network.py 31.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# -*- coding: utf-8 -*-

from ctypes import *

import numpy as np

from .base import _Cnetwork, _Ctensor, _lib, _LiteCObjBase
from .struct import *
from .tensor import *


class LiteOptions(Structure):
    """
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    the inference options which can optimize the network forwarding
    performance

    Attributes:
        weight_preprocess: is the option which optimize the inference performance
            with processing the weights of the network ahead

        fuse_preprocess: fuse preprocess patten, like astype + pad_channel +
            dimshuffle

        fake_next_exec: whether only to perform non-computing tasks (like
            memory allocation and queue initialization) for next exec. This will be
            reset to false when the graph is executed.

        var_sanity_check_first_run: Disable var sanity check on the first run.
            Var sanity check is enabled on the first-time execution by default, and can
            be used to find some potential memory access errors in the operator

        const_shape: used to reduce memory usage and improve performance since some
            static inference data structures can be omitted and some operators can be
            compute before forwarding

        force_dynamic_alloc: force dynamic allocate memory for all vars

        force_output_dynamic_alloc: force dynamic allocate memory for output tensor
            which are used as the input of CallbackCaller Operator

        no_profiling_on_shape_change: do not re-profile to select best implement
            algo when input shape changes (use previous algo)

        jit_level: Execute supported operators with JIT (support MLIR,
            NVRTC). Can only be used on Nvidia GPUs and X86 CPU, this value indicates JIT level:

            level 1: for JIT execute with basic elemwise operator

            level 2: for JIT execute elemwise and reduce operators

        record_level: flags to optimize the inference performance with record the
            kernel tasks in first run, hereafter the inference all need is to execute the
            recorded tasks.

            level = 0 means the normal inference

            level = 1 means use record inference

            level = 2 means record inference with free the extra memory


        graph_opt_level: network optimization level:

            0: disable

            1: level-1: inplace arith transformations during graph construction

            2: level-2: level-1, plus global optimization before graph compiling

            3: also enable JIT

        async_exec_level: level of dispatch on separate threads for different comp_node.

            0: do not perform async dispatch

            1: dispatch async if there are more than one comp node with limited queue

            mask 0b10: async if there are multiple comp nodes with

            mask 0b100: always async

    Examples:
        .. code-block::

            from megenginelite import *
            options = LiteOptions()
            options.weight_preprocess = true
            options.record_level = 1
            options.fuse_preprocess = true
90 91 92 93 94 95 96 97 98 99
    """

    _fields_ = [
        ("weight_preprocess", c_int),
        ("fuse_preprocess", c_int),
        ("fake_next_exec", c_int),
        ("var_sanity_check_first_run", c_int),
        ("const_shape", c_int),
        ("force_dynamic_alloc", c_int),
        ("force_output_dynamic_alloc", c_int),
100
        ("force_output_use_user_specified_memory", c_int),
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
        ("no_profiling_on_shape_change", c_int),
        ("jit_level", c_int),
        ("comp_node_seq_record_level", c_int),
        ("graph_opt_level", c_int),
        ("async_exec_level", c_int),
        # layout transform options
        ("enable_nchw44", c_int),
        ("enable_nchw44_dot", c_int),
        ("enable_nchw88", c_int),
        ("enable_nhwcd4", c_int),
        ("enable_nchw4", c_int),
        ("enable_nchw32", c_int),
        ("enable_nchw64", c_int),
    ]

    def __init__(self):
117

118 119 120 121 122 123 124
        self.weight_preprocess = False
        self.fuse_preprocess = False
        self.fake_next_exec = False
        self.var_sanity_check_first_run = True
        self.const_shape = False
        self.force_dynamic_alloc = False
        self.force_output_dynamic_alloc = False
125
        self.force_output_use_user_specified_memory = False
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
        self.no_profiling_on_shape_change = False
        self.jit_level = 0
        self.comp_node_seq_record_level = 0
        self.graph_opt_level = 2
        self.async_exec_level = 1

    def __repr__(self):
        data = {
            "weight_preprocess": bool(self.weight_preprocess),
            "fuse_preprocess": bool(self.fuse_preprocess),
            "fake_next_exec": bool(self.fake_next_exec),
            "var_sanity_check_first_run": bool(self.var_sanity_check_first_run),
            "const_shape": bool(self.const_shape),
            "force_dynamic_alloc": bool(self.force_dynamic_alloc),
            "force_output_dynamic_alloc": bool(self.force_output_dynamic_alloc),
141 142 143
            "force_output_use_user_specified_memory": bool(
                self.force_output_use_user_specified_memory
            ),
144 145 146 147 148 149 150 151 152 153 154
            "no_profiling_on_shape_change": bool(self.no_profiling_on_shape_change),
            "jit_level": self.jit_level,
            "comp_node_seq_record_level": self.comp_node_seq_record_level,
            "graph_opt_level": self.graph_opt_level,
            "async_exec_level": self.async_exec_level,
        }
        return data.__repr__()


class LiteConfig(Structure):
    """
155 156 157 158 159
    Configuration when load and compile a network

    Attributes:
        has_compression: flag whether the model is compressed, the compress
            method is stored in the model
160

161
        device_id: configure the device id of a network
162

163
        device_type: configure the device type of a network
164

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
        backend: configure the inference backend of a network, now only support
            megengine

        bare_model_cryption_name: is the bare model encryption method name, bare
            model is not packed with json information, this encryption method name is
            useful to decrypt the encrypted bare model

        options: configuration of Options

    Examples:
        .. code-block::

            from megenginelite import *
            config = LiteConfig()
            config.has_compression = false
            config.device_type = LiteDeviceType.LITE_CPU
            config.backend = LiteBackend.LITE_DEFAULT
            config.bare_model_cryption_name = "AES_default".encode("utf-8")
183 184 185 186 187 188 189
    """

    _fields_ = [
        ("has_compression", c_int),
        ("device_id", c_int),
        ("device_type", c_int),
        ("backend", c_int),
190
        ("_bare_model_cryption_name", c_char_p),
191 192 193 194 195 196 197 198 199 200
        ("options", LiteOptions),
    ]

    def __init__(self, device_type=LiteDeviceType.LITE_CPU, option=None):
        self.device_type = device_type
        if option:
            self.options = option
        else:
            self.options = LiteOptions()

201
        self._bare_model_cryption_name = c_char_p(b"")
202 203 204 205
        self.use_loader_dynamic_param = 0
        self.has_compression = 0
        self.backend = LiteBackend.LITE_DEFAULT

206 207 208 209 210 211 212 213 214 215 216 217
    @property
    def bare_model_cryption_name(self):
        return self._bare_model_cryption_name.decode("utf-8")

    @bare_model_cryption_name.setter
    def bare_model_cryption_name(self, name):
        if isinstance(name, str):
            self._bare_model_cryption_name = name.encode("utf-8")
        else:
            assert isinstance(name, bytes), "name should be str or bytes type."
            self._bare_model_cryption_name = name

218 219 220 221 222 223
    def __repr__(self):
        data = {
            "has_compression": bool(self.has_compression),
            "device_id": LiteDeviceType(self.device_id),
            "device_type": LiteDeviceType(self.device_type),
            "backend": LiteBackend(self.backend),
224
            "bare_model_cryption_name": self.bare_model_cryption_name,
225 226 227 228 229
            "options": self.options,
        }
        return data.__repr__()


230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
class LiteExtraConfig(Structure):
    """
    Extra configuration when load and compile the graph

    disable_configure_by_model_info: disable the configuration dumped with
    model, if set true, all configuration in the model will not apply, users
    should configure the network.
    """

    _fields_ = [
        ("disable_configure_by_model_info", c_int),
    ]

    def __init__(self, disable_model_config=False):
        self.disable_configure_by_model_info = disable_model_config

    def __repr__(self):
        data = {
            "disable_configure_by_model_info": bool(
                self.disable_configure_by_model_info
            ),
        }
        return data.__repr__()


255 256
class LiteIO(Structure):
    """
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
    config the network input and output item, the input and output tensor
    information will describe there

    Attributes:
        name: the tensor name in the graph corresponding to the IO
            is_host: Used to mark where the input tensor comes from and where the output
            tensor will copy to, if is_host is true, the input is from host and output copy
            to host, otherwise in device. Sometimes the input is from device and output no need
            copy to host, default is true.

        io_type: The IO type, it can be SHAPE or VALUE, when SHAPE is set, the input or
            output tensor value is invaid, only shape will be set, default is VALUE

        config_layout: The layout of the config from user, if other layout is set before
            forward or get after forward, this layout will by pass. if no other
            layout is set before forward, this layout will work. if this layout is
            no set, the model will forward with its origin layout. if in output, it
            will used to check.

    Note:
        if other layout is set to input tensor before forwarding, this layout will not work
278

279
        if no layout is set before forwarding, the model will forward with its origin layout
280

281
        if layout is set in output tensor, it will used to check whether the layout computed from the network is correct
282

283 284 285 286 287 288 289 290 291 292
    Examples:
        .. code-block::

            from megenginelite import *
            io = LiteIO(
                "data2",
                is_host=True,
                io_type=LiteIOType.LITE_IO_SHAPE,
                layout=LiteLayout([2, 4, 4]),
            )
293 294 295 296

    """

    _fields_ = [
297
        ("_name", c_char_p),
298 299 300 301 302 303 304 305 306
        ("is_host", c_int),
        ("io_type", c_int),
        ("config_layout", LiteLayout),
    ]

    def __init__(
        self, name, is_host=True, io_type=LiteIOType.LITE_IO_VALUE, layout=None
    ):
        if type(name) == str:
307
            self._name = c_char_p(name.encode("utf-8"))
308
        else:
309
            self._name = c_char_p(name)
310 311 312 313 314 315 316 317 318

        if layout:
            self.config_layout = layout
        else:
            self.config_layout = LiteLayout()

        self.is_host = is_host
        self.io_type = io_type

319 320
    @property
    def name(self):
321 322 323
        """
        get the name of IO item
        """
324 325 326 327
        return self._name.decode("utf-8")

    @name.setter
    def name(self, name):
328 329 330
        """
        set the name of IO item
        """
331 332 333 334 335 336
        if isinstance(name, str):
            self._name = name.encode("utf-8")
        else:
            assert isinstance(name, bytes), "name should be str or bytes type."
            self._name = name

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
    def __repr__(self):
        data = {
            "name": self.name,
            "is_host": bool(self.is_host),
            "io_type": LiteIOType(self.io_type),
            "config_layout": self.config_layout,
        }
        return data.__repr__()

    def __hash__(self):
        return hash(self.name)


class _LiteNetworkIO(Structure):

    _fields_ = [
        ("inputs", POINTER(LiteIO)),
        ("outputs", POINTER(LiteIO)),
        ("input_size", c_size_t),
        ("output_size", c_size_t),
    ]

    def __init__(self):
        self.inputs = POINTER(LiteIO)()
        self.outputs = POINTER(LiteIO)()
        self.input_size = 0
        self.output_size = 0


class LiteNetworkIO(object):
    """
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
    the input and output information when load the network for user
    the NetworkIO will remain in the network until the network is destroyed.

    Attributes:
        inputs: The all input tensors information that will configure to the network

        outputs: The all output tensors information that will configure to the network

    Examples:
        .. code-block::

            from megenginelite import *
            input_io = LiteIO("data", is_host=False, io_type=LiteIOType.LITE_IO_VALUE)
            io = LiteNetworkIO()
            io.add_input(input_io)
            output_io = LiteIO("out", is_host=True, layout=LiteLayout([1, 1000]))
            io.add_output(output_io)

386 387
    """

388
    def __init__(self, inputs=None, outputs=None):
389 390
        self.inputs = []
        self.outputs = []
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
        if inputs:
            for i in inputs:
                if isinstance(i, list):
                    self.inputs.append(LiteIO(*i))
                else:
                    assert isinstance(
                        i, LiteIO
                    ), "the param to construct LiteNetworkIO must be list of the LiteIO member or the LiteIO."
                    self.inputs.append(i)
        if outputs:
            for i in outputs:
                if isinstance(i, list):
                    self.outputs.append(LiteIO(*i))
                else:
                    assert isinstance(
                        i, LiteIO
                    ), "the param to construct LiteNetworkIO must be list of the LiteIO member or the LiteIO."
                    self.outputs.append(i)

    def add_input(
        self, obj, is_host=True, io_type=LiteIOType.LITE_IO_VALUE, layout=None
    ):
413 414 415
        """
        add input information into LiteNetworkIO
        """
416 417 418 419 420
        if isinstance(obj, LiteIO):
            self.inputs.append(obj)
        else:
            name = obj
            self.add_input(LiteIO(name, is_host, io_type, layout))
421

422 423 424
    def add_output(
        self, obj, is_host=True, io_type=LiteIOType.LITE_IO_VALUE, layout=None
    ):
425 426 427
        """
        add output information into LiteNetworkIO
        """
428 429 430 431 432
        if isinstance(obj, LiteIO):
            self.outputs.append(obj)
        else:
            name = obj
            self.add_output(LiteIO(name, is_host, io_type, layout))
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451

    def _create_network_io(self):
        network_io = _LiteNetworkIO()
        length = 1 if len(self.inputs) == 0 else len(self.inputs)
        self.c_inputs = (LiteIO * length)(*self.inputs)
        length = 1 if len(self.outputs) == 0 else len(self.outputs)
        self.c_outputs = (LiteIO * length)(*self.outputs)
        network_io.inputs = pointer(self.c_inputs[0])
        network_io.outputs = pointer(self.c_outputs[0])
        network_io.input_size = len(self.inputs)
        network_io.output_size = len(self.outputs)
        return network_io

    def __repr__(self):
        data = {"inputs": list(self.inputs), "outputs": list(self.outputs)}
        return data.__repr__()


LiteAsyncCallback = CFUNCTYPE(c_int)
452 453 454 455 456 457 458 459 460 461 462 463
LiteStartCallback = CFUNCTYPE(c_int, POINTER(LiteIO), POINTER(_Ctensor), c_size_t)
LiteFinishCallback = CFUNCTYPE(c_int, POINTER(LiteIO), POINTER(_Ctensor), c_size_t)


def wrap_async_callback(func):
    global wrapper

    @CFUNCTYPE(c_int)
    def wrapper():
        return func()

    return wrapper
464 465 466


def start_finish_callback(func):
467 468
    global wrapper

469 470 471 472 473
    @CFUNCTYPE(c_int, POINTER(LiteIO), POINTER(_Ctensor), c_size_t)
    def wrapper(c_ios, c_tensors, size):
        ios = {}
        for i in range(size):
            tensor = LiteTensor()
474
            tensor._tensor = c_void_p(c_tensors[i])
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
            tensor.update()
            io = c_ios[i]
            ios[io] = tensor
        return func(ios)

    return wrapper


class _NetworkAPI(_LiteCObjBase):
    """
    get the network api from the lib
    """

    _api_ = [
        ("LITE_make_default_network", [POINTER(_Cnetwork)]),
        ("LITE_make_network", [POINTER(_Cnetwork), LiteConfig, _LiteNetworkIO]),
        ("LITE_load_model_from_mem", [_Cnetwork, c_void_p, c_size_t]),
        ("LITE_load_model_from_path", [_Cnetwork, c_char_p]),
        ("LITE_shared_weight_with_network", [_Cnetwork, _Ctensor]),
        ("LITE_destroy_network", [_Cnetwork]),
        ("LITE_forward", [_Cnetwork]),
        ("LITE_wait", [_Cnetwork]),
        ("LITE_get_io_tensor", [_Cnetwork, c_char_p, c_int, POINTER(_Ctensor)]),
        ("LITE_get_input_name", [_Cnetwork, c_size_t, POINTER(c_char_p)]),
        ("LITE_get_output_name", [_Cnetwork, c_size_t, POINTER(c_char_p)]),
        ("LITE_get_all_input_name", [_Cnetwork, POINTER(c_size_t), POINTER(c_char_p)]),
        ("LITE_get_all_output_name", [_Cnetwork, POINTER(c_size_t), POINTER(c_char_p)]),
        ("LITE_is_cpu_inplace_mode", [_Cnetwork, POINTER(c_int)]),
        ("LITE_get_cpu_threads_number", [_Cnetwork, POINTER(c_size_t)]),
        ("LITE_get_device_id", [_Cnetwork, POINTER(c_int)]),
        ("LITE_set_device_id", [_Cnetwork, c_int]),
        ("LITE_set_cpu_inplace_mode", [_Cnetwork]),
        ("LITE_use_tensorrt", [_Cnetwork]),
        ("LITE_set_cpu_threads_number", [_Cnetwork, c_size_t]),
        ("LITE_set_stream_id", [_Cnetwork, c_int]),
        ("LITE_get_stream_id", [_Cnetwork, POINTER(c_int)]),
        ("LITE_set_network_algo_policy", [_Cnetwork, c_int]),
        ("LITE_set_network_algo_fastrun_config", [_Cnetwork, c_int, c_int]),
        ("LITE_set_network_algo_workspace_limit", [_Cnetwork, c_size_t]),
        ("LITE_share_runtime_memroy", [_Cnetwork, _Cnetwork]),
        ("LITE_enable_profile_performance", [_Cnetwork, c_char_p]),
        ("LITE_enable_io_txt_dump", [_Cnetwork, c_char_p]),
        ("LITE_enable_io_bin_dump", [_Cnetwork, c_char_p]),
        ("LITE_set_async_callback", [_Cnetwork, LiteAsyncCallback]),
519 520
        ("LITE_set_start_callback", [_Cnetwork, LiteStartCallback]),
        ("LITE_set_finish_callback", [_Cnetwork, LiteFinishCallback]),
521
        ("LITE_get_static_memory_alloc_info", [_Cnetwork, c_char_p]),
522 523
        ("LITE_enable_global_layout_transform", [_Cnetwork]),
        ("LITE_dump_layout_transform_model", [_Cnetwork, c_char_p]),
524 525 526 527 528 529 530 531
        (
            "LITE_get_model_io_info_by_path",
            [c_char_p, LiteConfig, POINTER(_LiteNetworkIO)],
        ),
        (
            "LITE_get_model_io_info_by_memory",
            [c_char_p, c_size_t, LiteConfig, POINTER(_LiteNetworkIO)],
        ),
532
        ("LITE_extra_configure", [_Cnetwork, LiteExtraConfig]),
533 534 535 536 537 538
    ]


class LiteNetwork(object):
    """
    the network to load a model and forward
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559

    Examples:

        .. code-block::

            from megenginelite import *
            config = LiteConfig()
            config.device_type = LiteDeviceType.LITE_CPU
            network = LiteNetwork(config)
            network.load("model_path")

            input_name = network.get_input_name(0)
            input_tensor = network.get_io_tensor(input_name)
            output_name = network.get_output_name(0)
            output_tensor = network.get_io_tensor(output_name)

            input_tensor.set_data_by_copy(input_data)

            network.forward()
            network.wait()

560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
    """

    _api = _NetworkAPI()._lib

    def __init__(self, config=None, io=None):
        """
        create a network with config and networkio
        """
        self._network = _Cnetwork()

        if config:
            self.config = config
        else:
            self.config = LiteConfig()

        if io:
            self.network_io = io
        else:
            self.network_io = LiteNetworkIO()

        c_network_io = self.network_io._create_network_io()
        self._api.LITE_make_network(byref(self._network), self.config, c_network_io)

    def __repr__(self):
        data = {"config": self.config, "IOs": self.network_io}
        return data.__repr__()

    def __del__(self):
        self._api.LITE_destroy_network(self._network)

    def load(self, path):
591 592 593
        """
        load network from given path
        """
594 595 596 597
        c_path = c_char_p(path.encode("utf-8"))
        self._api.LITE_load_model_from_path(self._network, c_path)

    def forward(self):
598 599 600 601
        """
        forward the network with filled input data and fill the output data
        to the output tensor
        """
602 603 604
        self._api.LITE_forward(self._network)

    def wait(self):
605 606 607
        """
        wait until forward finish in sync model
        """
608 609 610 611 612
        self._api.LITE_wait(self._network)

    def is_cpu_inplace_mode(self):
        """
        whether the network run in cpu inpalce mode
613 614 615 616 617

        Returns:
            if use inpalce mode return True, else return False


618 619 620 621 622 623 624 625 626
        """
        inplace = c_int()
        self._api.LITE_is_cpu_inplace_mode(self._network, byref(inplace))
        return bool(inplace.value)

    def enable_cpu_inplace_mode(self):
        """
        set cpu forward in inplace mode with which cpu forward only create one
        thread
627 628 629 630

        Note:
            this must be set before the network loaded

631 632 633 634 635
        """
        self._api.LITE_set_cpu_inplace_mode(self._network)

    def use_tensorrt(self):
        """
636 637 638 639 640
        use TensorRT

        Note:
            this must be set before the network loaded

641 642 643 644 645 646 647
        """
        self._api.LITE_use_tensorrt(self._network)

    @property
    def device_id(self):
        """
        get the device id
648 649 650

        Returns:
            the device id of current network used
651 652 653 654 655 656 657 658 659
        """
        device_id = c_int()
        self._api.LITE_get_device_id(self._network, byref(device_id))
        return device_id.value

    @device_id.setter
    def device_id(self, device_id):
        """
        set the device id
660 661 662 663

        Note:
            this must be set before the network loaded

664 665 666 667 668 669 670
        """
        self._api.LITE_set_device_id(self._network, device_id)

    @property
    def stream_id(self):
        """
        get the stream id
671 672 673

        Returns:
            the value of stream id set for detwork
674 675 676 677 678 679 680 681 682
        """
        stream_id = c_int()
        self._api.LITE_get_stream_id(self._network, byref(stream_id))
        return stream_id.value

    @stream_id.setter
    def stream_id(self, stream_id):
        """
        set the stream id
683 684 685

        Note:
            this must be set before the network loaded
686 687 688 689 690 691 692
        """
        self._api.LITE_set_stream_id(self._network, stream_id)

    @property
    def threads_number(self):
        """
        get the thread number of the netwrok
693 694 695

        Returns:
            the number of thread set in the network
696 697 698 699 700 701 702 703 704
        """
        nr_thread = c_size_t()
        self._api.LITE_get_cpu_threads_number(self._network, byref(nr_thread))
        return nr_thread.value

    @threads_number.setter
    def threads_number(self, nr_threads):
        """
        set the network forward in multithread mode, and the thread number
705 706 707

        Note:
            this must be set before the network loaded
708 709 710 711 712 713
        """
        self._api.LITE_set_cpu_threads_number(self._network, nr_threads)

    def get_io_tensor(self, name, phase=LiteTensorPhase.LITE_IO):
        """
        get input or output tensor by its name
714 715 716 717 718 719 720

        Args:
            name: the name of io tensor
            phase: the type of LiteTensor, this is useful to separate input or output tensor with the same name

        Returns:
            the tensor with given name and type
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
        """
        if type(name) == str:
            c_name = c_char_p(name.encode("utf-8"))
        else:
            c_name = c_char_p(name)
        tensor = LiteTensor()
        self._api.LITE_get_io_tensor(
            self._network, c_name, phase, byref(tensor._tensor)
        )
        tensor.update()
        return tensor

    def get_input_name(self, index):
        """
        get the input name by the index in the network
736 737 738 739 740 741

        Args:
            index: the index of the input name

        Returns:
            the name of input tesor with given index
742 743 744 745 746 747 748 749
        """
        c_name = c_char_p()
        self._api.LITE_get_input_name(self._network, index, byref(c_name))
        return c_name.value.decode("utf-8")

    def get_output_name(self, index):
        """
        get the output name by the index in the network
750 751 752 753 754 755

        Args:
            index: the index of the output name

        Returns:
            the name of output tesor with given index
756 757 758 759 760 761 762 763
        """
        c_name = c_char_p()
        self._api.LITE_get_output_name(self._network, index, byref(c_name))
        return c_name.value.decode("utf-8")

    def get_all_input_name(self):
        """
        get all the input tensor name in the network
764 765 766

        Returns:
            the names of all input tesor in the network
767 768 769 770 771 772 773 774 775 776 777 778 779
        """
        nr_input = c_size_t()
        self._api.LITE_get_all_input_name(self._network, byref(nr_input), None)

        if nr_input.value > 0:
            names = (c_char_p * nr_input.value)()
            self._api.LITE_get_all_input_name(self._network, None, names)
            ret_name = [names[i].decode("utf-8") for i in range(nr_input.value)]
            return ret_name

    def get_all_output_name(self):
        """
        get all the output tensor name in the network
780 781 782

        Returns:
            the names of all output tesor in the network
783 784 785 786 787 788 789 790 791 792
        """
        nr_output = c_size_t()
        self._api.LITE_get_all_output_name(self._network, byref(nr_output), None)

        if nr_output.value > 0:
            names = (c_char_p * nr_output.value)()
            self._api.LITE_get_all_output_name(self._network, None, names)
            ret_name = [names[i].decode("utf-8") for i in range(nr_output.value)]
            return ret_name

793 794 795 796 797 798
    def extra_configure(self, extra_config):
        """
        Extra Configuration to the network.
        """
        self._api.LITE_extra_configure(self._network, extra_config)

799 800 801
    def share_weights_with(self, src_network):
        """
        share weights with the loaded network
802 803 804

        Args:
            src_network: the network to share weights
805 806 807 808 809 810 811
        """
        assert isinstance(src_network, LiteNetwork)
        self._api.LITE_shared_weight_with_network(self._network, src_network._network)

    def share_runtime_memroy(self, src_network):
        """
        share runtime memory with the srouce network
812 813 814

        Args:
            src_network: the network to share runtime memory
815 816 817 818 819
        """
        assert isinstance(src_network, LiteNetwork)
        self._api.LITE_share_runtime_memroy(self._network, src_network._network)

    def async_with_callback(self, async_callback):
820 821 822 823 824 825 826
        """
        set the network forwarding in async mode and set the AsyncCallback callback
        function

        Args:
            async_callback: the callback to set for network
        """
827 828
        callback = wrap_async_callback(async_callback)
        self._api.LITE_set_async_callback(self._network, callback)
829 830 831 832 833 834

    def set_start_callback(self, start_callback):
        """
        when the network start forward, the callback will be called,
        the start_callback with param mapping from LiteIO to the corresponding
        LiteTensor
835 836 837

        Args:
            start_callback: the callback to set for network
838
        """
839 840
        callback = start_finish_callback(start_callback)
        self._api.LITE_set_start_callback(self._network, callback)
841 842 843 844 845 846

    def set_finish_callback(self, finish_callback):
        """
        when the network finish forward, the callback will be called,
        the finish_callback with param mapping from LiteIO to the corresponding
        LiteTensor
847 848 849

        Args:
            finish_callback: the callback to set for network
850
        """
851 852
        callback = start_finish_callback(finish_callback)
        self._api.LITE_set_finish_callback(self._network, callback)
853 854

    def enable_profile_performance(self, profile_file):
855 856 857 858 859 860
        """
        enable get the network performance profiled information and save into given file

        Args:
            profile_file: the file to save profile information
        """
861 862 863 864
        c_file = profile_file.encode("utf-8")
        self._api.LITE_enable_profile_performance(self._network, c_file)

    def set_network_algo_workspace_limit(self, size_limit):
865 866 867 868 869 870 871 872
        """
        set the opr workspace limitation in the target network, some opr
        maybe use large of workspace to get good performance, set workspace limitation
        can save memory but may influence the performance

        Args:
            size_limit: the byte size of workspace limitation
        """
873 874 875 876 877 878
        self._api.LITE_set_network_algo_workspace_limit(self._network, size_limit)

    def set_network_algo_policy(
        self, policy, shared_batch_size=0, binary_equal_between_batch=False
    ):
        """
879 880 881 882 883 884 885 886 887 888 889
        set the network algorithm search policy for fast-run

        Args:
            shared_batch_size: the batch size used by fastrun,
                Non-zero value means that fastrun use this batch size
                regardless of the batch size of the model. Zero means
                fastrun use batch size of the model

            binary_equal_between_batch: if the content of each input batch is
                binary equal,whether the content of each output batch is
                promised to be equal
890 891 892 893 894 895 896 897

        """
        self._api.LITE_set_network_algo_policy(self._network, policy)
        self._api.LITE_set_network_algo_fastrun_config(
            self._network, shared_batch_size, binary_equal_between_batch
        )

    def io_txt_dump(self, txt_file):
898 899 900 901 902 903 904
        """
        dump all input/output tensor of all operators to the output file, in txt
        format, user can use this function to debug compute error

        Args:
            txt_file: the txt file
        """
905 906 907 908
        c_file = txt_file.encode("utf-8")
        self._api.LITE_enable_io_txt_dump(self._network, c_file)

    def io_bin_dump(self, bin_dir):
909 910 911 912 913 914 915
        """
        dump all input/output tensor of all operators to the output file, in
        binary format, user can use this function to debug compute error

        Args:
            bin_dir: the binary file directory
        """
916 917
        c_dir = bin_dir.encode("utf-8")
        self._api.LITE_enable_io_bin_dump(self._network, c_dir)
918 919

    def get_static_memory_alloc_info(self, log_dir="logs/test"):
920 921 922 923 924 925
        """
        get static peak memory info showed by Graph visualization

        Args:
            log_dir: the directory to save information log
        """
926 927
        c_log_dir = log_dir.encode("utf-8")
        self._api.LITE_get_static_memory_alloc_info(self._network, c_log_dir)
928 929

    def enable_global_layout_transform(self):
930 931 932 933 934 935
        """
        set global layout transform optimization for network, global
        layout optimization can auto determine the layout of every operator in
        the network by profile, thus it can improve the performance of the
        network forwarding
        """
936 937 938
        self._api.LITE_enable_global_layout_transform(self._network)

    def dump_layout_transform_model(self, model_file):
939 940 941 942 943 944 945
        """
        dump network after global layout transform optimization to the
        specific path

        Args:
            model_file: the file path to dump model
        """
946 947
        c_file = model_file.encode("utf-8")
        self._api.LITE_dump_layout_transform_model(self._network, c_file)
948 949 950 951


def get_model_io_info(model_path, config=None):
    """
952 953 954 955 956 957 958 959
    get the model io information before model loaded by model path.

    Args:
        model_path: the model path to get the model IO information
        config the model configuration

    Returns:
        the input and output information in the network configuration
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
    """
    api = _NetworkAPI()._lib
    c_path = c_char_p(model_path.encode("utf-8"))

    ios = _LiteNetworkIO()

    if config is not None:
        api.LITE_get_model_io_info_by_path(c_path, config, byref(ios))
    else:
        config = LiteConfig()
        api.LITE_get_model_io_info_by_path(c_path, config, byref(ios))

    ret_ios = LiteNetworkIO()
    for i in range(ios.input_size):
        ret_ios.add_input(ios.inputs[i])
    for i in range(ios.output_size):
        ret_ios.add_output(ios.outputs[i])
    return ret_ios