test_correctness.py 5.7 KB
Newer Older
1 2 3 4 5 6 7 8 9
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import os
10 11
import re
import subprocess
12 13 14 15 16 17 18 19
import sys

import numpy as np

import megengine as mge
import megengine.functional as F
from megengine import jit, tensor
from megengine.functional.debug_param import set_conv_execution_strategy
20
from megengine.jit import SublinearMemConfig
21
from megengine.module import AvgPool2d, BatchNorm2d, Conv2d, Linear, Module
22 23 24 25
from megengine.optimizer import SGD
from megengine.test import assertTensorClose


26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
def get_gpu_name():
    try:
        gpu_info = subprocess.check_output(
            ["nvidia-smi", "--query-gpu=gpu_name", "--format=csv,noheader"]
        )
        gpu_info = gpu_info.decode("ascii").split("\n")[0]
    except:
        gpu_info = "None"
    return gpu_info


def get_cpu_name():
    cpu_info = "None"
    try:
        cpu_info = subprocess.check_output(["cat", "/proc/cpuinfo"]).decode("ascii")
        for line in cpu_info.split("\n"):
            if "model name" in line:
                return re.sub(".*model name.*:", "", line, 1).strip()
    except:
        pass
    return cpu_info


def get_xpu_name():
    if mge.is_cuda_available():
        return get_gpu_name()
    else:
        return get_cpu_name()


56 57 58 59
class MnistNet(Module):
    def __init__(self, has_bn=False):
        super().__init__()
        self.conv0 = Conv2d(1, 20, kernel_size=5, bias=True)
60
        self.pool0 = AvgPool2d(2)
61
        self.conv1 = Conv2d(20, 20, kernel_size=5, bias=True)
62
        self.pool1 = AvgPool2d(2)
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
        self.fc0 = Linear(20 * 4 * 4, 500, bias=True)
        self.fc1 = Linear(500, 10, bias=True)
        self.bn0 = None
        self.bn1 = None
        if has_bn:
            self.bn0 = BatchNorm2d(20)
            self.bn1 = BatchNorm2d(20)

    def forward(self, x):
        x = self.conv0(x)
        if self.bn0:
            x = self.bn0(x)
        x = F.relu(x)
        x = self.pool0(x)
        x = self.conv1(x)
        if self.bn1:
            x = self.bn1(x)
        x = F.relu(x)
        x = self.pool1(x)
        x = F.flatten(x, 1)
        x = self.fc0(x)
        x = F.relu(x)
        x = self.fc1(x)
        return x


def train(data, label, net, opt):

    pred = net(data)
    loss = F.cross_entropy_with_softmax(pred, label)
    opt.backward(loss)
    return loss


def update_model(model_path):
    """
99 100 101 102
    Update the dumped model with test cases for new reference values.

    The model with pre-trained weights is trained for one iter with the test data attached.
    The loss and updated net state dict is dumped.
103 104 105 106 107 108 109

    .. code-block:: python

        from test_correctness import update_model
        update_model('mnist_model_with_test.mge') # for gpu
        update_model('mnist_model_with_test_cpu.mge') # for cpu

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    """
    net = MnistNet(has_bn=True)
    checkpoint = mge.load(model_path)
    net.load_state_dict(checkpoint["net_init"])
    lr = checkpoint["sgd_lr"]
    opt = SGD(net.parameters(), lr=lr)

    data = tensor(dtype=np.float32)
    label = tensor(dtype=np.int32)
    data.set_value(checkpoint["data"])
    label.set_value(checkpoint["label"])

    opt.zero_grad()
    loss = train(data, label, net=net, opt=opt)
    opt.step()

126 127 128 129 130
    xpu_name = get_xpu_name()

    checkpoint.update(
        {"net_updated": net.state_dict(), "loss": loss.numpy(), "xpu": xpu_name}
    )
131 132 133
    mge.save(checkpoint, model_path)


134 135 136 137 138 139 140 141
def run_test(
    model_path,
    use_jit,
    use_symbolic,
    enable_sublinear=False,
    sublinear_mem_config=None,
    max_err=None,
):
142 143 144 145

    """
    Load the model with test cases and run the training for one iter.
    The loss and updated weights are compared with reference value to verify the correctness.
146 147 148

    Dump a new file with updated result by calling update_model
    if you think the test fails due to numerical rounding errors instead of bugs.
149 150 151 152 153 154 155 156 157 158 159 160 161 162
    Please think twice before you do so.

    """
    net = MnistNet(has_bn=True)
    checkpoint = mge.load(model_path)
    net.load_state_dict(checkpoint["net_init"])
    lr = checkpoint["sgd_lr"]
    opt = SGD(net.parameters(), lr=lr)

    data = tensor(dtype=np.float32)
    label = tensor(dtype=np.int32)
    data.set_value(checkpoint["data"])
    label.set_value(checkpoint["label"])

163 164
    if max_err is None:
        max_err = 1e-5
165 166 167

    train_func = train
    if use_jit:
168 169 170 171 172 173
        train_func = jit.trace(
            train_func,
            symbolic=use_symbolic,
            enable_sublinear=enable_sublinear,
            sublinear_mem_config=sublinear_mem_config,
        )
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

    opt.zero_grad()
    loss = train_func(data, label, net=net, opt=opt)
    opt.step()

    assertTensorClose(loss.numpy(), checkpoint["loss"], max_err=max_err)

    for param, param_ref in zip(
        net.state_dict().items(), checkpoint["net_updated"].items()
    ):
        assert param[0] == param_ref[0]
        assertTensorClose(param[1], param_ref[1], max_err=max_err)


def test_correctness():

    if mge.is_cuda_available():
        model_name = "mnist_model_with_test.mge"
    else:
        model_name = "mnist_model_with_test_cpu.mge"
    model_path = os.path.join(os.path.dirname(__file__), model_name)
    set_conv_execution_strategy("HEURISTIC_REPRODUCIBLE")

    run_test(model_path, False, False)
    run_test(model_path, True, False)
    run_test(model_path, True, True)
200 201 202 203 204 205 206 207 208 209 210

    # sublinear
    config = SublinearMemConfig(genetic_nr_iter=10)
    run_test(
        model_path,
        True,
        True,
        enable_sublinear=True,
        sublinear_mem_config=config,
        max_err=1e-5,
    )