tensor_manip.cpp 7.6 KB
Newer Older
1
/**
M
Megvii Engine Team 已提交
2 3
 * \file imperative/src/impl/ops/tensor_manip.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
4
 *
M
Megvii Engine Team 已提交
5
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
6
 *
M
Megvii Engine Team 已提交
7 8 9
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
10 11
 */

12
#include "megbrain/imperative/ops/autogen.h"
13 14 15 16 17 18
#include "megbrain/imperative/ops/opr_attr.h"
#include "megbrain/opr/tensor_manip.h"
#include "../op_trait.h"

namespace mgb::imperative {

19
namespace get_var_shape {
20 21 22
cg::OperatorNodeBase* apply_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
23 24
    auto&& op_def = def.cast_final_safe<GetVarShape>();
    return opr::GetVarShape::make(inputs, op_def.param()).node()->owner_opr();
25 26
}

27
DispatchMode decide_dispatch_mode(
28
        const OpDef& def,
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
        const SmallVector<LogicalTensorDesc>& inputs) {
    bool host_computable = true;
    for (auto&& inp : inputs) {
        // FIXME(czh): remove value chech after proxy graph's
        // apply_on_device_tensornd is supported and output Tensor
        // is made before add_task.
        // then if layout is valid, ptr->layout must be ready
        if (inp.value.empty() || inp.value.layout().ndim == 0) {
            host_computable = false;
            break;
        }
    }
    return host_computable ? DEFAULT_CPU : KERNEL;
}

void apply_on_device_tensornd(
        const OpDef& def,
        const SmallVector<DeviceTensorND>& inputs,
        SmallVector<DeviceTensorND>* outputs) {
48
    auto&& op_def = def.cast_final_safe<GetVarShape>();
49 50
    mgb_assert(inputs.size() == 1, "GetVarShape take 1 input, got %lu", inputs.size());
    auto&& inp = inputs[0];
51
    auto&& shp = inp.layout();
52
    mgb_assert(shp.ndim != 0, "input shape invalid");
53 54 55
    mgb_assert((*outputs)[0].comp_node() == CompNode::default_cpu(),
        "GetVarShape's apply_on_device_tensornd should receive default_cpu outputs.");

56
    HostTensorND hv;
57 58
    if (op_def.axis == opr::GetVarShape::Param::INVALID_AXIS) {
        hv = HostTensorND(CompNode::default_cpu(), {shp.ndim}, dtype::Int32());
59 60 61 62 63
        auto* ptr = hv.ptr<dt_int32>();
        for (size_t i = 0; i < shp.ndim; ++i) {
            ptr[i] = shp.shape[i];
        }
    }else{
64 65 66 67 68
        int32_t axis = op_def.axis;
        if (axis < 0) {
            axis += shp.ndim;
        }
        mgb_assert(axis >= 0 && axis < (int32_t)shp.ndim);
69
        hv = HostTensorND(CompNode::default_cpu(), {1}, dtype::Int32());
70
        auto* ptr = hv.ptr<dt_int32>();
71
        ptr[0] = shp.shape[axis];
72
    }
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    (*outputs)[0] = DeviceTensorND::make_proxy(hv);
}

SmallVector<TensorPtr> apply_on_physical_tensor(
        const OpDef& def,
        const SmallVector<TensorPtr>& inputs) {
    SmallVector<DeviceTensorND> input_tensornds;
    input_tensornds.reserve(inputs.size());
    for (auto&& inp : inputs) {
        input_tensornds.push_back(inp->dev_tensor());
    }
    SmallVector<DeviceTensorND> output_tensornds = {{CompNode::default_cpu(), dtype::Int32()}};

    apply_on_device_tensornd(def, input_tensornds, &output_tensornds);

    // restore to input comp_node
    HostTensorND host_tensornd = HostTensorND::make_proxy(output_tensornds[0])
        .proxy_to_comp_node(inputs[0]->comp_node());
    return {Tensor::make(std::move(host_tensornd))};
92 93
}

94
std::tuple<SmallVector<LogicalTensorDesc>, bool> infer_output_attrs_fallible(
95 96
        const OpDef& def,
        const SmallVector<LogicalTensorDesc>& inputs) {
97
    auto&& op_def = def.cast_final_safe<GetVarShape>();
98 99 100
    mgb_assert(inputs.size() == 1, "GetVarShape take 1 input, got %lu", inputs.size());
    auto&& desc = inputs[0];
    if (!desc.layout.ndim) {
101
        return {{{TensorLayout(dtype::Int32()), desc.comp_node}}, false};
102
    }
103
    DeviceTensorND value;
104
    if (op_def.axis == opr::GetVarShape::Param::INVALID_AXIS) {
105 106 107 108 109 110
        value = DeviceTensorND(CompNode::default_cpu(), {desc.layout.ndim}, dtype::Int32());
        auto* ptr = value.ptr<dt_int32>();
        for (size_t i = 0; i < desc.layout.ndim; ++i) {
            ptr[i] = desc.layout[i];
        }
    }else{
111 112 113 114 115
        int32_t axis = op_def.axis;
        if (axis < 0) {
            axis += desc.layout.ndim;
        }
        mgb_assert(axis >= 0 && axis < (int32_t)desc.layout.ndim);
116 117
        value = DeviceTensorND(CompNode::default_cpu(), {1}, dtype::Int32());
        auto* ptr = value.ptr<dt_int32>();
118
        ptr[0] = desc.layout[axis];
119
    }
120
    return {{{value.layout(), desc.comp_node, std::move(value)}}, true};
121 122 123 124
}

std::shared_ptr<OpDef> make_from_op_node(cg::OperatorNodeBase* node_) {
    auto* node = &node_->cast_final_safe<opr::GetVarShape>();
125
    return GetVarShape::make(node->param());
126 127 128 129
}

OP_TRAIT_REG(GetVarShape, GetVarShape, opr::GetVarShape)
    .make_from_op_node(make_from_op_node)
130
    .decide_dispatch_mode(decide_dispatch_mode)
131 132
    .infer_output_attrs_fallible(infer_output_attrs_fallible)
    .apply_on_var_node(apply_on_var_node)
133
    .apply_on_device_tensornd(apply_on_device_tensornd)
134 135
    .apply_on_physical_tensor(apply_on_physical_tensor)
    .fallback();
136
} // get_var_shape
137

138
namespace param_pack {
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
TensorShapeArray get_shapes(const std::vector<std::vector<size_t>>& shapes) {
    TensorShapeArray ret;
    for (auto&& i:shapes) {
        SmallVector<size_t> shape(i.begin(), i.end());
        TensorShape shp(shape);
        ret.push_back(shp);
    }
    return ret;
}

cg::OperatorNodeBase* param_pack_split_apply_on_var_node(
        const OpDef& def, const VarNodeArray& inputs) {
    auto&& param = def.cast_final_safe<ParamPackSplit>();
    auto&& graph = inputs[0]->owner_graph();

    auto&& shapes = get_shapes(param.shapes);
    cg::OperatorNodeConfig config;
    cg::OperatorNodeBase* opr =
            graph->insert_opr(std::make_unique<mgb::opr::ParamPackSplit>(
                    inputs[0], param.offsets, shapes, config));
    return opr;
}

SmallVector<TensorPtr> param_pack_split_apply_on_physical_tensor(
        const OpDef& def,
        const SmallVector<TensorPtr>& inputs) {
165
    auto&& param = def.cast_final_safe<ParamPackSplit>();
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
    mgb_assert(inputs.size() == 1, "ParamPackSplit take 1 input, got %lu", inputs.size());
    auto&& inp = inputs[0];
    auto&& shp = inp->layout();
    mgb_assert(shp.ndim == 1, "ParamPackSplit input shape invalid, ndim should be 1");
    mgb_assert(param.shapes.size() * 2 == param.offsets.size());
    SmallVector<TensorPtr> ret;
    auto&& shapes = get_shapes(param.shapes);
    size_t dtype_size = inputs[0]->layout().dtype.size();
    for (size_t i = 0; i < shapes.size(); ++i) {
        ret.push_back(
                inputs[0]->sub(param.offsets[i * 2] * dtype_size, shapes[i]));
    }
    return ret;
}

OP_TRAIT_REG(ParamPackSplit, ParamPackSplit, mgb::opr::ParamPackSplit)
        .apply_on_var_node(param_pack_split_apply_on_var_node)
        .apply_on_physical_tensor(param_pack_split_apply_on_physical_tensor)
        .fallback();

cg::OperatorNodeBase* param_pack_concat_apply_on_var_node(
        const OpDef& def, const VarNodeArray& inputs) {
    auto&& param = def.cast_final_safe<ParamPackConcat>();
    auto&& graph = inputs[0]->owner_graph();

    VarNodeArray inps(inputs.begin(), inputs.end() - 1);
    cg::OperatorNodeConfig config;
    cg::OperatorNodeBase* opr =
            graph->insert_opr(std::make_unique<mgb::opr::ParamPackConcat>(
                    inps, inputs.back(), param.offsets, config));
    return opr;
}

OP_TRAIT_REG(ParamPackConcat, ParamPackConcat, mgb::opr::ParamPackConcat)
        .apply_on_var_node(param_pack_concat_apply_on_var_node)
        .fallback();
202
} // param_pack
203 204

} // namespace mgb::imperative