_id, 0, ic});
            }
            for (size_t oc = 0; oc < OC; oc++) {
                MultithreadDirectConvCommon<dt_float16, __fp16>::
                        do_conv_kern_stride(bundle, kern_param, ncb_index,
                                            conv_kern_function,
                                            {ncb_index.thread_id, 0, oc});
            }
        };
        ret_kerns.push_back({exec_one_group, {group, N, 1_z}});
    } else {
        auto copy_padding = [bundle](const NCBKernParam& kern_param,
402 403
                                     const NCBKernIndex& ncb_index) mutable {
            bundle.set(kern_param.workspace_ptr);
404 405 406 407 408 409 410
            MultithreadDirectConvCommon<dt_float16, __fp16>::
                    copy_padding_kern_stride(bundle, kern_param, ncb_index,
                                             ncb_index.ndrange_id);
        };
        ret_kerns.push_back({copy_padding, {group, N, IC}});
        auto do_conv = [bundle, conv_kern_function](
                               const NCBKernParam& kern_param,
411 412
                               const NCBKernIndex& ncb_index) mutable {
            bundle.set(kern_param.workspace_ptr);
413 414 415 416 417 418 419 420 421 422 423
            MultithreadDirectConvCommon<dt_float16, __fp16>::
                    do_conv_kern_stride(bundle, kern_param, ncb_index,
                                        conv_kern_function,
                                        ncb_index.ndrange_id);
        };
        ret_kerns.push_back({do_conv, {group, N, OC}});
    }
    return ret_kerns;
}

size_t ConvBiasImpl::AlgoF16DirectStride1::get_workspace(
424
        const NCBKernSizeParam& param) const {
425 426 427 428 429 430 431 432 433 434 435
    MIDOUT_BEGIN(megdnn_arm_common_conv_bias_fp16_kimpl, 1, 1) {
        auto bundle = MultithreadDirectConvCommon<
                dt_float16, __fp16>::get_bundle_stride(param, m_large_group);
        return bundle.total_size_in_bytes();
    }
    MIDOUT_END();
    return 0;
}

SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoF16DirectStride1::dispatch_kerns(
436
        const NCBKernSizeParam& param) const {
437 438 439 440 441 442 443 444 445
    MIDOUT_BEGIN(megdnn_arm_common_conv_bias_fp16_kimpl, 1, 2) {
        return get_kimpls(param);
    }
    MIDOUT_END();
    return {};
}

#endif
// vim: syntax=cpp.doxygen