convolution.cpp 48.4 KB
Newer Older
1 2 3 4 5 6 7 8
/**
 * \file dnn/src/common/convolution.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 */

#include "megdnn/oprs/nn.h"
#include "src/common/utils.h"

using namespace megdnn;

namespace {
template <typename Param>
std::string get_errmsg(const TensorLayout& src, const TensorLayout& filter,
                       const TensorLayout& dst, const Param& param) {
    MEGDNN_MARK_USED_VAR(src);
    MEGDNN_MARK_USED_VAR(filter);
    MEGDNN_MARK_USED_VAR(dst);
    return megdnn_layout_msg(src) + ", " + megdnn_layout_msg(filter) + ", " +
           megdnn_layout_msg(dst) + ", " + megdnn_mangle("is_nchw=") +
           std::to_string(param.format == param::Convolution::Format::NCHW) +
           ", " + +megdnn_mangle("is_xcorr=") +
           std::to_string(
                   (param.mode == Convolution::Mode::CROSS_CORRELATION)) +
           ", " + megdnn_mangle("pad_h=") + std::to_string(param.pad_h) + ", " +
           megdnn_mangle("pad_w=") + std::to_string(param.pad_w) + ", " +
           megdnn_mangle("stride_h=") + std::to_string(param.stride_h) + ", " +
           megdnn_mangle("stride_w=") + std::to_string(param.stride_w) + ", " +
           megdnn_mangle("dilate_h=") + std::to_string(param.dilate_h) + ", " +
           megdnn_mangle("dilate_w=") + std::to_string(param.dilate_w);
}

template <typename Param, typename Param::Format>
uint32_t spatial_getter(uint32_t filter, const Param&) {
    return filter;
}

template <>
uint32_t
spatial_getter<param::ConvBias, param::ConvBias::Format::NCHW_WINOGRAD>(
        uint32_t filter, const param::ConvBias& param) {
    //! f = m + r - 1 -> r = f + 1 - m
    return filter - param.output_block_size + 1;
}

template <>
uint32_t
spatial_getter<param::ConvBias, param::ConvBias::Format::NCHW88_WINOGRAD>(
        uint32_t filter, const param::ConvBias& param) {
    //! f = m + r - 1 -> r = f + 1 - m
    return filter - param.output_block_size + 1;
}
59 60 61 62 63 64 65
template <>
uint32_t
spatial_getter<param::ConvBias, param::ConvBias::Format::NCHW44_WINOGRAD>(
        uint32_t filter, const param::ConvBias& param) {
    //! f = m + r - 1 -> r = f + 1 - m
    return filter - param.output_block_size + 1;
}
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

template <typename Parameter, typename Param>
void make_canonized_filter_meta_nchw_nhwc(
        size_t src_ndim, const TensorLayout& filter, const Param& param,
        typename ConvolutionBase<Parameter>::CanonizedFilterMeta& ret) {
    megdnn_assert(param.format == Param::Format::NCHW ||
                  param.format == Param::Format::NHWC ||
                  param.format == Param::Format::NCHW_WINOGRAD);
    auto img_ndim = src_ndim - 2;
    size_t flt_start, flt_spatial_start, ocpg_pos, icpg_pos;
    if (param.sparse == Param::Sparse::DENSE) {
        megdnn_assert(
                filter.ndim == img_ndim + 2 || filter.ndim == img_ndim + 4,
                "bad filter ndim for dense convolution: "
                "spatial_ndim=%zu filter_ndim=%zu",
                img_ndim, filter.ndim);
        ret.group = 1;
        flt_start = 0;
    } else {
        megdnn_assert(param.sparse == Param::Sparse::GROUP,
                      "invalid convolution sparse type");
        megdnn_assert(
                filter.ndim == img_ndim + 3 || filter.ndim == img_ndim + 5,
                "bad filter ndim for group convolution: "
                "spatial_ndim=%zu filter_ndim=%zu",
                img_ndim, filter.ndim);

        // grp, oc, ic, dims[]
        ret.group = filter[0];
        flt_start = 1;
    }

    uint32_t ic_block_size = 1, oc_block_size = 1;
    if (param.format == Param::Format::NCHW) {
        // filter should be (oc, ic, fh, fw)
        flt_spatial_start = 2;
        ocpg_pos = 0;
        icpg_pos = 1;
    } else if (param.format == Param::Format::NCHW_WINOGRAD) {
        // filter should be (alphah, alphaw, ic, oc) or (alphah, alphaw, ocb,
        // icb, ic_block_size, oc_block_size)
        flt_spatial_start = 0;
        if (filter.ndim == flt_start + 4) {
            ocpg_pos = 3;
            icpg_pos = 2;
        } else {
            megdnn_assert(filter.ndim == flt_start + 6);
            ic_block_size = filter[flt_start + 4];
            oc_block_size = filter[flt_start + 5];
            ocpg_pos = 2;
            icpg_pos = 3;
        }
    } else {
        megdnn_assert(param.format == Param::Format::NHWC,
                      "invalid conv tensor format");
        // filter should be (oc, fh, fw, ic)
        flt_spatial_start = 1;
        ocpg_pos = 0;
        icpg_pos = 3;
    }
    ret.spatial_ndim = src_ndim - 2;
    megdnn_assert(
            ret.spatial_ndim == 2,
            "only 2D convolution is supported, and input should be 4-dim; "
            "got input dim = %zu",
            src_ndim);
    ret.ocpg = filter[flt_start + ocpg_pos] * oc_block_size;
    ret.icpg = filter[flt_start + icpg_pos] * ic_block_size;
    auto dilation = ret.dilation;
    for (size_t i = 0; i < ret.spatial_ndim; ++i) {
        megdnn_assert(dilation[i] > 0,
                      "invalid dilation on spatial dim %zu: %u", i,
                      dilation[i]);
        if (param.format == Param::Format::NCHW_WINOGRAD) {
            ret.spatial[i] =
                    spatial_getter<Param, Param::Format::NCHW_WINOGRAD>(
                            filter[i + flt_start + flt_spatial_start], param);
        } else {
            ret.spatial[i] = spatial_getter<Param, Param::Format::NCHW>(
                    filter[i + flt_start + flt_spatial_start], param);
        }
        ret.dilated_spatial[i] = (ret.spatial[i] - 1) * dilation[i] + 1;
    }
}

template <typename Parameter, typename Param>
void make_canonized_filter_meta_nhwcd4(
        size_t src_ndim, const TensorLayout& filter, const Param& param,
        typename ConvolutionBase<Parameter>::CanonizedFilterMeta& ret) {
    /**
     * input: N H IC/4 W 4
     * Filter:
     *        OC/4, FH, FW, IC, 4 [dense]
     *        GROUP, OC/4, FH, FW, IC, 4 [group]
     *        GROUP/4, 1, FH, FW, 4 [chanwise]
     */
    megdnn_assert(param.format == Param::Format::NHWCD4);
    auto img_ndim = src_ndim - 3;
    size_t flt_start = 0, flt_spatial_start = 1;
    bool is_chanwise = false;
    if (param.sparse == Param::Sparse::DENSE) {
        megdnn_assert(filter.ndim == img_ndim + 3,
                      "bad filter ndim for dense convolution: "
                      "spatial_ndim=%zu filter_ndim=%zu",
                      img_ndim, filter.ndim);
        // oc, ic, dims[]
        ret.group = 1;
        flt_start = 0;
    } else {
        megdnn_assert(param.sparse == Param::Sparse::GROUP,
                      "invalid convolution sparse type");
        megdnn_assert(
                filter.ndim == img_ndim + 3 || filter.ndim == img_ndim + 4,
                "bad filter ndim for group convolution: "
                "spatial_ndim=%zu filter_ndim=%zu",
                img_ndim, filter.ndim);
        if (filter.ndim == img_ndim + 3 && filter[1] == 1) {
            is_chanwise = true;
            ret.group = filter[0] * 4;
        } else {
            ret.group = filter[0];
        }
        flt_start = 1;
    }
    ret.spatial_ndim = src_ndim - 3;
    megdnn_assert(
            ret.spatial_ndim == 2,
            "only 2D convolution is supported, and input should be 4-dim; "
            "got input dim = %zu",
            src_ndim);
    if (is_chanwise) {
        ret.ocpg = 1;
        ret.icpg = 1;
    } else {
        ret.ocpg = filter[flt_start] * 4;
        ret.icpg = filter[flt_start + 3];
    }
    auto dilation = ret.dilation;
    for (size_t i = 0; i < ret.spatial_ndim; ++i) {
        megdnn_assert(dilation[i] > 0,
                      "invalid dilation on spatial dim %zu: %u", i,
                      dilation[i]);
        ret.spatial[i] = filter[i + flt_start + flt_spatial_start];
        ret.dilated_spatial[i] = (ret.spatial[i] - 1) * dilation[i] + 1;
    }
}

template <typename Parameter, typename Param>
void make_canonized_filter_meta_nhwcd4_dot(
        size_t src_ndim, const TensorLayout& filter, const Param& param,
        typename ConvolutionBase<Parameter>::CanonizedFilterMeta& ret) {
    /**
     * input: N H IC/4 W 4
     * Filter:
     *        GROUP/4, 1, FH, FW, 4 [chanwise]
     *        OC/4, FH, FW, IC/4, 4, 4 [dense]
     *        GROUP, OC/4, FH, FW, IC/4, 4, 4 [group]
     */
    megdnn_assert(param.format == Param::Format::NHWCD4);
    auto img_ndim = src_ndim - 3;
    size_t flt_start = 0, flt_spatial_start = 1;
    bool is_chanwise = false;
    if (param.sparse == Param::Sparse::DENSE) {
        megdnn_assert(filter.ndim == img_ndim + 4,
                      "bad filter ndim for dense convolution: "
                      "spatial_ndim=%zu filter_ndim=%zu",
                      img_ndim, filter.ndim);
        // oc, ic, dims[]
        ret.group = 1;
        flt_start = 0;
    } else {
        megdnn_assert(param.sparse == Param::Sparse::GROUP,
                      "invalid convolution sparse type");
        megdnn_assert(
                filter.ndim == img_ndim + 3 || filter.ndim == img_ndim + 5,
                "bad filter ndim for group convolution: "
                "spatial_ndim=%zu filter_ndim=%zu",
                img_ndim, filter.ndim);
        if (filter.ndim == img_ndim + 3) {
            megdnn_assert(filter[1] == 1);
            is_chanwise = true;
            ret.group = filter[0] * 4;
        } else {
            ret.group = filter[0];
        }
        flt_start = 1;
    }
    ret.spatial_ndim = src_ndim - 3;
    megdnn_assert(
            ret.spatial_ndim == 2,
            "only 2D convolution is supported, and input should be 4-dim; "
            "got input dim = %zu",
            src_ndim);
    if (is_chanwise) {
        ret.ocpg = 1;
        ret.icpg = 1;
    } else {
        ret.ocpg = filter[flt_start] * 4;
        ret.icpg = filter[flt_start + 3] * 4;
    }
    auto dilation = ret.dilation;
    for (size_t i = 0; i < ret.spatial_ndim; ++i) {
        megdnn_assert(dilation[i] > 0,
                      "invalid dilation on spatial dim %zu: %u", i,
                      dilation[i]);
        ret.spatial[i] = filter[i + flt_start + flt_spatial_start];
        ret.dilated_spatial[i] = (ret.spatial[i] - 1) * dilation[i] + 1;
    }
}

template <size_t pack_size, typename Parameter, typename Param>
void make_canonized_filter_meta_nchwxx(
        size_t src_ndim, const TensorLayout& filter, const Param& param,
        typename ConvolutionBase<Parameter>::CanonizedFilterMeta& ret) {
    /**
     * input: N IC/pack_size, H, W, pack_size
     *
283
     * NCHW88 and NCHW44 mode
284 285 286 287 288 289 290
     * filter:
     *        {OC/pack_size, IC/pack_size, FH, FW, pack_size(IC), pack_size(OC)}
     * [dense]
     *        {GROUP, OC_PER_GROUP/pack_size, IC_PER_GROUP/pack_size, \
     *                  FH, FW, pack_size(IC), pack_size(OC)} [group]
     *        {GROUP/pack_size, 1, 1, FH, FW, pack_size} [chan]
     *
291
     ** NCHW88_WINOGRAD and NCHW44_WINOGRAD mode
292 293 294 295 296 297 298 299 300
     * filter:
     *        {alpha, alpha, OC/pack_size, IC/pack_size, pack_size(IC),
     *pack_size(OC)} [dense]
     *        {GROUP, alpha, alpha, OC_PER_GROUP/pack_size,
     *          IC_PER_GROUP/pack_size, pack_size(IC), pack_size(OC)} [group]
     *
     */

    megdnn_assert(param.format == Param::Format::NCHW88 ||
301
                  param.format == Param::Format::NCHW44 ||
302 303 304 305 306 307 308 309 310 311 312 313 314 315
                  param.format == Param::Format::NCHW88_WINOGRAD);
    size_t img_ndim = 2;
    size_t flt_start = 0;
    size_t flt_spatial_start = 2;
    if (param.sparse == Param::Sparse::DENSE) {
        if (filter.ndim == img_ndim + 4) {
            // oihw8i8o case
            megdnn_assert(filter[filter.ndim - 2] == pack_size &&
                                  filter[filter.ndim - 1] == pack_size,
                          "last 2 dim of filter must be %zu, but got %zu, %zu",
                          pack_size, filter[filter.ndim - 2],
                          filter[filter.ndim - 1]);
            ret.group = 1;
            flt_start = 0;
316 317
            if (param.format == Param::Format::NCHW88_WINOGRAD ||
                param.format == Param::Format::NCHW44_WINOGRAD) {
318 319 320 321 322 323 324 325
                flt_start = 2;
            }
            ret.ocpg = filter[flt_start] * pack_size;
            ret.icpg = filter[flt_start + 1] * pack_size;
        } else if (filter.ndim == img_ndim + 3) {
            // ohwi8o
            megdnn_assert(param.format != Param::Format::NCHW88_WINOGRAD,
                          "Hybrid nchw88 mode in not support winograd");
326 327
            megdnn_assert(param.format != Param::Format::NCHW44_WINOGRAD,
                          "Hybrid nchw44 mode in not support winograd");
328 329 330 331 332 333 334
            flt_start = 0;
            flt_spatial_start = 1;
            ret.group = 1;
            ret.ocpg = filter[flt_start] * pack_size;
            ret.icpg = filter[flt_start + 3];

        } else {
335
            megdnn_assert(0, "not support nchwxx filter dim = %zu",
336 337 338 339 340 341
                          filter.ndim);
        }
    } else {
        megdnn_assert(param.sparse == Param::Sparse::GROUP,
                      "invalid convolution sparse type");
        flt_start = 1;
342 343
        if (param.format == Param::Format::NCHW88_WINOGRAD ||
            param.format == Param::Format::NCHW44_WINOGRAD) {
344 345 346 347 348
            flt_start = 3;
        }
        auto filter_oc = filter[flt_start];
        auto filter_ic = filter[flt_start + 1];
        if (filter_oc == 1 && filter_ic == 1 && filter.ndim == (img_ndim + 4) &&
349 350
            param.format != Param::Format::NCHW88_WINOGRAD &&
            param.format != Param::Format::NCHW44_WINOGRAD) {
351 352 353 354 355 356 357 358
            // Depthwise case goihw8g
            megdnn_assert(filter.ndim == img_ndim + 4,
                          "bad filter ndim for group convolution: "
                          "spatial_ndim=%zu filter_ndim=%zu",
                          img_ndim, filter.ndim);
            megdnn_assert(filter[filter.ndim - 1] == pack_size,
                          "last dim of filter must be %zu, but %zu", pack_size,
                          filter[filter.ndim - 1]);
359
            ret.group = filter[0] * pack_size;
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
            ret.ocpg = filter_oc;
            ret.icpg = filter_ic;

        } else {
            // norm group case goihw8i8o
            megdnn_assert(filter.ndim == img_ndim + 5,
                          "bad filter ndim for group convolution: "
                          "spatial_ndim=%zu filter_ndim=%zu",
                          img_ndim, filter.ndim);
            megdnn_assert(filter[filter.ndim - 1] == pack_size &&
                                  filter[filter.ndim - 2] == pack_size,
                          "last 2 dim of filter must be %zu, but got %zu, %zu",
                          pack_size, filter[filter.ndim - 2],
                          filter[filter.ndim - 1]);

            ret.group = filter[0];
            ret.ocpg = filter_oc * pack_size;
            ret.icpg = filter_ic * pack_size;
        }
    }
    ret.spatial_ndim = 2;
    megdnn_assert(ret.spatial_ndim == 2,
                  "only 2D convolution is supported, and input should be 5-dim "
                  "for nchwxx; "
                  "got input dim = %zu",
                  src_ndim);

    auto dilation = ret.dilation;
    for (size_t i = 0; i < ret.spatial_ndim; ++i) {
        megdnn_assert(dilation[i] == 1,
                      "NCHWXX has invalid dilation on spatial dim %zu: %u, "
                      "require to be 1",
                      i, dilation[i]);
        if (param.format == Param::Format::NCHW88_WINOGRAD) {
            ret.spatial[i] =
                    spatial_getter<Param, Param::Format::NCHW88_WINOGRAD>(
                            filter[i + flt_start - 2], param);
397 398 399 400
        } else if (param.format == Param::Format::NCHW44_WINOGRAD) {
            ret.spatial[i] =
                    spatial_getter<Param, Param::Format::NCHW44_WINOGRAD>(
                            filter[i + flt_start - 2], param);
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
        } else {
            ret.spatial[i] = filter[i + flt_start + flt_spatial_start];
        }
        ret.dilated_spatial[i] = (ret.spatial[i] - 1) * dilation[i] + 1;
    }
}

template <size_t pack_size, typename Parameter, typename Param>
void make_canonized_filter_meta_nchwx(
        size_t src_ndim, const TensorLayout& filter, const Param& param,
        typename ConvolutionBase<Parameter>::CanonizedFilterMeta& ret) {
    /**
     * input: N IC/pack_size, H, W, pack_size
     * filter:
     *        OC, IC/pack_size, FH, FW, pack_size [dense]
     *        GROUP, OC, IC/pack_size, FH, FW, pack_size [group]
     */
    megdnn_assert(param.format == Param::Format::NCHW4 ||
                  param.format == Param::Format::NCHW8 ||
                  param.format == Param::Format::NCHW32);
    auto img_ndim = src_ndim - 3;
    size_t flt_start = 0, flt_spatial_start = 2;
    if (param.sparse == Param::Sparse::DENSE) {
        megdnn_assert(filter.ndim == img_ndim + 3,
                      "bad filter ndim for dense convolution: "
                      "spatial_ndim=%zu filter_ndim=%zu",
                      img_ndim, filter.ndim);
        // oc, ic, dims[]
        ret.group = 1;
        flt_start = 0;
    } else {
        megdnn_assert(param.sparse == Param::Sparse::GROUP,
                      "invalid convolution sparse type");
        megdnn_assert(filter.ndim == img_ndim + 4,
                      "bad filter ndim for group convolution: "
                      "spatial_ndim=%zu filter_ndim=%zu",
                      img_ndim, filter.ndim);
        ret.group = filter[0];
        flt_start = 1;
    }
    ret.spatial_ndim = src_ndim - 3;
    megdnn_assert(ret.spatial_ndim == 2,
                  "only 2D convolution is supported, and input should be 5-dim "
                  "for nchw4; "
                  "got input dim = %zu",
                  src_ndim);
    ret.ocpg = filter[flt_start];
    ret.icpg = filter[flt_start + 1] * pack_size;
    auto dilation = ret.dilation;
    for (size_t i = 0; i < ret.spatial_ndim; ++i) {
        megdnn_assert(dilation[i] == 1,
                      "NCHW4 has invalid dilation on spatial dim %zu: %u, "
                      "require to be 1",
                      i, dilation[i]);
        ret.spatial[i] = filter[i + flt_start + flt_spatial_start];
        ret.dilated_spatial[i] = (ret.spatial[i] - 1) * dilation[i] + 1;
    }
}

template <size_t pack_size, typename Parameter, typename Param>
void make_canonized_filter_meta_chwnx(
        size_t src_ndim, const TensorLayout& filter, const Param& param,
        typename ConvolutionBase<Parameter>::CanonizedFilterMeta& ret) {
    /**
     * input: IC / pack_size, H, W, N, pack_size
     * Filter:
     *        IC / pack_size, FH, FW, OC, pack_size [dense]
     *        GROUP, icpg / pack_size, FH, FW, ocpg, pack_size [group]
     *        not implemented [chanwise]
     */
    megdnn_assert(param.format == Param::Format::CHWN4);
    auto img_ndim = src_ndim - 3;
    size_t flt_start = 0, flt_spatial_start = 1;
    if (param.sparse == Param::Sparse::DENSE) {
        megdnn_assert(filter.ndim == img_ndim + 3,
                      "bad filter ndim for dense convolution: "
                      "spatial_ndim=%zu filter_ndim=%zu",
                      img_ndim, filter.ndim);
        // oc, ic, dims[]
        ret.group = 1;
        flt_start = 0;
    } else {
        megdnn_assert(param.sparse == Param::Sparse::GROUP,
                      "invalid convolution sparse type");
        megdnn_assert(filter.ndim == img_ndim + 4,
                      "bad filter ndim for group convolution: "
                      "spatial_ndim=%zu filter_ndim=%zu",
                      img_ndim, filter.ndim);
        ret.group = filter[0];
        flt_start = 1;
    }
    ret.spatial_ndim = src_ndim - 3;
    megdnn_assert(
            ret.spatial_ndim == 2,
            "only 2D convolution is supported, and input should be 4-dim; "
            "got input dim = %zu",
            src_ndim);
    ret.icpg = filter[flt_start] * pack_size;
    ret.ocpg = filter[flt_start + 3];
    auto dilation = ret.dilation;
    for (size_t i = 0; i < ret.spatial_ndim; ++i) {
        megdnn_assert(dilation[i] == 1,
                      "CHWNx has invalid dilation on spatial dim %zu: %u, "
                      "require to be 1",
                      i, dilation[i]);
        ret.spatial[i] = filter[i + flt_start + flt_spatial_start];
        ret.dilated_spatial[i] = (ret.spatial[i] - 1) * dilation[i] + 1;
    }
}

}  // namespace

namespace megdnn {
template <typename Parameter>
typename ConvolutionBase<Parameter>::CanonizedFilterMeta
ConvolutionBase<Parameter>::make_canonized_filter_meta(
        size_t src_ndim, const TensorLayout& filter) const {
    megdnn_assert_contiguous(filter);
    CanonizedFilterMeta ret;
    ret.dtype = filter.dtype;
    ret.format = param().format;
    if (param().mode == Mode::CONVOLUTION) {
        ret.should_flip = true;
    } else {
        megdnn_assert(param().mode == Mode::CROSS_CORRELATION,
                      "invalid conv mode");
        ret.should_flip = false;
    }
    ret.stride[0] = param().stride_h;
    ret.stride[1] = param().stride_w;
    ret.padding[0] = param().pad_h;
    ret.padding[1] = param().pad_w;
    ret.dilation[0] = param().dilate_h;
    ret.dilation[1] = param().dilate_w;

    if (param().format == Param::Format::NHWCD4) {
        if (filter.dtype.enumv() == DTypeEnum::QuantizedS8 ||
            filter.dtype.enumv() == DTypeEnum::Quantized8Asymm) {
            make_canonized_filter_meta_nhwcd4_dot<Parameter>(src_ndim, filter,
                                                             param(), ret);
        } else {
            make_canonized_filter_meta_nhwcd4<Parameter>(src_ndim, filter,
                                                         param(), ret);
        }
    } else if (param().format == Param::Format::NCHW4) {
        make_canonized_filter_meta_nchwx<4, Parameter>(src_ndim, filter,
                                                       param(), ret);
    } else if (param().format == Param::Format::NCHW8) {
        make_canonized_filter_meta_nchwx<8, Parameter>(src_ndim, filter,
                                                       param(), ret);
    } else if (param().format == Param::Format::NCHW88 ||
               param().format == Param::Format::NCHW88_WINOGRAD) {
        make_canonized_filter_meta_nchwxx<8, Parameter>(src_ndim, filter,
                                                        param(), ret);
555 556 557 558
    } else if (param().format == Param::Format::NCHW44 ||
               param().format == Param::Format::NCHW44_WINOGRAD) {
        make_canonized_filter_meta_nchwxx<4, Parameter>(src_ndim, filter,
                                                        param(), ret);
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
    } else if (param().format == Param::Format::NCHW32) {
        make_canonized_filter_meta_nchwx<32, Parameter>(src_ndim, filter,
                                                        param(), ret);
    } else if (param().format == Param::Format::CHWN4) {
        make_canonized_filter_meta_chwnx<4, Parameter>(src_ndim, filter,
                                                       param(), ret);
    } else {
        megdnn_assert(param().format == Param::Format::NHWC ||
                      param().format == Param::Format::NCHW ||
                      param().format == Param::Format::NCHW_WINOGRAD);
        make_canonized_filter_meta_nchw_nhwc<Parameter>(src_ndim, filter,
                                                        param(), ret);
    }
    return ret;
}

template <typename Parameter>
void ConvolutionBase<Parameter>::check_or_deduce_dtype_fwd(DType src,
                                                           DType filter,
                                                           DType& dst) const {
    // The first one will be the default choice.
    SmallVector<DType> supported_dst_dtype;
    // We rely on megdnn_assert(src.enumv() == filter.enumv()) here.
    if (src.category() == DTypeCategory::FLOAT) {
        supported_dst_dtype.push_back(src);
    } else if (src.enumv() == DTypeEnum::Int8) {
        supported_dst_dtype = {dtype::Int32(), dtype::Int16()};
    } else if (src.enumv() == DTypeEnum::QuantizedS8 ||
               src.enumv() == DTypeEnum::Quantized8Asymm ||
               src.enumv() == DTypeEnum::Quantized4Asymm) {
        supported_dst_dtype.push_back(
                dtype::QuantizedS32(mul_scale(src, filter)));
        if (dst.valid() && dst.enumv() == src.enumv()) {
            supported_dst_dtype.push_back(dst);
        }
    } else if (src.enumv() == DTypeEnum::QuantizedS32) {
        //! ConvolutionBackwardData: s8(filter) + s8(dst) -> s32(src)
        megdnn_assert(filter.enumv() == DTypeEnum::QuantizedS8);
        supported_dst_dtype.push_back(
                dtype::QuantizedS8(src.param<dtype::QuantizedS32>().scale /
                                   filter.param<dtype::QuantizedS8>().scale));
    } else {
        megdnn_throw(ssprintf("unsupported input / filter DType: %s x %s",
                              src.name(), filter.name()));
    }
    if (!dst.valid()) {
        dst = supported_dst_dtype.at(0);
    } else {
607 608 609 610 611 612 613 614 615 616
        bool dst_supported = false;
        for (auto&& dt : supported_dst_dtype) {
            if (dtype_almost_equal(dt, dst)) {
                dst_supported = true;
                break;
            }
        }
        MEGDNN_MARK_USED_VAR(dst_supported);
        megdnn_assert(dst_supported, "unsupported Conv(%s, %s) -> %s",
                      src.name(), filter.name(), dst.name());
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
    }
    megdnn_assert(param().compute_mode != Param::ComputeMode::FLOAT32
#if !MEGDNN_DISABLE_FLOAT16
                          || src.enumv() == DTypeEnum::Float16
#endif
                  ,
                  "ComputeMode::FLOAT32 is only available for Float16 "
                  "input / output.");
}

template <typename Parameter>
typename ConvolutionBase<Parameter>::CanonizedFilterMeta
ConvolutionBase<Parameter>::deduce_layout_fwd(const TensorLayout& src,
                                              const TensorLayout& filter,
                                              TensorLayout& dst) const {
    auto errmsg = [&]() { return get_errmsg(src, filter, dst, param()); };
    MEGDNN_MARK_USED_VAR(errmsg);
    megdnn_assert_contiguous(src);
    megdnn_assert_contiguous(filter);
    megdnn_assert(src.ndim >= 3_z, "%s", errmsg().c_str());
    if (param().format == Param::Format::NCHW_WINOGRAD &&
        src.dtype.category() == DTypeCategory::QUANTIZED) {
        megdnn_assert(filter.dtype.enumv() == DTypeEnum::QuantizedS16, "%s",
                      errmsg().c_str());
        megdnn_assert(src.dtype.enumv() == DTypeEnum::QuantizedS8 ||
                              src.dtype.enumv() == DTypeEnum::Quantized8Asymm,
                      "%s", errmsg().c_str());
    } else {
        megdnn_assert(src.dtype.enumv() == filter.dtype.enumv(), "%s",
                      errmsg().c_str());
    }
    check_or_deduce_dtype_fwd(src.dtype, filter.dtype, dst.dtype);
    size_t img_dim;
    if (param().format == Param::Format::NCHW ||
        param().format == Param::Format::NHWC ||
        param().format == Param::Format::NCHW_WINOGRAD) {
        img_dim = src.ndim - 2;
        megdnn_assert(filter.ndim >= img_dim + 2 && filter.ndim <= img_dim + 6,
                      "%s", errmsg().c_str());

    } else {
        megdnn_assert(param().format == Param::Format::NHWCD4 ||
                      param().format == Param::Format::NCHW4 ||
660
                      param().format == Param::Format::NCHW44 ||
661 662 663 664 665 666
                      param().format == Param::Format::NCHW8 ||
                      param().format == Param::Format::NCHW32 ||
                      param().format == Param::Format::NCHW88 ||
                      param().format == Param::Format::NCHW88_WINOGRAD ||
                      param().format == Param::Format::CHWN4);
        img_dim = src.ndim - 3;
667 668 669
        if ((param().format == Param::Format::NCHW88 ||
             param().format == Param::Format::NCHW44) &&
            filter.ndim == 5) {
670 671 672 673
            img_dim = src.ndim - 2;
        }
        megdnn_assert(filter.ndim == img_dim + 3 ||
                              (filter.ndim == img_dim + 2 &&
674 675
                               (param().format == Param::Format::NCHW88 ||
                                param().format == Param::Format::NCHW44)) ||
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
                              filter.ndim == img_dim + 4 ||
                              filter.ndim == img_dim + 5,
                      "%s", errmsg().c_str());
        if (param().format == Param::Format::NCHW4) {
            megdnn_assert(src.ndim == 5 &&
                                  (filter.ndim == 5 || filter.ndim == 6 ||
                                   filter.ndim == 7) &&
                                  src[src.ndim - 1] == 4 &&
                                  filter[filter.ndim - 1] == 4,
                          "NCHW4 require src and filter's ndim is 5 or 6, and "
                          "last shape "
                          "is 4 "
                          "but got src %s, filter %s",
                          src.to_string().c_str(), filter.to_string().c_str());
        }
        if (param().format == Param::Format::NCHW8) {
            megdnn_assert(
                    src.ndim == 5 && (filter.ndim == 5 || filter.ndim == 6) &&
                            src[src.ndim - 1] == 8 &&
                            filter[filter.ndim - 1] == 8,
                    "NCHW8 require src and filter's ndim is 5 or 6, and last "
                    "shape is 8 "
                    "but got src %s, filter %s",
                    src.to_string().c_str(), filter.to_string().c_str());
        }
        if (param().format == Param::Format::NCHW32) {
            megdnn_assert(
                    src.ndim == 5 && (filter.ndim == 5 || filter.ndim == 6) &&
                            src[src.ndim - 1] == 32 &&
                            filter[filter.ndim - 1] == 32,
                    "NCHW32 require src and filter's ndim is 5 or 6, and last "
                    "shape is 32 "
                    "but got src %s, filter %s",
                    src.to_string().c_str(), filter.to_string().c_str());
        }
        if (param().format == Param::Format::NCHW88 ||
            param().format == Param::Format::NCHW88_WINOGRAD) {
            megdnn_assert((src.ndim == 4 && filter.ndim == 5 &&
                           filter[filter.ndim - 1] == 8) ||
                                  (src.ndim == 5 &&
                                   ((filter.ndim == 6 &&
                                     filter[filter.ndim - 1] == 8) ||
                                    (filter.ndim == 7 &&
                                     filter[filter.ndim - 1] == 8 &&
                                     filter[filter.ndim - 2] == 8)) &&
                                   src[src.ndim - 1] == 8),
                          "NCHW88 require src ndim is 5 and filter's ndim is 6 "
                          ", and last shape two is 8 but got src %s, filter %s",
                          src.to_string().c_str(), filter.to_string().c_str());
        }
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
        if (param().format == Param::Format::NCHW44 ||
            param().format == Param::Format::NCHW44_WINOGRAD) {
            megdnn_assert((src.ndim == 4 && filter.ndim == 5 &&
                           filter[filter.ndim - 1] == 4) ||
                                  (src.ndim == 5 &&
                                   ((filter.ndim == 6 &&
                                     filter[filter.ndim - 1] == 4) ||
                                    (filter.ndim == 7 &&
                                     filter[filter.ndim - 1] == 4 &&
                                     filter[filter.ndim - 2] == 4)) &&
                                   src[src.ndim - 1] == 4),
                          "NCHW44 require src ndim is 5 and filter's ndim is 6 "
                          ", and last shape two is 4 but got src %s, filter %s",
                          src.to_string().c_str(), filter.to_string().c_str());
        }
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
        if (param().format == Param::Format::CHWN4) {
            megdnn_assert(
                    src.ndim == 5 && (filter.ndim == 5 || filter.ndim == 6) &&
                            src[src.ndim - 1] == 4 &&
                            filter[filter.ndim - 1] == 4,
                    "CHWN4 require src and filter's ndim is 5 or 6, and last "
                    "shape is 4 "
                    "but got src %s, filter %s",
                    src.to_string().c_str(), filter.to_string().c_str());
        }
    }
    megdnn_assert(img_dim == 2,
                  "currently only convolution on 2D image is supported");
    auto cflt = make_canonized_filter_meta(src.ndim, filter);
    if (param().format == Param::Format::NCHW ||
        param().format == Param::Format::NHWC ||
        param().format == Param::Format::NCHW_WINOGRAD) {
        size_t src_or_dst_c_pos = 0;
        size_t src_or_dst_spatial_start = 0;
        if (param().format == Param::Format::NCHW ||
            param().format == Param::Format::NCHW_WINOGRAD) {
            src_or_dst_c_pos = 1;
            src_or_dst_spatial_start = 2;
        } else {
            megdnn_assert(param().format == Param::Format::NHWC,
                          "invalid conv format");
            src_or_dst_c_pos = 3;
            src_or_dst_spatial_start = 1;
        }
        megdnn_assert(cflt.icpg * cflt.group == src[src_or_dst_c_pos], "%s",
                      errmsg().c_str());
        if (param().format == Param::Format::NCHW_WINOGRAD) {
            megdnn_assert(cflt.spatial[0] == cflt.spatial[1],
                          "NCHW_WINOGRAD only support conv with fh == fw");
        }
        dst.ndim = src.ndim;
        dst[0] = src[0];
        dst[src_or_dst_c_pos] = cflt.ocpg * cflt.group;
        for (size_t i = 0; i < cflt.spatial_ndim; ++i) {
            dst[i + src_or_dst_spatial_start] = infer_conv_shape(
                    src[i + src_or_dst_spatial_start], cflt.dilated_spatial[i],
                    cflt.stride[i], cflt.padding[i]);
        }
        dst.init_contiguous_stride();
    } else if (param().format == Param::Format::NCHW4) {
        megdnn_assert(src.ndim == 5,
                      "invalid src ndim for NCHW4, expected=5, got=%zu",
                      src.ndim);
        megdnn_assert(cflt.icpg * cflt.group == src[1] * 4,
                      "%s icpg=%u group=%u", errmsg().c_str(), cflt.icpg,
                      cflt.group);
        dst.ndim = src.ndim;
        dst[0] = src[0];
        auto oc = cflt.ocpg * cflt.group;
        megdnn_assert(oc % 4 == 0);
        dst[1] = oc / 4;
        dst[2] = infer_conv_shape(src[2], cflt.dilated_spatial[0],
                                  cflt.stride[0], cflt.padding[0]);
        dst[3] = infer_conv_shape(src[3], cflt.dilated_spatial[1],
                                  cflt.stride[1], cflt.padding[1]);
        dst[4] = 4;
    } else if (param().format == Param::Format::NCHW8) {
        megdnn_assert(src.ndim == 5,
                      "invalid src ndim for NCHW8, expected=5, got=%zu",
                      src.ndim);
        megdnn_assert(cflt.icpg * cflt.group == src[1] * 8,
                      "%s icpg=%u group=%u", errmsg().c_str(), cflt.icpg,
                      cflt.group);
        dst.ndim = src.ndim;
        dst[0] = src[0];
        auto oc = cflt.ocpg * cflt.group;
        megdnn_assert(oc % 8 == 0);
        dst[1] = oc / 8;
        dst[2] = infer_conv_shape(src[2], cflt.dilated_spatial[0],
                                  cflt.stride[0], cflt.padding[0]);
        dst[3] = infer_conv_shape(src[3], cflt.dilated_spatial[1],
                                  cflt.stride[1], cflt.padding[1]);
        dst[4] = 8;
    } else if (param().format == Param::Format::NCHW32) {
        megdnn_assert(src.ndim == 5,
                      "invalid src ndim for NCHW32, expected=5, got=%zu",
                      src.ndim);
        megdnn_assert(cflt.icpg * cflt.group == src[1] * 32,
                      "%s icpg=%u group=%u", errmsg().c_str(), cflt.icpg,
                      cflt.group);
        dst.ndim = src.ndim;
        dst[0] = src[0];
        auto oc = cflt.ocpg * cflt.group;
        megdnn_assert(oc % 32 == 0);
        dst[1] = oc / 32;
        dst[2] = infer_conv_shape(src[2], cflt.dilated_spatial[0],
                                  cflt.stride[0], cflt.padding[0]);
        dst[3] = infer_conv_shape(src[3], cflt.dilated_spatial[1],
                                  cflt.stride[1], cflt.padding[1]);
        dst[4] = 32;
    } else if (param().format == Param::Format::NCHW88 ||
               param().format == Param::Format::NCHW88_WINOGRAD) {
        megdnn_assert(src.ndim == 5 || (src.ndim == 4 && src[1] <= 8),
                      "invalid src ndim for NCHW88, expected=5 or 4, got=%zu",
                      src.ndim);
        dst.ndim = 5;
        dst[0] = src[0];
        auto oc = cflt.ocpg * cflt.group;
        megdnn_assert(oc % 8 == 0);
        dst[1] = oc / 8;
        dst[2] = infer_conv_shape(src[2], cflt.dilated_spatial[0],
                                  cflt.stride[0], cflt.padding[0]);
        dst[3] = infer_conv_shape(src[3], cflt.dilated_spatial[1],
                                  cflt.stride[1], cflt.padding[1]);
        dst[4] = 8;
        if (cflt.group == 1) {
            megdnn_assert(cflt.icpg * cflt.group == src[1] * 8 ||
                                  (cflt.icpg * cflt.group == src[1]),
                          "%s icpg=%u group=%u", errmsg().c_str(), cflt.icpg,
                          cflt.group);
        }

858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
    } else if (param().format == Param::Format::NCHW44 ||
               param().format == Param::Format::NCHW44_WINOGRAD) {
        megdnn_assert(src.ndim == 5 || (src.ndim == 4 && src[1] <= 8),
                      "invalid src ndim for NCHW44, expected=5 or 4, got=%zu",
                      src.ndim);
        dst.ndim = 5;
        dst[0] = src[0];
        auto oc = cflt.ocpg * cflt.group;
        megdnn_assert(oc % 4 == 0);
        dst[1] = oc / 4;
        dst[2] = infer_conv_shape(src[2], cflt.dilated_spatial[0],
                                  cflt.stride[0], cflt.padding[0]);
        dst[3] = infer_conv_shape(src[3], cflt.dilated_spatial[1],
                                  cflt.stride[1], cflt.padding[1]);
        dst[4] = 4;
        if (cflt.group == 1) {
            megdnn_assert(cflt.icpg * cflt.group == src[1] * 4 ||
                                  (cflt.icpg * cflt.group == src[1]),
                          "%s icpg=%u group=%u", errmsg().c_str(), cflt.icpg,
                          cflt.group);
        }
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
    } else if (param().format == Param::Format::CHWN4) {
        megdnn_assert(src.ndim == 5,
                      "invalid src ndim for CHWN4, expected=5, got=%zu",
                      src.ndim);
        megdnn_assert(cflt.icpg * cflt.group == src[0] * 4,
                      "%s icpg=%u group=%u", errmsg().c_str(), cflt.icpg,
                      cflt.group);
        dst.ndim = src.ndim;
        dst[3] = src[3];
        auto oc = cflt.ocpg * cflt.group;
        megdnn_assert(oc % 4 == 0);
        dst[0] = oc / 4;
        dst[1] = infer_conv_shape(src[1], cflt.dilated_spatial[0],
                                  cflt.stride[0], cflt.padding[0]);
        dst[2] = infer_conv_shape(src[2], cflt.dilated_spatial[1],
                                  cflt.stride[1], cflt.padding[1]);
        dst[4] = 4;
    } else {
        megdnn_assert(param().format == Param::Format::NHWCD4);
        megdnn_assert(src.ndim == 5,
                      "invalid src ndim for NHWCD4, expected=5, got=%zu",
                      src.ndim);
        megdnn_assert(cflt.icpg * cflt.group == src[2] * 4,
                      "%s icpg=%u group=%u", errmsg().c_str(), cflt.icpg,
                      cflt.group);
        dst.ndim = src.ndim;
        dst[0] = src[0];
        auto oc = cflt.ocpg * cflt.group;
        megdnn_assert(oc % 4 == 0);
        dst[2] = oc / 4;
        dst[1] = infer_conv_shape(src[1], cflt.dilated_spatial[0],
                                  cflt.stride[0], cflt.padding[0]);
        dst[3] = infer_conv_shape(src[3], cflt.dilated_spatial[1],
                                  cflt.stride[1], cflt.padding[1]);
        megdnn_assert(src[4] == 4);
        dst[4] = 4;
    }
    dst.format = src.format;
    dst.init_contiguous_stride();
    return cflt;
}

/**
 * \warning: An explicit specialization shall be declared in a namespace
 * enclosing the specialized template. An explicit specialization whose
 * declarator-id is not qualified shall be declared in the nearest enclosing
 * namespace of the template, or, if the namespace is inline (7.3.1), any
 * namespace from its enclosing namespace set.
 * refer to:
 * https://stackoverflow.com/questions/25594644/warning-specialization-of-template-in-different-namespace
 */
template <>
ConvolutionBase<param::Convolution>::CanonizedFilterMeta
ConvolutionBase<param::Convolution>::check_layout_fwd(
        const TensorLayout& src, const TensorLayout& filter,
        const TensorLayout& dst) const {
    TensorLayout dst_expected;
    dst_expected.dtype = dst.dtype;

    auto ret = deduce_layout_fwd(src, filter, dst_expected);
    megdnn_assert_eq_layout(dst_expected, dst);
    return ret;
}

template <>
ConvolutionBase<param::ConvBias>::CanonizedFilterMeta
ConvolutionBase<param::ConvBias>::check_layout_fwd(
        const TensorLayout& src, const TensorLayout& filter,
        const TensorLayout& dst) const {
    TensorLayout dst_expected;
    dst_expected.dtype = dst.dtype;

    auto ret = deduce_layout_fwd(src, filter, dst_expected);
    megdnn_assert_eq_layout(dst_expected, dst);
    return ret;
}

template <>
ConvolutionBase<param::BatchConvBias>::CanonizedFilterMeta
ConvolutionBase<param::BatchConvBias>::check_layout_fwd(
        const TensorLayout& src, const TensorLayout& filter,
        const TensorLayout& dst) const {
    TensorLayout dst_expected;
    dst_expected.dtype = dst.dtype;

    auto ret = deduce_layout_fwd(src, filter, dst_expected);
    megdnn_assert_eq_layout(dst_expected, dst);
    return ret;
}

void ConvolutionForward::deduce_dtype(DType src, DType filter, DType& dst) {
    check_or_deduce_dtype_fwd(src, filter, dst);
}

void ConvolutionForward::deduce_layout(const TensorLayout& src,
                                       const TensorLayout& filter,
                                       TensorLayout& dst) {
    deduce_layout_fwd(src, filter, dst);
}

ConvolutionForward::CanonizedFilterMeta ConvolutionForward::check_exec(
        const TensorLayout& src, const TensorLayout& filter,
        const TensorLayout& dst, size_t workspace_in_bytes) {
    auto ret = check_layout_fwd(src, filter, dst);
    auto required_workspace_in_bytes = get_workspace_in_bytes(src, filter, dst);
    megdnn_assert(workspace_in_bytes >= required_workspace_in_bytes);
    return ret;
}

ConvolutionBackwardData::CanonizedFilterMeta
ConvolutionBackwardData::check_exec(const TensorLayout& filter,
                                    const TensorLayout& diff,
                                    const TensorLayout& grad,
                                    size_t workspace_in_bytes) {
    auto grad_fwd = grad;
    auto filter_fwd = filter;
    auto diff_fwd = diff;

    std::swap(grad_fwd.dtype, diff_fwd.dtype);

    grad_fwd.init_contiguous_stride();
    diff_fwd.init_contiguous_stride();
    auto ret = check_layout_fwd(grad_fwd, filter_fwd, diff_fwd);
    auto required_workspace_in_bytes =
            get_workspace_in_bytes(filter, diff, grad);
    megdnn_assert(workspace_in_bytes >= required_workspace_in_bytes);
    return ret;
}

void ConvolutionBackwardData::deduce_dtype(DType filter, DType diff,
                                           DType& grad) {
    SmallVector<DType> supported_dst_dtype;
    if (filter.category() == diff.category() &&
        filter.category() == DTypeCategory::FLOAT) {
        supported_dst_dtype.push_back(filter);
    } else if (filter.enumv() == DTypeEnum::Int8 && diff == filter) {
        supported_dst_dtype.push_back(dtype::Int32());
    } else if ((filter.enumv() == DTypeEnum::QuantizedS8 &&
                diff.enumv() == DTypeEnum::QuantizedS8) ||
               (filter.enumv() == DTypeEnum::Quantized8Asymm &&
                diff.enumv() == DTypeEnum::Quantized8Asymm)) {
        supported_dst_dtype.push_back(
                dtype::QuantizedS32(mul_scale(filter, diff)));
        if (grad.valid() && grad.enumv() == diff.enumv()) {
            supported_dst_dtype.push_back(grad);
        }
    } else {
        megdnn_throw(ssprintf("unsupported input / diff DType: %s x %s",
                              filter.name(), diff.name()));
    }
    if (!grad.valid()) {
        grad = supported_dst_dtype.at(0);
    } else {
        megdnn_assert(vec_contains(supported_dst_dtype, grad),
                      "unsupported ConvBwd(%s, %s) -> %s", filter.name(),
                      diff.name(), grad.name());
    }
    megdnn_assert(param().compute_mode != Param::ComputeMode::FLOAT32
#if !MEGDNN_DISABLE_FLOAT16
                          || filter.enumv() == DTypeEnum::Float16
#endif
                  ,
                  "ComputeMode::FLOAT32 is only available for Float16 "
                  "input / output.");
}

void ConvolutionBackwardData::deduce_layout(const TensorLayout& filter,
                                            const TensorLayout& diff,
                                            TensorLayout& grad) {
    auto errmsg = [&]() { return get_errmsg(filter, diff, grad, param()); };
    MEGDNN_MARK_USED_VAR(errmsg);
    megdnn_assert_contiguous(filter);
    megdnn_assert_contiguous(diff);
    megdnn_assert(filter.ndim == 4_z || filter.ndim == 5_z, "%s",
                  errmsg().c_str());
    megdnn_assert(diff.ndim == 4_z || diff.ndim == 5_z, "%s", errmsg().c_str());

    deduce_dtype(filter.dtype, diff.dtype, grad.dtype);

    auto cflt = make_canonized_filter_meta(diff.ndim, filter);

    auto deduce = [&errmsg](size_t out, size_t filter, size_t stride,
                            size_t pad) {
        MEGDNN_MARK_USED_VAR(errmsg);
        auto i = (out - 1) * stride + filter;
        megdnn_assert(i > pad * 2, "%s", errmsg().c_str());
        return i - pad * 2;
    };

    if (param().format == Param::Format::NCHW ||
        param().format == Param::Format::NHWC) {
        size_t src_or_dst_c_pos = 0;
        size_t src_or_dst_spatial_start = 0;
        if (param().format == Param::Format::NCHW) {
            src_or_dst_c_pos = 1;
            src_or_dst_spatial_start = 2;
        } else {
            megdnn_assert(param().format == Param::Format::NHWC,
                          "invalid conv format");
            src_or_dst_c_pos = 3;
            src_or_dst_spatial_start = 1;
        }
        megdnn_assert(cflt.ocpg * cflt.group == diff[src_or_dst_c_pos], "%s",
                      errmsg().c_str());
        grad.ndim = diff.ndim;
        grad[0] = diff[0];
        grad[src_or_dst_c_pos] = cflt.icpg * cflt.group;
        for (size_t i = 0; i < cflt.spatial_ndim; ++i) {
            grad[i + src_or_dst_spatial_start] = deduce(
                    diff[i + src_or_dst_spatial_start], cflt.dilated_spatial[i],
                    cflt.stride[i], cflt.padding[i]);
        }
    } else {
        megdnn_assert(param().format == Param::Format::NHWCD4);
        megdnn_assert(diff.ndim == 5,
                      "valid diff ndim for NHWCD4, expected=5, got=%zu",
                      diff.ndim);
        megdnn_assert(cflt.ocpg * cflt.group == diff[2] * 4, "%s",
                      errmsg().c_str());
        grad.ndim = diff.ndim;
        grad[0] = diff[0];
        auto ic = cflt.icpg * cflt.group;
        megdnn_assert(ic % 4 == 0);
        grad[2] = ic / 4;
        grad[1] = deduce(diff[1], cflt.dilated_spatial[0], cflt.stride[0],
                         cflt.padding[0]);
        grad[3] = deduce(diff[3], cflt.dilated_spatial[1], cflt.stride[1],
                         cflt.padding[1]);
        megdnn_assert(diff[4] == 4);
        grad[4] = 4;
    }
    grad.format = diff.format;
    grad.init_contiguous_stride();
}

ConvolutionBackwardFilter::CanonizedFilterMeta
ConvolutionBackwardFilter::check_exec(const TensorLayout& src,
                                      const TensorLayout& diff,
                                      const TensorLayout& grad,
                                      size_t workspace_in_bytes) {
    megdnn_assert(src.dtype.category() == DTypeCategory::FLOAT &&
                          diff.dtype.category() == DTypeCategory::FLOAT &&
                          grad.dtype.category() == DTypeCategory::FLOAT,
                  "only float type is supported for conv backward filter");
    auto ret = check_layout_fwd(src, grad, diff);
    auto required_workspace_in_bytes = get_workspace_in_bytes(src, diff, grad);
    megdnn_assert(workspace_in_bytes >= required_workspace_in_bytes);
    return ret;
}

}  // namespace megdnn

// vim: syntax=cpp.doxygen