test_correctness.py 5.2 KB
Newer Older
1 2 3 4 5 6 7 8 9
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import os
10 11
import re
import subprocess
12 13 14 15 16 17 18 19
import sys

import numpy as np

import megengine as mge
import megengine.functional as F
from megengine import jit, tensor
from megengine.functional.debug_param import set_conv_execution_strategy
20
from megengine.module import AvgPool2d, BatchNorm2d, Conv2d, Linear, Module
21 22 23 24
from megengine.optimizer import SGD
from megengine.test import assertTensorClose


25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
def get_gpu_name():
    try:
        gpu_info = subprocess.check_output(
            ["nvidia-smi", "--query-gpu=gpu_name", "--format=csv,noheader"]
        )
        gpu_info = gpu_info.decode("ascii").split("\n")[0]
    except:
        gpu_info = "None"
    return gpu_info


def get_cpu_name():
    cpu_info = "None"
    try:
        cpu_info = subprocess.check_output(["cat", "/proc/cpuinfo"]).decode("ascii")
        for line in cpu_info.split("\n"):
            if "model name" in line:
                return re.sub(".*model name.*:", "", line, 1).strip()
    except:
        pass
    return cpu_info


def get_xpu_name():
    if mge.is_cuda_available():
        return get_gpu_name()
    else:
        return get_cpu_name()


55 56 57 58
class MnistNet(Module):
    def __init__(self, has_bn=False):
        super().__init__()
        self.conv0 = Conv2d(1, 20, kernel_size=5, bias=True)
59
        self.pool0 = AvgPool2d(2)
60
        self.conv1 = Conv2d(20, 20, kernel_size=5, bias=True)
61
        self.pool1 = AvgPool2d(2)
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
        self.fc0 = Linear(20 * 4 * 4, 500, bias=True)
        self.fc1 = Linear(500, 10, bias=True)
        self.bn0 = None
        self.bn1 = None
        if has_bn:
            self.bn0 = BatchNorm2d(20)
            self.bn1 = BatchNorm2d(20)

    def forward(self, x):
        x = self.conv0(x)
        if self.bn0:
            x = self.bn0(x)
        x = F.relu(x)
        x = self.pool0(x)
        x = self.conv1(x)
        if self.bn1:
            x = self.bn1(x)
        x = F.relu(x)
        x = self.pool1(x)
        x = F.flatten(x, 1)
        x = self.fc0(x)
        x = F.relu(x)
        x = self.fc1(x)
        return x


def train(data, label, net, opt):

    pred = net(data)
    loss = F.cross_entropy_with_softmax(pred, label)
    opt.backward(loss)
    return loss


def update_model(model_path):
    """
98 99 100 101
    Update the dumped model with test cases for new reference values.

    The model with pre-trained weights is trained for one iter with the test data attached.
    The loss and updated net state dict is dumped.
102 103 104 105 106 107 108

    .. code-block:: python

        from test_correctness import update_model
        update_model('mnist_model_with_test.mge') # for gpu
        update_model('mnist_model_with_test_cpu.mge') # for cpu

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    """
    net = MnistNet(has_bn=True)
    checkpoint = mge.load(model_path)
    net.load_state_dict(checkpoint["net_init"])
    lr = checkpoint["sgd_lr"]
    opt = SGD(net.parameters(), lr=lr)

    data = tensor(dtype=np.float32)
    label = tensor(dtype=np.int32)
    data.set_value(checkpoint["data"])
    label.set_value(checkpoint["label"])

    opt.zero_grad()
    loss = train(data, label, net=net, opt=opt)
    opt.step()

125 126 127 128 129
    xpu_name = get_xpu_name()

    checkpoint.update(
        {"net_updated": net.state_dict(), "loss": loss.numpy(), "xpu": xpu_name}
    )
130 131 132 133 134 135 136 137
    mge.save(checkpoint, model_path)


def run_test(model_path, use_jit, use_symbolic):

    """
    Load the model with test cases and run the training for one iter.
    The loss and updated weights are compared with reference value to verify the correctness.
138 139 140

    Dump a new file with updated result by calling update_model
    if you think the test fails due to numerical rounding errors instead of bugs.
141 142 143 144 145 146 147 148 149 150 151 152 153 154
    Please think twice before you do so.

    """
    net = MnistNet(has_bn=True)
    checkpoint = mge.load(model_path)
    net.load_state_dict(checkpoint["net_init"])
    lr = checkpoint["sgd_lr"]
    opt = SGD(net.parameters(), lr=lr)

    data = tensor(dtype=np.float32)
    label = tensor(dtype=np.int32)
    data.set_value(checkpoint["data"])
    label.set_value(checkpoint["label"])

155
    max_err = 1e-5
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

    train_func = train
    if use_jit:
        train_func = jit.trace(train_func, symbolic=use_symbolic)

    opt.zero_grad()
    loss = train_func(data, label, net=net, opt=opt)
    opt.step()

    assertTensorClose(loss.numpy(), checkpoint["loss"], max_err=max_err)

    for param, param_ref in zip(
        net.state_dict().items(), checkpoint["net_updated"].items()
    ):
        assert param[0] == param_ref[0]
        assertTensorClose(param[1], param_ref[1], max_err=max_err)


def test_correctness():

    if mge.is_cuda_available():
        model_name = "mnist_model_with_test.mge"
    else:
        model_name = "mnist_model_with_test_cpu.mge"
    model_path = os.path.join(os.path.dirname(__file__), model_name)
    set_conv_execution_strategy("HEURISTIC_REPRODUCIBLE")

    run_test(model_path, False, False)
    run_test(model_path, True, False)
    run_test(model_path, True, True)