convolution.cpp 51.8 KB
Newer Older
1 2 3 4
/**
 * \file dnn/src/common/convolution.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 */

#include "megdnn/oprs/nn.h"
#include "src/common/utils.h"

using namespace megdnn;

namespace {
template <typename Param>
std::string get_errmsg(const TensorLayout& src, const TensorLayout& filter,
                       const TensorLayout& dst, const Param& param) {
    MEGDNN_MARK_USED_VAR(src);
    MEGDNN_MARK_USED_VAR(filter);
    MEGDNN_MARK_USED_VAR(dst);
    return megdnn_layout_msg(src) + ", " + megdnn_layout_msg(filter) + ", " +
M
Megvii Engine Team 已提交
26
           megdnn_layout_msg(dst) + ", " + "is_nchw=" +
27
           std::to_string(param.format == param::Convolution::Format::NCHW) +
M
Megvii Engine Team 已提交
28
           ", " + "is_xcorr=" +
29 30
           std::to_string(
                   (param.mode == Convolution::Mode::CROSS_CORRELATION)) +
M
Megvii Engine Team 已提交
31 32 33 34 35 36
           ", " + "pad_h=" + std::to_string(param.pad_h) + ", " +
           "pad_w=" + std::to_string(param.pad_w) + ", " +
           "stride_h=" + std::to_string(param.stride_h) + ", " +
           "stride_w=" + std::to_string(param.stride_w) + ", " +
           "dilate_h=" + std::to_string(param.dilate_h) + ", " +
           "dilate_w=" + std::to_string(param.dilate_w);
37 38 39 40 41 42 43 44 45 46 47 48
}

template <typename Param, typename Param::Format>
uint32_t spatial_getter(uint32_t filter, const Param&) {
    return filter;
}

template <typename Parameter, typename Param>
void make_canonized_filter_meta_nchw_nhwc(
        size_t src_ndim, const TensorLayout& filter, const Param& param,
        typename ConvolutionBase<Parameter>::CanonizedFilterMeta& ret) {
    megdnn_assert(param.format == Param::Format::NCHW ||
49
                  param.format == Param::Format::NHWC);
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    auto img_ndim = src_ndim - 2;
    size_t flt_start, flt_spatial_start, ocpg_pos, icpg_pos;
    if (param.sparse == Param::Sparse::DENSE) {
        megdnn_assert(
                filter.ndim == img_ndim + 2 || filter.ndim == img_ndim + 4,
                "bad filter ndim for dense convolution: "
                "spatial_ndim=%zu filter_ndim=%zu",
                img_ndim, filter.ndim);
        ret.group = 1;
        flt_start = 0;
    } else {
        megdnn_assert(param.sparse == Param::Sparse::GROUP,
                      "invalid convolution sparse type");
        megdnn_assert(
                filter.ndim == img_ndim + 3 || filter.ndim == img_ndim + 5,
                "bad filter ndim for group convolution: "
                "spatial_ndim=%zu filter_ndim=%zu",
                img_ndim, filter.ndim);

        // grp, oc, ic, dims[]
        ret.group = filter[0];
        flt_start = 1;
    }

    uint32_t ic_block_size = 1, oc_block_size = 1;
    if (param.format == Param::Format::NCHW) {
        // filter should be (oc, ic, fh, fw)
        flt_spatial_start = 2;
        ocpg_pos = 0;
        icpg_pos = 1;
    } else {
        megdnn_assert(param.format == Param::Format::NHWC,
                      "invalid conv tensor format");
        // filter should be (oc, fh, fw, ic)
        flt_spatial_start = 1;
        ocpg_pos = 0;
        icpg_pos = 3;
    }
    ret.spatial_ndim = src_ndim - 2;
    megdnn_assert(
            ret.spatial_ndim == 2,
            "only 2D convolution is supported, and input should be 4-dim; "
            "got input dim = %zu",
            src_ndim);
    ret.ocpg = filter[flt_start + ocpg_pos] * oc_block_size;
    ret.icpg = filter[flt_start + icpg_pos] * ic_block_size;
    auto dilation = ret.dilation;
    for (size_t i = 0; i < ret.spatial_ndim; ++i) {
        megdnn_assert(dilation[i] > 0,
                      "invalid dilation on spatial dim %zu: %u", i,
                      dilation[i]);
101 102
        ret.spatial[i] = spatial_getter<Param, Param::Format::NCHW>(
                filter[i + flt_start + flt_spatial_start], param);
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
        ret.dilated_spatial[i] = (ret.spatial[i] - 1) * dilation[i] + 1;
    }
}

template <typename Parameter, typename Param>
void make_canonized_filter_meta_nhwcd4(
        size_t src_ndim, const TensorLayout& filter, const Param& param,
        typename ConvolutionBase<Parameter>::CanonizedFilterMeta& ret) {
    /**
     * input: N H IC/4 W 4
     * Filter:
     *        OC/4, FH, FW, IC, 4 [dense]
     *        GROUP, OC/4, FH, FW, IC, 4 [group]
     *        GROUP/4, 1, FH, FW, 4 [chanwise]
     */
    megdnn_assert(param.format == Param::Format::NHWCD4);
    auto img_ndim = src_ndim - 3;
    size_t flt_start = 0, flt_spatial_start = 1;
    bool is_chanwise = false;
    if (param.sparse == Param::Sparse::DENSE) {
        megdnn_assert(filter.ndim == img_ndim + 3,
                      "bad filter ndim for dense convolution: "
                      "spatial_ndim=%zu filter_ndim=%zu",
                      img_ndim, filter.ndim);
        // oc, ic, dims[]
        ret.group = 1;
        flt_start = 0;
    } else {
        megdnn_assert(param.sparse == Param::Sparse::GROUP,
                      "invalid convolution sparse type");
        megdnn_assert(
                filter.ndim == img_ndim + 3 || filter.ndim == img_ndim + 4,
                "bad filter ndim for group convolution: "
                "spatial_ndim=%zu filter_ndim=%zu",
                img_ndim, filter.ndim);
        if (filter.ndim == img_ndim + 3 && filter[1] == 1) {
            is_chanwise = true;
            ret.group = filter[0] * 4;
        } else {
            ret.group = filter[0];
        }
        flt_start = 1;
    }
    ret.spatial_ndim = src_ndim - 3;
    megdnn_assert(
            ret.spatial_ndim == 2,
            "only 2D convolution is supported, and input should be 4-dim; "
            "got input dim = %zu",
            src_ndim);
    if (is_chanwise) {
        ret.ocpg = 1;
        ret.icpg = 1;
    } else {
        ret.ocpg = filter[flt_start] * 4;
        ret.icpg = filter[flt_start + 3];
    }
    auto dilation = ret.dilation;
    for (size_t i = 0; i < ret.spatial_ndim; ++i) {
        megdnn_assert(dilation[i] > 0,
                      "invalid dilation on spatial dim %zu: %u", i,
                      dilation[i]);
        ret.spatial[i] = filter[i + flt_start + flt_spatial_start];
        ret.dilated_spatial[i] = (ret.spatial[i] - 1) * dilation[i] + 1;
    }
}

template <typename Parameter, typename Param>
void make_canonized_filter_meta_nhwcd4_dot(
        size_t src_ndim, const TensorLayout& filter, const Param& param,
        typename ConvolutionBase<Parameter>::CanonizedFilterMeta& ret) {
    /**
     * input: N H IC/4 W 4
     * Filter:
     *        GROUP/4, 1, FH, FW, 4 [chanwise]
     *        OC/4, FH, FW, IC/4, 4, 4 [dense]
     *        GROUP, OC/4, FH, FW, IC/4, 4, 4 [group]
     */
    megdnn_assert(param.format == Param::Format::NHWCD4);
    auto img_ndim = src_ndim - 3;
    size_t flt_start = 0, flt_spatial_start = 1;
    bool is_chanwise = false;
    if (param.sparse == Param::Sparse::DENSE) {
        megdnn_assert(filter.ndim == img_ndim + 4,
                      "bad filter ndim for dense convolution: "
                      "spatial_ndim=%zu filter_ndim=%zu",
                      img_ndim, filter.ndim);
        // oc, ic, dims[]
        ret.group = 1;
        flt_start = 0;
    } else {
        megdnn_assert(param.sparse == Param::Sparse::GROUP,
                      "invalid convolution sparse type");
        megdnn_assert(
                filter.ndim == img_ndim + 3 || filter.ndim == img_ndim + 5,
                "bad filter ndim for group convolution: "
                "spatial_ndim=%zu filter_ndim=%zu",
                img_ndim, filter.ndim);
        if (filter.ndim == img_ndim + 3) {
            megdnn_assert(filter[1] == 1);
            is_chanwise = true;
            ret.group = filter[0] * 4;
        } else {
            ret.group = filter[0];
        }
        flt_start = 1;
    }
    ret.spatial_ndim = src_ndim - 3;
    megdnn_assert(
            ret.spatial_ndim == 2,
            "only 2D convolution is supported, and input should be 4-dim; "
            "got input dim = %zu",
            src_ndim);
    if (is_chanwise) {
        ret.ocpg = 1;
        ret.icpg = 1;
    } else {
        ret.ocpg = filter[flt_start] * 4;
        ret.icpg = filter[flt_start + 3] * 4;
    }
    auto dilation = ret.dilation;
    for (size_t i = 0; i < ret.spatial_ndim; ++i) {
        megdnn_assert(dilation[i] > 0,
                      "invalid dilation on spatial dim %zu: %u", i,
                      dilation[i]);
        ret.spatial[i] = filter[i + flt_start + flt_spatial_start];
        ret.dilated_spatial[i] = (ret.spatial[i] - 1) * dilation[i] + 1;
    }
}

template <size_t pack_size, typename Parameter, typename Param>
void make_canonized_filter_meta_nchwxx(
        size_t src_ndim, const TensorLayout& filter, const Param& param,
        typename ConvolutionBase<Parameter>::CanonizedFilterMeta& ret) {
    /**
     * input: N IC/pack_size, H, W, pack_size
     *
239 240 241 242 243 244 245
     ** NCHW44-DOT mode
     * filter:
     *        {OC/pack_size, IC/pack_size, FH, FW, pack_size(OC), pack_size(IC)}
     * [dense]
     *        {GROUP, OC_PER_GROUP/pack_size, IC_PER_GROUP/pack_size, \
     *                  FH, FW, pack_size(OC), pack_size(IC)} [group]
     *
246
     * NCHW88 and NCHW44 mode
247 248 249 250 251 252 253 254 255 256 257
     * filter:
     *        {OC/pack_size, IC/pack_size, FH, FW, pack_size(IC), pack_size(OC)}
     * [dense]
     *        {GROUP, OC_PER_GROUP/pack_size, IC_PER_GROUP/pack_size, \
     *                  FH, FW, pack_size(IC), pack_size(OC)} [group]
     *        {GROUP/pack_size, 1, 1, FH, FW, pack_size} [chan]
     *
     *
     */

    megdnn_assert(param.format == Param::Format::NCHW88 ||
258
                  param.format == Param::Format::NCHW44 ||
259
                  param.format == Param::Format::NCHW44_DOT);
260 261 262
    size_t img_ndim = 2;
    size_t flt_start = 0;
    size_t flt_spatial_start = 2;
263
    size_t pack_c_size = 0;
264 265 266
    if (param.sparse == Param::Sparse::DENSE) {
        if (filter.ndim == img_ndim + 4) {
            // oihw8i8o case
267 268 269 270
            megdnn_assert((filter[filter.ndim - 2] == pack_size &&
                           filter[filter.ndim - 1] == pack_size) ||
                                  (filter[filter.ndim - 2] == 2 * pack_size &&
                                   filter[filter.ndim - 1] == 2 * pack_size),
271 272 273 274 275
                          "last 2 dim of filter must be %zu, but got %zu, %zu",
                          pack_size, filter[filter.ndim - 2],
                          filter[filter.ndim - 1]);
            ret.group = 1;
            flt_start = 0;
276 277 278 279 280 281 282 283
            if (filter[filter.ndim - 2] == 2 * pack_size &&
                filter[filter.ndim - 1] == 2 * pack_size) {
                pack_c_size = 2 * pack_size;
            } else {
                pack_c_size = pack_size;
            }
            ret.ocpg = filter[flt_start] * pack_c_size;
            ret.icpg = filter[flt_start + 1] * pack_c_size;
284 285 286 287 288 289 290 291 292
        } else if (filter.ndim == img_ndim + 3) {
            // ohwi8o
            flt_start = 0;
            flt_spatial_start = 1;
            ret.group = 1;
            ret.ocpg = filter[flt_start] * pack_size;
            ret.icpg = filter[flt_start + 3];

        } else {
293
            megdnn_assert(0, "not support nchwxx filter dim = %zu",
294 295 296 297 298 299 300 301
                          filter.ndim);
        }
    } else {
        megdnn_assert(param.sparse == Param::Sparse::GROUP,
                      "invalid convolution sparse type");
        flt_start = 1;
        auto filter_oc = filter[flt_start];
        auto filter_ic = filter[flt_start + 1];
302
        if (filter_oc == 1 && filter_ic == 1 && filter.ndim == (img_ndim + 4)) {
303 304 305 306 307 308 309 310
            // Depthwise case goihw8g
            megdnn_assert(filter.ndim == img_ndim + 4,
                          "bad filter ndim for group convolution: "
                          "spatial_ndim=%zu filter_ndim=%zu",
                          img_ndim, filter.ndim);
            megdnn_assert(filter[filter.ndim - 1] == pack_size,
                          "last dim of filter must be %zu, but %zu", pack_size,
                          filter[filter.ndim - 1]);
311
            ret.group = filter[0] * pack_size;
312 313 314 315 316 317 318 319 320
            ret.ocpg = filter_oc;
            ret.icpg = filter_ic;

        } else {
            // norm group case goihw8i8o
            megdnn_assert(filter.ndim == img_ndim + 5,
                          "bad filter ndim for group convolution: "
                          "spatial_ndim=%zu filter_ndim=%zu",
                          img_ndim, filter.ndim);
321 322
            megdnn_assert((filter[filter.ndim - 1] == pack_size &&
                           filter[filter.ndim - 2] == pack_size) ||
323 324
                                  (filter[filter.ndim - 1] == 2 * pack_size &&
                                   filter[filter.ndim - 2] == 2 * pack_size),
325 326 327 328 329
                          "last 2 dim of filter must be %zu, but got %zu, %zu",
                          pack_size, filter[filter.ndim - 2],
                          filter[filter.ndim - 1]);

            ret.group = filter[0];
330 331 332 333 334 335 336 337
            if (filter[filter.ndim - 2] == 2 * pack_size &&
                filter[filter.ndim - 1] == 2 * pack_size) {
                ret.ocpg = filter_oc * 2 * pack_size;
                ret.icpg = filter_ic * 2 * pack_size;
            } else {
                ret.ocpg = filter_oc * pack_size;
                ret.icpg = filter_ic * pack_size;
            }
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
        }
    }
    ret.spatial_ndim = 2;
    megdnn_assert(ret.spatial_ndim == 2,
                  "only 2D convolution is supported, and input should be 5-dim "
                  "for nchwxx; "
                  "got input dim = %zu",
                  src_ndim);

    auto dilation = ret.dilation;
    for (size_t i = 0; i < ret.spatial_ndim; ++i) {
        megdnn_assert(dilation[i] == 1,
                      "NCHWXX has invalid dilation on spatial dim %zu: %u, "
                      "require to be 1",
                      i, dilation[i]);
353
        ret.spatial[i] = filter[i + flt_start + flt_spatial_start];
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
        ret.dilated_spatial[i] = (ret.spatial[i] - 1) * dilation[i] + 1;
    }
}

template <size_t pack_size, typename Parameter, typename Param>
void make_canonized_filter_meta_nchwx(
        size_t src_ndim, const TensorLayout& filter, const Param& param,
        typename ConvolutionBase<Parameter>::CanonizedFilterMeta& ret) {
    /**
     * input: N IC/pack_size, H, W, pack_size
     * filter:
     *        OC, IC/pack_size, FH, FW, pack_size [dense]
     *        GROUP, OC, IC/pack_size, FH, FW, pack_size [group]
     */
    megdnn_assert(param.format == Param::Format::NCHW4 ||
                  param.format == Param::Format::NCHW8 ||
370 371 372
                  param.format == Param::Format::NCHW32 ||
                  param.format == Param::Format::NCHW4_NCHW ||
                  param.format == Param::Format::NCHW4_NCHW32 ||
373 374
                  param.format == Param::Format::NCHW32_NCHW4 ||
                  param.format == Param::Format::NCHW64);
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
    auto img_ndim = src_ndim - 3;
    size_t flt_start = 0, flt_spatial_start = 2;
    if (param.sparse == Param::Sparse::DENSE) {
        megdnn_assert(filter.ndim == img_ndim + 3,
                      "bad filter ndim for dense convolution: "
                      "spatial_ndim=%zu filter_ndim=%zu",
                      img_ndim, filter.ndim);
        // oc, ic, dims[]
        ret.group = 1;
        flt_start = 0;
    } else {
        megdnn_assert(param.sparse == Param::Sparse::GROUP,
                      "invalid convolution sparse type");
        megdnn_assert(filter.ndim == img_ndim + 4,
                      "bad filter ndim for group convolution: "
                      "spatial_ndim=%zu filter_ndim=%zu",
                      img_ndim, filter.ndim);
        ret.group = filter[0];
        flt_start = 1;
    }
    ret.spatial_ndim = src_ndim - 3;
    megdnn_assert(ret.spatial_ndim == 2,
                  "only 2D convolution is supported, and input should be 5-dim "
                  "for nchw4; "
                  "got input dim = %zu",
                  src_ndim);
    ret.ocpg = filter[flt_start];
    ret.icpg = filter[flt_start + 1] * pack_size;
    auto dilation = ret.dilation;
    for (size_t i = 0; i < ret.spatial_ndim; ++i) {
        megdnn_assert(dilation[i] == 1,
                      "NCHW4 has invalid dilation on spatial dim %zu: %u, "
                      "require to be 1",
                      i, dilation[i]);
        ret.spatial[i] = filter[i + flt_start + flt_spatial_start];
        ret.dilated_spatial[i] = (ret.spatial[i] - 1) * dilation[i] + 1;
    }
}

template <size_t pack_size, typename Parameter, typename Param>
void make_canonized_filter_meta_chwnx(
        size_t src_ndim, const TensorLayout& filter, const Param& param,
        typename ConvolutionBase<Parameter>::CanonizedFilterMeta& ret) {
    /**
     * input: IC / pack_size, H, W, N, pack_size
     * Filter:
     *        IC / pack_size, FH, FW, OC, pack_size [dense]
     *        GROUP, icpg / pack_size, FH, FW, ocpg, pack_size [group]
     *        not implemented [chanwise]
     */
    megdnn_assert(param.format == Param::Format::CHWN4);
    auto img_ndim = src_ndim - 3;
    size_t flt_start = 0, flt_spatial_start = 1;
    if (param.sparse == Param::Sparse::DENSE) {
        megdnn_assert(filter.ndim == img_ndim + 3,
                      "bad filter ndim for dense convolution: "
                      "spatial_ndim=%zu filter_ndim=%zu",
                      img_ndim, filter.ndim);
        // oc, ic, dims[]
        ret.group = 1;
        flt_start = 0;
    } else {
        megdnn_assert(param.sparse == Param::Sparse::GROUP,
                      "invalid convolution sparse type");
        megdnn_assert(filter.ndim == img_ndim + 4,
                      "bad filter ndim for group convolution: "
                      "spatial_ndim=%zu filter_ndim=%zu",
                      img_ndim, filter.ndim);
        ret.group = filter[0];
        flt_start = 1;
    }
    ret.spatial_ndim = src_ndim - 3;
    megdnn_assert(
            ret.spatial_ndim == 2,
            "only 2D convolution is supported, and input should be 4-dim; "
            "got input dim = %zu",
            src_ndim);
    ret.icpg = filter[flt_start] * pack_size;
    ret.ocpg = filter[flt_start + 3];
    auto dilation = ret.dilation;
    for (size_t i = 0; i < ret.spatial_ndim; ++i) {
        megdnn_assert(dilation[i] == 1,
                      "CHWNx has invalid dilation on spatial dim %zu: %u, "
                      "require to be 1",
                      i, dilation[i]);
        ret.spatial[i] = filter[i + flt_start + flt_spatial_start];
        ret.dilated_spatial[i] = (ret.spatial[i] - 1) * dilation[i] + 1;
    }
}

}  // namespace

namespace megdnn {
template <typename Parameter>
typename ConvolutionBase<Parameter>::CanonizedFilterMeta
ConvolutionBase<Parameter>::make_canonized_filter_meta(
        size_t src_ndim, const TensorLayout& filter) const {
    megdnn_assert_contiguous(filter);
    CanonizedFilterMeta ret;
    ret.dtype = filter.dtype;
    ret.format = param().format;
    if (param().mode == Mode::CONVOLUTION) {
        ret.should_flip = true;
    } else {
        megdnn_assert(param().mode == Mode::CROSS_CORRELATION,
                      "invalid conv mode");
        ret.should_flip = false;
    }
    ret.stride[0] = param().stride_h;
    ret.stride[1] = param().stride_w;
    ret.padding[0] = param().pad_h;
    ret.padding[1] = param().pad_w;
    ret.dilation[0] = param().dilate_h;
    ret.dilation[1] = param().dilate_w;

    if (param().format == Param::Format::NHWCD4) {
        if (filter.dtype.enumv() == DTypeEnum::QuantizedS8 ||
            filter.dtype.enumv() == DTypeEnum::Quantized8Asymm) {
            make_canonized_filter_meta_nhwcd4_dot<Parameter>(src_ndim, filter,
                                                             param(), ret);
        } else {
            make_canonized_filter_meta_nhwcd4<Parameter>(src_ndim, filter,
                                                         param(), ret);
        }
499 500 501
    } else if (param().format == Param::Format::NCHW4 ||
               param().format == Param::Format::NCHW4_NCHW ||
               param().format == Param::Format::NCHW4_NCHW32) {
502 503 504 505 506
        make_canonized_filter_meta_nchwx<4, Parameter>(src_ndim, filter,
                                                       param(), ret);
    } else if (param().format == Param::Format::NCHW8) {
        make_canonized_filter_meta_nchwx<8, Parameter>(src_ndim, filter,
                                                       param(), ret);
507
    } else if (param().format == Param::Format::NCHW88) {
508 509
        make_canonized_filter_meta_nchwxx<8, Parameter>(src_ndim, filter,
                                                        param(), ret);
510
    } else if (param().format == Param::Format::NCHW44 ||
511
               param().format == Param::Format::NCHW44_DOT) {
512 513
        make_canonized_filter_meta_nchwxx<4, Parameter>(src_ndim, filter,
                                                        param(), ret);
514 515
    } else if (param().format == Param::Format::NCHW32 ||
               param().format == Param::Format::NCHW32_NCHW4) {
516 517 518 519 520
        make_canonized_filter_meta_nchwx<32, Parameter>(src_ndim, filter,
                                                        param(), ret);
    } else if (param().format == Param::Format::CHWN4) {
        make_canonized_filter_meta_chwnx<4, Parameter>(src_ndim, filter,
                                                       param(), ret);
521 522 523
    } else if (param().format == Param::Format::NCHW64) {
        make_canonized_filter_meta_nchwx<64, Parameter>(src_ndim, filter,
                                                        param(), ret);
524 525
    } else {
        megdnn_assert(param().format == Param::Format::NHWC ||
526
                      param().format == Param::Format::NCHW);
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
        make_canonized_filter_meta_nchw_nhwc<Parameter>(src_ndim, filter,
                                                        param(), ret);
    }
    return ret;
}

template <typename Parameter>
void ConvolutionBase<Parameter>::check_or_deduce_dtype_fwd(DType src,
                                                           DType filter,
                                                           DType& dst) const {
    // The first one will be the default choice.
    SmallVector<DType> supported_dst_dtype;
    // We rely on megdnn_assert(src.enumv() == filter.enumv()) here.
    if (src.category() == DTypeCategory::FLOAT) {
        supported_dst_dtype.push_back(src);
    } else if (src.enumv() == DTypeEnum::Int8) {
        supported_dst_dtype = {dtype::Int32(), dtype::Int16()};
    } else if (src.enumv() == DTypeEnum::QuantizedS8 ||
               src.enumv() == DTypeEnum::Quantized8Asymm ||
546
               src.enumv() == DTypeEnum::QuantizedS4 || 
547
               src.enumv() == DTypeEnum::Quantized4Asymm) {
548 549
        supported_dst_dtype.push_back(
                dtype::QuantizedS32(mul_scale(src, filter)));
550 551 552
        if (dst.valid() && dst.enumv() == src.enumv()) {
            supported_dst_dtype.push_back(dst);
        }
553 554 555
        if (src.enumv() == DTypeEnum::QuantizedS8) {
            supported_dst_dtype.push_back(dtype::Float32());
        }
556 557 558 559 560 561
    } else if (src.enumv() == DTypeEnum::QuantizedS32) {
        //! ConvolutionBackwardData: s8(filter) + s8(dst) -> s32(src)
        megdnn_assert(filter.enumv() == DTypeEnum::QuantizedS8);
        supported_dst_dtype.push_back(
                dtype::QuantizedS8(src.param<dtype::QuantizedS32>().scale /
                                   filter.param<dtype::QuantizedS8>().scale));
562
    }else {
563 564 565 566 567 568
        megdnn_throw(ssprintf("unsupported input / filter DType: %s x %s",
                              src.name(), filter.name()));
    }
    if (!dst.valid()) {
        dst = supported_dst_dtype.at(0);
    } else {
569 570 571 572 573 574 575 576 577 578
        bool dst_supported = false;
        for (auto&& dt : supported_dst_dtype) {
            if (dtype_almost_equal(dt, dst)) {
                dst_supported = true;
                break;
            }
        }
        MEGDNN_MARK_USED_VAR(dst_supported);
        megdnn_assert(dst_supported, "unsupported Conv(%s, %s) -> %s",
                      src.name(), filter.name(), dst.name());
579
    }
580 581
    megdnn_assert((param().compute_mode == Param::ComputeMode::FLOAT32 ||
                   param().compute_mode == Param::ComputeMode::DEFAULT)
582
#if !MEGDNN_DISABLE_FLOAT16
583 584
                          || src.enumv() == DTypeEnum::Float16 ||
                          src.enumv() == DTypeEnum::BFloat16
585
#endif
586
                  ,
587
                  "ComputeMode::FLOAT32 is only available for Float16/BFloat16 "
588 589 590 591 592 593 594 595 596 597 598 599 600
                  "input / output.");
}

template <typename Parameter>
typename ConvolutionBase<Parameter>::CanonizedFilterMeta
ConvolutionBase<Parameter>::deduce_layout_fwd(const TensorLayout& src,
                                              const TensorLayout& filter,
                                              TensorLayout& dst) const {
    auto errmsg = [&]() { return get_errmsg(src, filter, dst, param()); };
    MEGDNN_MARK_USED_VAR(errmsg);
    megdnn_assert_contiguous(src);
    megdnn_assert_contiguous(filter);
    megdnn_assert(src.ndim >= 3_z, "%s", errmsg().c_str());
601 602
    megdnn_assert(src.dtype.enumv() == filter.dtype.enumv(), "%s",
                  errmsg().c_str());
603 604 605
    check_or_deduce_dtype_fwd(src.dtype, filter.dtype, dst.dtype);
    size_t img_dim;
    if (param().format == Param::Format::NCHW ||
606
        param().format == Param::Format::NHWC) {
607 608 609 610 611 612 613
        img_dim = src.ndim - 2;
        megdnn_assert(filter.ndim >= img_dim + 2 && filter.ndim <= img_dim + 6,
                      "%s", errmsg().c_str());

    } else {
        megdnn_assert(param().format == Param::Format::NHWCD4 ||
                      param().format == Param::Format::NCHW4 ||
614 615
                      param().format == Param::Format::NCHW4_NCHW ||
                      param().format == Param::Format::NCHW4_NCHW32 ||
616
                      param().format == Param::Format::NCHW44 ||
617
                      param().format == Param::Format::NCHW44_DOT ||
618 619
                      param().format == Param::Format::NCHW8 ||
                      param().format == Param::Format::NCHW32 ||
620
                      param().format == Param::Format::NCHW32_NCHW4 ||
621
                      param().format == Param::Format::NCHW88 ||
622 623
                      param().format == Param::Format::CHWN4 ||
                      param().format == Param::Format::NCHW64);
624
        img_dim = src.ndim - 3;
625
        if ((param().format == Param::Format::NCHW88 ||
626
             param().format == Param::Format::NCHW44_DOT ||
627 628
             param().format == Param::Format::NCHW44) &&
            filter.ndim == 5) {
629 630 631 632
            img_dim = src.ndim - 2;
        }
        megdnn_assert(filter.ndim == img_dim + 3 ||
                              (filter.ndim == img_dim + 2 &&
633
                               (param().format == Param::Format::NCHW88 ||
634
                                param().format == Param::Format::NCHW44_DOT ||
635
                                param().format == Param::Format::NCHW44)) ||
636 637 638
                              filter.ndim == img_dim + 4 ||
                              filter.ndim == img_dim + 5,
                      "%s", errmsg().c_str());
639 640 641
        if (param().format == Param::Format::NCHW4 ||
            param().format == Param::Format::NCHW4_NCHW ||
            param().format == Param::Format::NCHW4_NCHW32) {
642 643 644 645 646
            megdnn_assert(src.ndim == 5 &&
                                  (filter.ndim == 5 || filter.ndim == 6 ||
                                   filter.ndim == 7) &&
                                  src[src.ndim - 1] == 4 &&
                                  filter[filter.ndim - 1] == 4,
647 648 649
                          "NCHW4/NCHW4_NCHW/NCHW4_NCHW32 require src and "
                          "filter's ndim is "
                          "5 or 6, and "
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
                          "last shape "
                          "is 4 "
                          "but got src %s, filter %s",
                          src.to_string().c_str(), filter.to_string().c_str());
        }
        if (param().format == Param::Format::NCHW8) {
            megdnn_assert(
                    src.ndim == 5 && (filter.ndim == 5 || filter.ndim == 6) &&
                            src[src.ndim - 1] == 8 &&
                            filter[filter.ndim - 1] == 8,
                    "NCHW8 require src and filter's ndim is 5 or 6, and last "
                    "shape is 8 "
                    "but got src %s, filter %s",
                    src.to_string().c_str(), filter.to_string().c_str());
        }
665 666 667 668 669 670 671 672 673 674 675
        if (param().format == Param::Format::NCHW32 ||
            param().format == Param::Format::NCHW32_NCHW4) {
            megdnn_assert(src.ndim == 5 &&
                                  (filter.ndim == 5 || filter.ndim == 6) &&
                                  src[src.ndim - 1] == 32 &&
                                  filter[filter.ndim - 1] == 32,
                          "NCHW32/NCHW32_NCHW4 require src and filter's ndim "
                          "is 5 or 6, and last "
                          "shape is 32 "
                          "but got src %s, filter %s",
                          src.to_string().c_str(), filter.to_string().c_str());
676
        }
677
        if (param().format == Param::Format::NCHW88) {
678 679 680 681 682 683 684 685 686 687 688 689 690
            megdnn_assert((src.ndim == 4 && filter.ndim == 5 &&
                           filter[filter.ndim - 1] == 8) ||
                                  (src.ndim == 5 &&
                                   ((filter.ndim == 6 &&
                                     filter[filter.ndim - 1] == 8) ||
                                    (filter.ndim == 7 &&
                                     filter[filter.ndim - 1] == 8 &&
                                     filter[filter.ndim - 2] == 8)) &&
                                   src[src.ndim - 1] == 8),
                          "NCHW88 require src ndim is 5 and filter's ndim is 6 "
                          ", and last shape two is 8 but got src %s, filter %s",
                          src.to_string().c_str(), filter.to_string().c_str());
        }
691
        if (param().format == Param::Format::NCHW44 ||
692
            param().format == Param::Format::NCHW44_DOT) {
693 694
            //! support nchw44 filter change to 88 for int8 winogradf23_88 using
            //! MK8 mamtul
695 696 697 698
            megdnn_assert((src.ndim == 4 && filter.ndim == 5 &&
                           filter[filter.ndim - 1] == 4) ||
                                  (src.ndim == 5 &&
                                   ((filter.ndim == 6 &&
699 700
                                     (filter[filter.ndim - 1] == 4 ||
                                      filter[filter.ndim - 1] == 8)) ||
701
                                    (filter.ndim == 7 &&
702 703 704 705
                                     (filter[filter.ndim - 1] == 4 ||
                                      filter[filter.ndim - 1] == 8) &&
                                     (filter[filter.ndim - 2] == 4 ||
                                      filter[filter.ndim - 2] == 8))) &&
706 707 708 709 710
                                   src[src.ndim - 1] == 4),
                          "NCHW44 require src ndim is 5 and filter's ndim is 6 "
                          ", and last shape two is 4 but got src %s, filter %s",
                          src.to_string().c_str(), filter.to_string().c_str());
        }
711 712 713 714 715 716 717 718 719 720
        if (param().format == Param::Format::CHWN4) {
            megdnn_assert(
                    src.ndim == 5 && (filter.ndim == 5 || filter.ndim == 6) &&
                            src[src.ndim - 1] == 4 &&
                            filter[filter.ndim - 1] == 4,
                    "CHWN4 require src and filter's ndim is 5 or 6, and last "
                    "shape is 4 "
                    "but got src %s, filter %s",
                    src.to_string().c_str(), filter.to_string().c_str());
        }
721 722 723 724
        if (param().format == Param::Format::NCHW64) {
            megdnn_assert(src.ndim == 5 &&
                                  (filter.ndim == 5 || filter.ndim == 6) &&
                                  src[src.ndim - 1] == 64 &&
725
                                  filter[filter.ndim - 1] == 64,
726 727 728 729
                          "NCHW64 require src and filter's ndim is 5 or 6, and "
                          "last shape is 64 but got src %s, filter %s",
                          src.to_string().c_str(), filter.to_string().c_str());
        }
730 731 732 733 734
    }
    megdnn_assert(img_dim == 2,
                  "currently only convolution on 2D image is supported");
    auto cflt = make_canonized_filter_meta(src.ndim, filter);
    if (param().format == Param::Format::NCHW ||
735
        param().format == Param::Format::NHWC) {
736 737
        size_t src_or_dst_c_pos = 0;
        size_t src_or_dst_spatial_start = 0;
738
        if (param().format == Param::Format::NCHW) {
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
            src_or_dst_c_pos = 1;
            src_or_dst_spatial_start = 2;
        } else {
            megdnn_assert(param().format == Param::Format::NHWC,
                          "invalid conv format");
            src_or_dst_c_pos = 3;
            src_or_dst_spatial_start = 1;
        }
        megdnn_assert(cflt.icpg * cflt.group == src[src_or_dst_c_pos], "%s",
                      errmsg().c_str());
        dst.ndim = src.ndim;
        dst[0] = src[0];
        dst[src_or_dst_c_pos] = cflt.ocpg * cflt.group;
        for (size_t i = 0; i < cflt.spatial_ndim; ++i) {
            dst[i + src_or_dst_spatial_start] = infer_conv_shape(
                    src[i + src_or_dst_spatial_start], cflt.dilated_spatial[i],
                    cflt.stride[i], cflt.padding[i]);
        }
    } else if (param().format == Param::Format::NCHW4) {
        megdnn_assert(src.ndim == 5,
                      "invalid src ndim for NCHW4, expected=5, got=%zu",
                      src.ndim);
        megdnn_assert(cflt.icpg * cflt.group == src[1] * 4,
                      "%s icpg=%u group=%u", errmsg().c_str(), cflt.icpg,
                      cflt.group);
        dst.ndim = src.ndim;
        dst[0] = src[0];
        auto oc = cflt.ocpg * cflt.group;
        megdnn_assert(oc % 4 == 0);
        dst[1] = oc / 4;
        dst[2] = infer_conv_shape(src[2], cflt.dilated_spatial[0],
                                  cflt.stride[0], cflt.padding[0]);
        dst[3] = infer_conv_shape(src[3], cflt.dilated_spatial[1],
                                  cflt.stride[1], cflt.padding[1]);
        dst[4] = 4;
    } else if (param().format == Param::Format::NCHW8) {
        megdnn_assert(src.ndim == 5,
                      "invalid src ndim for NCHW8, expected=5, got=%zu",
                      src.ndim);
        megdnn_assert(cflt.icpg * cflt.group == src[1] * 8,
                      "%s icpg=%u group=%u", errmsg().c_str(), cflt.icpg,
                      cflt.group);
        dst.ndim = src.ndim;
        dst[0] = src[0];
        auto oc = cflt.ocpg * cflt.group;
        megdnn_assert(oc % 8 == 0);
        dst[1] = oc / 8;
        dst[2] = infer_conv_shape(src[2], cflt.dilated_spatial[0],
                                  cflt.stride[0], cflt.padding[0]);
        dst[3] = infer_conv_shape(src[3], cflt.dilated_spatial[1],
                                  cflt.stride[1], cflt.padding[1]);
        dst[4] = 8;
    } else if (param().format == Param::Format::NCHW32) {
        megdnn_assert(src.ndim == 5,
                      "invalid src ndim for NCHW32, expected=5, got=%zu",
                      src.ndim);
        megdnn_assert(cflt.icpg * cflt.group == src[1] * 32,
                      "%s icpg=%u group=%u", errmsg().c_str(), cflt.icpg,
                      cflt.group);
        dst.ndim = src.ndim;
        dst[0] = src[0];
        auto oc = cflt.ocpg * cflt.group;
        megdnn_assert(oc % 32 == 0);
        dst[1] = oc / 32;
        dst[2] = infer_conv_shape(src[2], cflt.dilated_spatial[0],
                                  cflt.stride[0], cflt.padding[0]);
        dst[3] = infer_conv_shape(src[3], cflt.dilated_spatial[1],
                                  cflt.stride[1], cflt.padding[1]);
        dst[4] = 32;
808
    } else if (param().format == Param::Format::NCHW88) {
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
        megdnn_assert(src.ndim == 5 || (src.ndim == 4 && src[1] <= 8),
                      "invalid src ndim for NCHW88, expected=5 or 4, got=%zu",
                      src.ndim);
        dst.ndim = 5;
        dst[0] = src[0];
        auto oc = cflt.ocpg * cflt.group;
        megdnn_assert(oc % 8 == 0);
        dst[1] = oc / 8;
        dst[2] = infer_conv_shape(src[2], cflt.dilated_spatial[0],
                                  cflt.stride[0], cflt.padding[0]);
        dst[3] = infer_conv_shape(src[3], cflt.dilated_spatial[1],
                                  cflt.stride[1], cflt.padding[1]);
        dst[4] = 8;
        if (cflt.group == 1) {
            megdnn_assert(cflt.icpg * cflt.group == src[1] * 8 ||
                                  (cflt.icpg * cflt.group == src[1]),
                          "%s icpg=%u group=%u", errmsg().c_str(), cflt.icpg,
                          cflt.group);
        }

829
    } else if (param().format == Param::Format::NCHW44 ||
830
               param().format == Param::Format::NCHW44_DOT) {
831
        megdnn_assert(src.ndim == 5 || (src.ndim == 4 && src[1] <= 4),
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
                      "invalid src ndim for NCHW44, expected=5 or 4, got=%zu",
                      src.ndim);
        dst.ndim = 5;
        dst[0] = src[0];
        auto oc = cflt.ocpg * cflt.group;
        megdnn_assert(oc % 4 == 0);
        dst[1] = oc / 4;
        dst[2] = infer_conv_shape(src[2], cflt.dilated_spatial[0],
                                  cflt.stride[0], cflt.padding[0]);
        dst[3] = infer_conv_shape(src[3], cflt.dilated_spatial[1],
                                  cflt.stride[1], cflt.padding[1]);
        dst[4] = 4;
        if (cflt.group == 1) {
            megdnn_assert(cflt.icpg * cflt.group == src[1] * 4 ||
                                  (cflt.icpg * cflt.group == src[1]),
                          "%s icpg=%u group=%u", errmsg().c_str(), cflt.icpg,
                          cflt.group);
        }
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
    } else if (param().format == Param::Format::CHWN4) {
        megdnn_assert(src.ndim == 5,
                      "invalid src ndim for CHWN4, expected=5, got=%zu",
                      src.ndim);
        megdnn_assert(cflt.icpg * cflt.group == src[0] * 4,
                      "%s icpg=%u group=%u", errmsg().c_str(), cflt.icpg,
                      cflt.group);
        dst.ndim = src.ndim;
        dst[3] = src[3];
        auto oc = cflt.ocpg * cflt.group;
        megdnn_assert(oc % 4 == 0);
        dst[0] = oc / 4;
        dst[1] = infer_conv_shape(src[1], cflt.dilated_spatial[0],
                                  cflt.stride[0], cflt.padding[0]);
        dst[2] = infer_conv_shape(src[2], cflt.dilated_spatial[1],
                                  cflt.stride[1], cflt.padding[1]);
        dst[4] = 4;
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
    } else if (param().format == Param::Format::NCHW4_NCHW) {
        megdnn_assert(src.ndim == 5,
                      "invalid src ndim for NCHW4_NCHW, expected=5, got=%zu",
                      src.ndim);
        megdnn_assert(cflt.icpg * cflt.group == src[1] * 4,
                      "%s icpg=%u group=%u", errmsg().c_str(), cflt.icpg,
                      cflt.group);
        dst.ndim = 4;
        dst[0] = src[0];
        auto oc = cflt.ocpg * cflt.group;
        dst[1] = oc;
        dst[2] = infer_conv_shape(src[2], cflt.dilated_spatial[0],
                                  cflt.stride[0], cflt.padding[0]);
        dst[3] = infer_conv_shape(src[3], cflt.dilated_spatial[1],
                                  cflt.stride[1], cflt.padding[1]);
    } else if (param().format == Param::Format::NCHW4_NCHW32) {
        megdnn_assert(src.ndim == 5,
                      "invalid src ndim for NCHW4_NCHW32, expected=5, got=%zu",
                      src.ndim);
        megdnn_assert(cflt.icpg * cflt.group == src[1] * 4,
                      "%s icpg=%u group=%u", errmsg().c_str(), cflt.icpg,
                      cflt.group);
        dst.ndim = src.ndim;
        dst[0] = src[0];
        auto oc = cflt.ocpg * cflt.group;
        megdnn_assert(oc % 32 == 0);
        dst[1] = oc / 32;
        dst[2] = infer_conv_shape(src[2], cflt.dilated_spatial[0],
                                  cflt.stride[0], cflt.padding[0]);
        dst[3] = infer_conv_shape(src[3], cflt.dilated_spatial[1],
                                  cflt.stride[1], cflt.padding[1]);
        dst[4] = 32;
    } else if (param().format == Param::Format::NCHW32_NCHW4) {
        megdnn_assert(src.ndim == 5,
                      "invalid src ndim for NCHW32_NCHW4, expected=5, got=%zu",
                      src.ndim);
        megdnn_assert(cflt.icpg * cflt.group == src[1] * 32,
                      "%s icpg=%u group=%u", errmsg().c_str(), cflt.icpg,
                      cflt.group);
        dst.ndim = src.ndim;
        dst[0] = src[0];
        auto oc = cflt.ocpg * cflt.group;
        megdnn_assert(oc % 4 == 0);
        dst[1] = oc / 4;
        dst[2] = infer_conv_shape(src[2], cflt.dilated_spatial[0],
                                  cflt.stride[0], cflt.padding[0]);
        dst[3] = infer_conv_shape(src[3], cflt.dilated_spatial[1],
                                  cflt.stride[1], cflt.padding[1]);
        dst[4] = 4;
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
    } else if (param().format == Param::Format::NCHW64) {
        megdnn_assert(src.ndim == 5,
                      "invalid src ndim for NCHW64, expected=5, got=%zu",
                      src.ndim);
        megdnn_assert(cflt.icpg * cflt.group == src[1] * 64,
                      "%s icpg=%u group=%u", errmsg().c_str(), cflt.icpg,
                      cflt.group);
        dst.ndim = src.ndim;
        dst[0] = src[0];
        auto oc = cflt.ocpg * cflt.group;
        megdnn_assert(oc % 64 == 0);
        dst[1] = oc / 64;
        dst[2] = infer_conv_shape(src[2], cflt.dilated_spatial[0],
                                  cflt.stride[0], cflt.padding[0]);
        dst[3] = infer_conv_shape(src[3], cflt.dilated_spatial[1],
                                  cflt.stride[1], cflt.padding[1]);
        dst[4] = 64;
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
    } else {
        megdnn_assert(param().format == Param::Format::NHWCD4);
        megdnn_assert(src.ndim == 5,
                      "invalid src ndim for NHWCD4, expected=5, got=%zu",
                      src.ndim);
        megdnn_assert(cflt.icpg * cflt.group == src[2] * 4,
                      "%s icpg=%u group=%u", errmsg().c_str(), cflt.icpg,
                      cflt.group);
        dst.ndim = src.ndim;
        dst[0] = src[0];
        auto oc = cflt.ocpg * cflt.group;
        megdnn_assert(oc % 4 == 0);
        dst[2] = oc / 4;
        dst[1] = infer_conv_shape(src[1], cflt.dilated_spatial[0],
                                  cflt.stride[0], cflt.padding[0]);
        dst[3] = infer_conv_shape(src[3], cflt.dilated_spatial[1],
                                  cflt.stride[1], cflt.padding[1]);
        megdnn_assert(src[4] == 4);
        dst[4] = 4;
    }
    dst.format = src.format;
    dst.init_contiguous_stride();
    return cflt;
}

/**
 * \warning: An explicit specialization shall be declared in a namespace
 * enclosing the specialized template. An explicit specialization whose
 * declarator-id is not qualified shall be declared in the nearest enclosing
 * namespace of the template, or, if the namespace is inline (7.3.1), any
 * namespace from its enclosing namespace set.
 * refer to:
 * https://stackoverflow.com/questions/25594644/warning-specialization-of-template-in-different-namespace
 */
template <>
ConvolutionBase<param::Convolution>::CanonizedFilterMeta
ConvolutionBase<param::Convolution>::check_layout_fwd(
        const TensorLayout& src, const TensorLayout& filter,
        const TensorLayout& dst) const {
    TensorLayout dst_expected;
    dst_expected.dtype = dst.dtype;

    auto ret = deduce_layout_fwd(src, filter, dst_expected);
    megdnn_assert_eq_layout(dst_expected, dst);
    return ret;
}

template <>
ConvolutionBase<param::ConvBias>::CanonizedFilterMeta
ConvolutionBase<param::ConvBias>::check_layout_fwd(
        const TensorLayout& src, const TensorLayout& filter,
        const TensorLayout& dst) const {
    TensorLayout dst_expected;
    dst_expected.dtype = dst.dtype;

    auto ret = deduce_layout_fwd(src, filter, dst_expected);
    megdnn_assert_eq_layout(dst_expected, dst);
    return ret;
}

template <>
ConvolutionBase<param::BatchConvBias>::CanonizedFilterMeta
ConvolutionBase<param::BatchConvBias>::check_layout_fwd(
        const TensorLayout& src, const TensorLayout& filter,
        const TensorLayout& dst) const {
    TensorLayout dst_expected;
    dst_expected.dtype = dst.dtype;

    auto ret = deduce_layout_fwd(src, filter, dst_expected);
    megdnn_assert_eq_layout(dst_expected, dst);
    return ret;
}

void ConvolutionForward::deduce_dtype(DType src, DType filter, DType& dst) {
    check_or_deduce_dtype_fwd(src, filter, dst);
}

void ConvolutionForward::deduce_layout(const TensorLayout& src,
                                       const TensorLayout& filter,
                                       TensorLayout& dst) {
    deduce_layout_fwd(src, filter, dst);
}

ConvolutionForward::CanonizedFilterMeta ConvolutionForward::check_exec(
        const TensorLayout& src, const TensorLayout& filter,
1018 1019
        const TensorLayout& dst, size_t workspace_in_bytes,
        const PreprocessedFilter* preprocessed_filter) {
1020
    auto ret = check_layout_fwd(src, filter, dst);
1021
    auto required_workspace_in_bytes =
1022
            get_workspace_in_bytes(src, filter, dst, preprocessed_filter);
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
    megdnn_assert(workspace_in_bytes >= required_workspace_in_bytes);
    return ret;
}

ConvolutionBackwardData::CanonizedFilterMeta
ConvolutionBackwardData::check_exec(const TensorLayout& filter,
                                    const TensorLayout& diff,
                                    const TensorLayout& grad,
                                    size_t workspace_in_bytes) {
    auto grad_fwd = grad;
    auto filter_fwd = filter;
    auto diff_fwd = diff;

    std::swap(grad_fwd.dtype, diff_fwd.dtype);

    grad_fwd.init_contiguous_stride();
    diff_fwd.init_contiguous_stride();
    auto ret = check_layout_fwd(grad_fwd, filter_fwd, diff_fwd);
    auto required_workspace_in_bytes =
            get_workspace_in_bytes(filter, diff, grad);
    megdnn_assert(workspace_in_bytes >= required_workspace_in_bytes);
    return ret;
}

void ConvolutionBackwardData::deduce_dtype(DType filter, DType diff,
                                           DType& grad) {
    SmallVector<DType> supported_dst_dtype;
    if (filter.category() == diff.category() &&
        filter.category() == DTypeCategory::FLOAT) {
        supported_dst_dtype.push_back(filter);
    } else if (filter.enumv() == DTypeEnum::Int8 && diff == filter) {
        supported_dst_dtype.push_back(dtype::Int32());
    } else if ((filter.enumv() == DTypeEnum::QuantizedS8 &&
                diff.enumv() == DTypeEnum::QuantizedS8) ||
               (filter.enumv() == DTypeEnum::Quantized8Asymm &&
                diff.enumv() == DTypeEnum::Quantized8Asymm)) {
        supported_dst_dtype.push_back(
                dtype::QuantizedS32(mul_scale(filter, diff)));
        if (grad.valid() && grad.enumv() == diff.enumv()) {
            supported_dst_dtype.push_back(grad);
        }
    } else {
        megdnn_throw(ssprintf("unsupported input / diff DType: %s x %s",
                              filter.name(), diff.name()));
    }
    if (!grad.valid()) {
        grad = supported_dst_dtype.at(0);
    } else {
        megdnn_assert(vec_contains(supported_dst_dtype, grad),
                      "unsupported ConvBwd(%s, %s) -> %s", filter.name(),
                      diff.name(), grad.name());
    }
    megdnn_assert(param().compute_mode != Param::ComputeMode::FLOAT32
#if !MEGDNN_DISABLE_FLOAT16
1077 1078
                          || filter.enumv() == DTypeEnum::Float16 ||
                          filter.enumv() == DTypeEnum::BFloat16
1079
#endif
1080
                  ,
1081
                  "ComputeMode::FLOAT32 is only available for Float16/BFloat16 "
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
                  "input / output.");
}

void ConvolutionBackwardData::deduce_layout(const TensorLayout& filter,
                                            const TensorLayout& diff,
                                            TensorLayout& grad) {
    auto errmsg = [&]() { return get_errmsg(filter, diff, grad, param()); };
    MEGDNN_MARK_USED_VAR(errmsg);
    megdnn_assert_contiguous(filter);
    megdnn_assert_contiguous(diff);
    megdnn_assert(filter.ndim == 4_z || filter.ndim == 5_z, "%s",
                  errmsg().c_str());
    megdnn_assert(diff.ndim == 4_z || diff.ndim == 5_z, "%s", errmsg().c_str());

    deduce_dtype(filter.dtype, diff.dtype, grad.dtype);

    auto cflt = make_canonized_filter_meta(diff.ndim, filter);

    auto deduce = [&errmsg](size_t out, size_t filter, size_t stride,
                            size_t pad) {
        MEGDNN_MARK_USED_VAR(errmsg);
        auto i = (out - 1) * stride + filter;
        megdnn_assert(i > pad * 2, "%s", errmsg().c_str());
        return i - pad * 2;
    };

    if (param().format == Param::Format::NCHW ||
        param().format == Param::Format::NHWC) {
        size_t src_or_dst_c_pos = 0;
        size_t src_or_dst_spatial_start = 0;
        if (param().format == Param::Format::NCHW) {
            src_or_dst_c_pos = 1;
            src_or_dst_spatial_start = 2;
        } else {
            megdnn_assert(param().format == Param::Format::NHWC,
                          "invalid conv format");
            src_or_dst_c_pos = 3;
            src_or_dst_spatial_start = 1;
        }
        megdnn_assert(cflt.ocpg * cflt.group == diff[src_or_dst_c_pos], "%s",
                      errmsg().c_str());
        grad.ndim = diff.ndim;
        grad[0] = diff[0];
        grad[src_or_dst_c_pos] = cflt.icpg * cflt.group;
        for (size_t i = 0; i < cflt.spatial_ndim; ++i) {
            grad[i + src_or_dst_spatial_start] = deduce(
                    diff[i + src_or_dst_spatial_start], cflt.dilated_spatial[i],
                    cflt.stride[i], cflt.padding[i]);
        }
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
    } else if (param().format == Param::Format::NCHW4) {
        megdnn_assert(diff.ndim == 5,
                      "valid diff ndim for NCHW4, expected=5, got=%zu",
                      diff.ndim);
        megdnn_assert(cflt.group == 1, "%s", errmsg().c_str());
        megdnn_assert(cflt.ocpg * cflt.group == diff[1] * 4, "%s",
                      errmsg().c_str());
        grad.ndim = diff.ndim;
        grad[0] = diff[0];
        auto ic = cflt.icpg * cflt.group;
        megdnn_assert(ic % 4 == 0);
        grad[1] = ic / 4;
        grad[2] = deduce(diff[2], cflt.dilated_spatial[0], cflt.stride[0],
                         cflt.padding[0]);
        grad[3] = deduce(diff[3], cflt.dilated_spatial[1], cflt.stride[1],
                         cflt.padding[1]);
        megdnn_assert(diff[4] == 4);
        grad[4] = 4;
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
    } else {
        megdnn_assert(param().format == Param::Format::NHWCD4);
        megdnn_assert(diff.ndim == 5,
                      "valid diff ndim for NHWCD4, expected=5, got=%zu",
                      diff.ndim);
        megdnn_assert(cflt.ocpg * cflt.group == diff[2] * 4, "%s",
                      errmsg().c_str());
        grad.ndim = diff.ndim;
        grad[0] = diff[0];
        auto ic = cflt.icpg * cflt.group;
        megdnn_assert(ic % 4 == 0);
        grad[2] = ic / 4;
        grad[1] = deduce(diff[1], cflt.dilated_spatial[0], cflt.stride[0],
                         cflt.padding[0]);
        grad[3] = deduce(diff[3], cflt.dilated_spatial[1], cflt.stride[1],
                         cflt.padding[1]);
        megdnn_assert(diff[4] == 4);
        grad[4] = 4;
    }
    grad.format = diff.format;
    grad.init_contiguous_stride();
}

ConvolutionBackwardFilter::CanonizedFilterMeta
ConvolutionBackwardFilter::check_exec(const TensorLayout& src,
                                      const TensorLayout& diff,
                                      const TensorLayout& grad,
                                      size_t workspace_in_bytes) {
    megdnn_assert(src.dtype.category() == DTypeCategory::FLOAT &&
                          diff.dtype.category() == DTypeCategory::FLOAT &&
                          grad.dtype.category() == DTypeCategory::FLOAT,
                  "only float type is supported for conv backward filter");
    auto ret = check_layout_fwd(src, grad, diff);
    auto required_workspace_in_bytes = get_workspace_in_bytes(src, diff, grad);
    megdnn_assert(workspace_in_bytes >= required_workspace_in_bytes);
    return ret;
}

}  // namespace megdnn

// vim: syntax=cpp.doxygen