network.py 21.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# -*- coding: utf-8 -*-

from ctypes import *

import numpy as np

from .base import _Cnetwork, _Ctensor, _lib, _LiteCObjBase
from .struct import *
from .tensor import *


class LiteOptions(Structure):
    """
    the inference options will be used to config a network
    """

    _fields_ = [
        ("weight_preprocess", c_int),
        ("fuse_preprocess", c_int),
        ("fake_next_exec", c_int),
        ("var_sanity_check_first_run", c_int),
        ("const_shape", c_int),
        ("force_dynamic_alloc", c_int),
        ("force_output_dynamic_alloc", c_int),
25
        ("force_output_use_user_specified_memory", c_int),
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
        ("no_profiling_on_shape_change", c_int),
        ("jit_level", c_int),
        ("comp_node_seq_record_level", c_int),
        ("graph_opt_level", c_int),
        ("async_exec_level", c_int),
        # layout transform options
        ("enable_nchw44", c_int),
        ("enable_nchw44_dot", c_int),
        ("enable_nchw88", c_int),
        ("enable_nhwcd4", c_int),
        ("enable_nchw4", c_int),
        ("enable_nchw32", c_int),
        ("enable_nchw64", c_int),
    ]

    def __init__(self):
        self.weight_preprocess = False
        self.fuse_preprocess = False
        self.fake_next_exec = False
        self.var_sanity_check_first_run = True
        self.const_shape = False
        self.force_dynamic_alloc = False
        self.force_output_dynamic_alloc = False
49
        self.force_output_use_user_specified_memory = False
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
        self.no_profiling_on_shape_change = False
        self.jit_level = 0
        self.comp_node_seq_record_level = 0
        self.graph_opt_level = 2
        self.async_exec_level = 1

    def __repr__(self):
        data = {
            "weight_preprocess": bool(self.weight_preprocess),
            "fuse_preprocess": bool(self.fuse_preprocess),
            "fake_next_exec": bool(self.fake_next_exec),
            "var_sanity_check_first_run": bool(self.var_sanity_check_first_run),
            "const_shape": bool(self.const_shape),
            "force_dynamic_alloc": bool(self.force_dynamic_alloc),
            "force_output_dynamic_alloc": bool(self.force_output_dynamic_alloc),
65 66 67
            "force_output_use_user_specified_memory": bool(
                self.force_output_use_user_specified_memory
            ),
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
            "no_profiling_on_shape_change": bool(self.no_profiling_on_shape_change),
            "jit_level": self.jit_level,
            "comp_node_seq_record_level": self.comp_node_seq_record_level,
            "graph_opt_level": self.graph_opt_level,
            "async_exec_level": self.async_exec_level,
        }
        return data.__repr__()


class LiteConfig(Structure):
    """
    Configuration when load and compile the graph

    bare_model_cryption_name: is the bare model cryption method name, bare
    model is not pack model info inside

    use_loader_dynamic_param: when model forward with device loader of npu,
    use_loader_dynamic_param used to flag whether the loader use device input or
    output, if use device input or output it will set Non-zero , else set zero

    has_compression: flag whether the model is compressed, the compress
    method will used to read the model
    """

    _fields_ = [
        ("has_compression", c_int),
        ("device_id", c_int),
        ("device_type", c_int),
        ("backend", c_int),
97
        ("_bare_model_cryption_name", c_char_p),
98 99 100 101 102 103 104 105 106 107
        ("options", LiteOptions),
    ]

    def __init__(self, device_type=LiteDeviceType.LITE_CPU, option=None):
        self.device_type = device_type
        if option:
            self.options = option
        else:
            self.options = LiteOptions()

108
        self._bare_model_cryption_name = c_char_p(b"")
109 110 111 112
        self.use_loader_dynamic_param = 0
        self.has_compression = 0
        self.backend = LiteBackend.LITE_DEFAULT

113 114 115 116 117 118 119 120 121 122 123 124
    @property
    def bare_model_cryption_name(self):
        return self._bare_model_cryption_name.decode("utf-8")

    @bare_model_cryption_name.setter
    def bare_model_cryption_name(self, name):
        if isinstance(name, str):
            self._bare_model_cryption_name = name.encode("utf-8")
        else:
            assert isinstance(name, bytes), "name should be str or bytes type."
            self._bare_model_cryption_name = name

125 126 127 128 129 130
    def __repr__(self):
        data = {
            "has_compression": bool(self.has_compression),
            "device_id": LiteDeviceType(self.device_id),
            "device_type": LiteDeviceType(self.device_type),
            "backend": LiteBackend(self.backend),
131
            "bare_model_cryption_name": self.bare_model_cryption_name,
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
            "options": self.options,
        }
        return data.__repr__()


class LiteIO(Structure):
    """
    config the network input and output item

    name: the tensor name in the graph corresponding to the IO

    is_host: Used to mark where the input tensor comes from and the output where copy
    to, if is_host is true, the input is from host and output copy to host,
    otherwise device. Sometimes The input is from device and output no need
    copy to host, default is true.

    io_type: The IO type, it can be SHAPE or VALUE, when SHAPE is set, the input or
    output tensor value is invaid, only shape will be set, default is VALUE

    config_layout: The layout of the config from user, if other layout is set before
    forward or get after forward, this layout will by pass. if no other
    layout is set before forward, this layout will work. if this layout is
    no set, the model will forward with its origin layout. if in output, it
    will used to check.
    """

    _fields_ = [
159
        ("_name", c_char_p),
160 161 162 163 164 165 166 167 168
        ("is_host", c_int),
        ("io_type", c_int),
        ("config_layout", LiteLayout),
    ]

    def __init__(
        self, name, is_host=True, io_type=LiteIOType.LITE_IO_VALUE, layout=None
    ):
        if type(name) == str:
169
            self._name = c_char_p(name.encode("utf-8"))
170
        else:
171
            self._name = c_char_p(name)
172 173 174 175 176 177 178 179 180

        if layout:
            self.config_layout = layout
        else:
            self.config_layout = LiteLayout()

        self.is_host = is_host
        self.io_type = io_type

181 182 183 184 185 186 187 188 189 190 191 192
    @property
    def name(self):
        return self._name.decode("utf-8")

    @name.setter
    def name(self, name):
        if isinstance(name, str):
            self._name = name.encode("utf-8")
        else:
            assert isinstance(name, bytes), "name should be str or bytes type."
            self._name = name

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
    def __repr__(self):
        data = {
            "name": self.name,
            "is_host": bool(self.is_host),
            "io_type": LiteIOType(self.io_type),
            "config_layout": self.config_layout,
        }
        return data.__repr__()

    def __hash__(self):
        return hash(self.name)


class _LiteNetworkIO(Structure):
    """
    the input and output information when load the network
    """

    _fields_ = [
        ("inputs", POINTER(LiteIO)),
        ("outputs", POINTER(LiteIO)),
        ("input_size", c_size_t),
        ("output_size", c_size_t),
    ]

    def __init__(self):
        self.inputs = POINTER(LiteIO)()
        self.outputs = POINTER(LiteIO)()
        self.input_size = 0
        self.output_size = 0


class LiteNetworkIO(object):
    """
    the input and output information for user to construct _LiteNetWorkIO
    """

230
    def __init__(self, inputs=None, outputs=None):
231 232
        self.inputs = []
        self.outputs = []
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
        if inputs:
            for i in inputs:
                if isinstance(i, list):
                    self.inputs.append(LiteIO(*i))
                else:
                    assert isinstance(
                        i, LiteIO
                    ), "the param to construct LiteNetworkIO must be list of the LiteIO member or the LiteIO."
                    self.inputs.append(i)
        if outputs:
            for i in outputs:
                if isinstance(i, list):
                    self.outputs.append(LiteIO(*i))
                else:
                    assert isinstance(
                        i, LiteIO
                    ), "the param to construct LiteNetworkIO must be list of the LiteIO member or the LiteIO."
                    self.outputs.append(i)

    def add_input(
        self, obj, is_host=True, io_type=LiteIOType.LITE_IO_VALUE, layout=None
    ):
        if isinstance(obj, LiteIO):
            self.inputs.append(obj)
        else:
            name = obj
            self.add_input(LiteIO(name, is_host, io_type, layout))
260

261 262 263 264 265 266 267 268
    def add_output(
        self, obj, is_host=True, io_type=LiteIOType.LITE_IO_VALUE, layout=None
    ):
        if isinstance(obj, LiteIO):
            self.outputs.append(obj)
        else:
            name = obj
            self.add_output(LiteIO(name, is_host, io_type, layout))
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287

    def _create_network_io(self):
        network_io = _LiteNetworkIO()
        length = 1 if len(self.inputs) == 0 else len(self.inputs)
        self.c_inputs = (LiteIO * length)(*self.inputs)
        length = 1 if len(self.outputs) == 0 else len(self.outputs)
        self.c_outputs = (LiteIO * length)(*self.outputs)
        network_io.inputs = pointer(self.c_inputs[0])
        network_io.outputs = pointer(self.c_outputs[0])
        network_io.input_size = len(self.inputs)
        network_io.output_size = len(self.outputs)
        return network_io

    def __repr__(self):
        data = {"inputs": list(self.inputs), "outputs": list(self.outputs)}
        return data.__repr__()


LiteAsyncCallback = CFUNCTYPE(c_int)
288 289 290 291 292 293 294 295 296 297 298 299
LiteStartCallback = CFUNCTYPE(c_int, POINTER(LiteIO), POINTER(_Ctensor), c_size_t)
LiteFinishCallback = CFUNCTYPE(c_int, POINTER(LiteIO), POINTER(_Ctensor), c_size_t)


def wrap_async_callback(func):
    global wrapper

    @CFUNCTYPE(c_int)
    def wrapper():
        return func()

    return wrapper
300 301 302


def start_finish_callback(func):
303 304
    global wrapper

305 306 307 308 309
    @CFUNCTYPE(c_int, POINTER(LiteIO), POINTER(_Ctensor), c_size_t)
    def wrapper(c_ios, c_tensors, size):
        ios = {}
        for i in range(size):
            tensor = LiteTensor()
310
            tensor._tensor = c_void_p(c_tensors[i])
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
            tensor.update()
            io = c_ios[i]
            ios[io] = tensor
        return func(ios)

    return wrapper


class _NetworkAPI(_LiteCObjBase):
    """
    get the network api from the lib
    """

    _api_ = [
        ("LITE_make_default_network", [POINTER(_Cnetwork)]),
        ("LITE_make_network", [POINTER(_Cnetwork), LiteConfig, _LiteNetworkIO]),
        ("LITE_load_model_from_mem", [_Cnetwork, c_void_p, c_size_t]),
        ("LITE_load_model_from_path", [_Cnetwork, c_char_p]),
        ("LITE_shared_weight_with_network", [_Cnetwork, _Ctensor]),
        ("LITE_destroy_network", [_Cnetwork]),
        ("LITE_forward", [_Cnetwork]),
        ("LITE_wait", [_Cnetwork]),
        ("LITE_get_io_tensor", [_Cnetwork, c_char_p, c_int, POINTER(_Ctensor)]),
        ("LITE_get_input_name", [_Cnetwork, c_size_t, POINTER(c_char_p)]),
        ("LITE_get_output_name", [_Cnetwork, c_size_t, POINTER(c_char_p)]),
        ("LITE_get_all_input_name", [_Cnetwork, POINTER(c_size_t), POINTER(c_char_p)]),
        ("LITE_get_all_output_name", [_Cnetwork, POINTER(c_size_t), POINTER(c_char_p)]),
        ("LITE_is_cpu_inplace_mode", [_Cnetwork, POINTER(c_int)]),
        ("LITE_get_cpu_threads_number", [_Cnetwork, POINTER(c_size_t)]),
        ("LITE_get_device_id", [_Cnetwork, POINTER(c_int)]),
        ("LITE_set_device_id", [_Cnetwork, c_int]),
        ("LITE_set_cpu_inplace_mode", [_Cnetwork]),
        ("LITE_use_tensorrt", [_Cnetwork]),
        ("LITE_set_cpu_threads_number", [_Cnetwork, c_size_t]),
        ("LITE_set_stream_id", [_Cnetwork, c_int]),
        ("LITE_get_stream_id", [_Cnetwork, POINTER(c_int)]),
        ("LITE_set_network_algo_policy", [_Cnetwork, c_int]),
        ("LITE_set_network_algo_fastrun_config", [_Cnetwork, c_int, c_int]),
        ("LITE_set_network_algo_workspace_limit", [_Cnetwork, c_size_t]),
        ("LITE_share_runtime_memroy", [_Cnetwork, _Cnetwork]),
        ("LITE_enable_profile_performance", [_Cnetwork, c_char_p]),
        ("LITE_enable_io_txt_dump", [_Cnetwork, c_char_p]),
        ("LITE_enable_io_bin_dump", [_Cnetwork, c_char_p]),
        ("LITE_set_async_callback", [_Cnetwork, LiteAsyncCallback]),
355 356
        ("LITE_set_start_callback", [_Cnetwork, LiteStartCallback]),
        ("LITE_set_finish_callback", [_Cnetwork, LiteFinishCallback]),
357
        ("LITE_get_static_memory_alloc_info", [_Cnetwork, c_char_p]),
358 359
        ("LITE_enable_global_layout_transform", [_Cnetwork]),
        ("LITE_dump_layout_transform_model", [_Cnetwork, c_char_p]),
360 361 362 363 364 365 366 367
        (
            "LITE_get_model_io_info_by_path",
            [c_char_p, LiteConfig, POINTER(_LiteNetworkIO)],
        ),
        (
            "LITE_get_model_io_info_by_memory",
            [c_char_p, c_size_t, LiteConfig, POINTER(_LiteNetworkIO)],
        ),
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
    ]


class LiteNetwork(object):
    """
    the network to load a model and forward
    """

    _api = _NetworkAPI()._lib

    def __init__(self, config=None, io=None):
        """
        create a network with config and networkio
        """
        self._network = _Cnetwork()

        if config:
            self.config = config
        else:
            self.config = LiteConfig()

        if io:
            self.network_io = io
        else:
            self.network_io = LiteNetworkIO()

        c_network_io = self.network_io._create_network_io()
        self._api.LITE_make_network(byref(self._network), self.config, c_network_io)

    def __repr__(self):
        data = {"config": self.config, "IOs": self.network_io}
        return data.__repr__()

    def __del__(self):
        self._api.LITE_destroy_network(self._network)

    def load(self, path):
        c_path = c_char_p(path.encode("utf-8"))
        self._api.LITE_load_model_from_path(self._network, c_path)

    def forward(self):
        self._api.LITE_forward(self._network)

    def wait(self):
        self._api.LITE_wait(self._network)

    def is_cpu_inplace_mode(self):
        """
        whether the network run in cpu inpalce mode
        """
        inplace = c_int()
        self._api.LITE_is_cpu_inplace_mode(self._network, byref(inplace))
        return bool(inplace.value)

    def enable_cpu_inplace_mode(self):
        """
        set cpu forward in inplace mode with which cpu forward only create one
        thread
        Note: this must be set before the network loaded
        """
        self._api.LITE_set_cpu_inplace_mode(self._network)

    def use_tensorrt(self):
        """
        Note: this must be set before the network loaded
        """
        self._api.LITE_use_tensorrt(self._network)

    @property
    def device_id(self):
        """
        get the device id
        """
        device_id = c_int()
        self._api.LITE_get_device_id(self._network, byref(device_id))
        return device_id.value

    @device_id.setter
    def device_id(self, device_id):
        """
        set the device id
        Note: this must be set before the network loaded
        """
        self._api.LITE_set_device_id(self._network, device_id)

    @property
    def stream_id(self):
        """
        get the stream id
        """
        stream_id = c_int()
        self._api.LITE_get_stream_id(self._network, byref(stream_id))
        return stream_id.value

    @stream_id.setter
    def stream_id(self, stream_id):
        """
        set the stream id
        Note: this must be set before the network loaded
        """
        self._api.LITE_set_stream_id(self._network, stream_id)

    @property
    def threads_number(self):
        """
        get the thread number of the netwrok
        """
        nr_thread = c_size_t()
        self._api.LITE_get_cpu_threads_number(self._network, byref(nr_thread))
        return nr_thread.value

    @threads_number.setter
    def threads_number(self, nr_threads):
        """
        set the network forward in multithread mode, and the thread number
        Note: this must be set before the network loaded
        """
        self._api.LITE_set_cpu_threads_number(self._network, nr_threads)

    def get_io_tensor(self, name, phase=LiteTensorPhase.LITE_IO):
        """
        get input or output tensor by its name
        """
        if type(name) == str:
            c_name = c_char_p(name.encode("utf-8"))
        else:
            c_name = c_char_p(name)
        tensor = LiteTensor()
        self._api.LITE_get_io_tensor(
            self._network, c_name, phase, byref(tensor._tensor)
        )
        tensor.update()
        return tensor

    def get_input_name(self, index):
        """
        get the input name by the index in the network
        """
        c_name = c_char_p()
        self._api.LITE_get_input_name(self._network, index, byref(c_name))
        return c_name.value.decode("utf-8")

    def get_output_name(self, index):
        """
        get the output name by the index in the network
        """
        c_name = c_char_p()
        self._api.LITE_get_output_name(self._network, index, byref(c_name))
        return c_name.value.decode("utf-8")

    def get_all_input_name(self):
        """
        get all the input tensor name in the network
        """
        nr_input = c_size_t()
        self._api.LITE_get_all_input_name(self._network, byref(nr_input), None)

        if nr_input.value > 0:
            names = (c_char_p * nr_input.value)()
            self._api.LITE_get_all_input_name(self._network, None, names)
            ret_name = [names[i].decode("utf-8") for i in range(nr_input.value)]
            return ret_name

    def get_all_output_name(self):
        """
        get all the output tensor name in the network
        """
        nr_output = c_size_t()
        self._api.LITE_get_all_output_name(self._network, byref(nr_output), None)

        if nr_output.value > 0:
            names = (c_char_p * nr_output.value)()
            self._api.LITE_get_all_output_name(self._network, None, names)
            ret_name = [names[i].decode("utf-8") for i in range(nr_output.value)]
            return ret_name

    def share_weights_with(self, src_network):
        """
        share weights with the loaded network
        """
        assert isinstance(src_network, LiteNetwork)
        self._api.LITE_shared_weight_with_network(self._network, src_network._network)

    def share_runtime_memroy(self, src_network):
        """
        share runtime memory with the srouce network
        """
        assert isinstance(src_network, LiteNetwork)
        self._api.LITE_share_runtime_memroy(self._network, src_network._network)

    def async_with_callback(self, async_callback):
559 560
        callback = wrap_async_callback(async_callback)
        self._api.LITE_set_async_callback(self._network, callback)
561 562 563 564 565 566 567

    def set_start_callback(self, start_callback):
        """
        when the network start forward, the callback will be called,
        the start_callback with param mapping from LiteIO to the corresponding
        LiteTensor
        """
568 569
        callback = start_finish_callback(start_callback)
        self._api.LITE_set_start_callback(self._network, callback)
570 571 572 573 574 575 576

    def set_finish_callback(self, finish_callback):
        """
        when the network finish forward, the callback will be called,
        the finish_callback with param mapping from LiteIO to the corresponding
        LiteTensor
        """
577 578
        callback = start_finish_callback(finish_callback)
        self._api.LITE_set_finish_callback(self._network, callback)
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611

    def enable_profile_performance(self, profile_file):
        c_file = profile_file.encode("utf-8")
        self._api.LITE_enable_profile_performance(self._network, c_file)

    def set_network_algo_workspace_limit(self, size_limit):
        self._api.LITE_set_network_algo_workspace_limit(self._network, size_limit)

    def set_network_algo_policy(
        self, policy, shared_batch_size=0, binary_equal_between_batch=False
    ):
        """
        shared_batch_size: the batch size used by fastrun,
                    Non-zero value means that fastrun use this batch size
                    regardless of the batch size of the model. Zero means
                    fastrun use batch size of the model
        binary_equal_between_batch: if the content of each input batch is
                    binary equal,whether the content of each output batch is
                    promised to be equal

        """
        self._api.LITE_set_network_algo_policy(self._network, policy)
        self._api.LITE_set_network_algo_fastrun_config(
            self._network, shared_batch_size, binary_equal_between_batch
        )

    def io_txt_dump(self, txt_file):
        c_file = txt_file.encode("utf-8")
        self._api.LITE_enable_io_txt_dump(self._network, c_file)

    def io_bin_dump(self, bin_dir):
        c_dir = bin_dir.encode("utf-8")
        self._api.LITE_enable_io_bin_dump(self._network, c_dir)
612 613 614 615

    def get_static_memory_alloc_info(self, log_dir="logs/test"):
        c_log_dir = log_dir.encode("utf-8")
        self._api.LITE_get_static_memory_alloc_info(self._network, c_log_dir)
616 617 618 619 620 621 622

    def enable_global_layout_transform(self):
        self._api.LITE_enable_global_layout_transform(self._network)

    def dump_layout_transform_model(self, model_file):
        c_file = model_file.encode("utf-8")
        self._api.LITE_dump_layout_transform_model(self._network, c_file)
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646


def get_model_io_info(model_path, config=None):
    """
    get the model IO information before create the NetWork, this IO
    information can be used to configuration the NetWork.
    """
    api = _NetworkAPI()._lib
    c_path = c_char_p(model_path.encode("utf-8"))

    ios = _LiteNetworkIO()

    if config is not None:
        api.LITE_get_model_io_info_by_path(c_path, config, byref(ios))
    else:
        config = LiteConfig()
        api.LITE_get_model_io_info_by_path(c_path, config, byref(ios))

    ret_ios = LiteNetworkIO()
    for i in range(ios.input_size):
        ret_ios.add_input(ios.inputs[i])
    for i in range(ios.output_size):
        ret_ios.add_output(ios.outputs[i])
    return ret_ios