test_tracing.py 11.6 KB
Newer Older
1 2 3
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
4
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
5 6 7 8
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
M
Megvii Engine Team 已提交
9
import io
10
from tempfile import mkstemp
M
Megvii Engine Team 已提交
11

M
Megvii Engine Team 已提交
12
import numpy as np
13
import pytest
M
Megvii Engine Team 已提交
14

15
import megengine.core.tensor.megbrain_graph as G
16
import megengine.functional as F
17
import megengine.optimizer as optim
18
import megengine.utils.comp_graph_tools as cgtools
19 20
from megengine import Parameter, tensor
from megengine.autodiff import GradManager
21
from megengine.core._trace_option import set_symbolic_shape
M
Megvii Engine Team 已提交
22
from megengine.core.ops import builtin as ops
23
from megengine.core.ops.builtin import Elemwise
24
from megengine.core.tensor.utils import isscalar
25
from megengine.functional import exp, log
M
Megvii Engine Team 已提交
26
from megengine.jit import exclude_from_trace, trace
27
from megengine.module import Module
28
from megengine.random import normal, uniform
M
Megvii Engine Team 已提交
29 30 31 32 33 34 35


def test_trace():
    for symbolic in [False, True]:

        @trace(symbolic=symbolic)
        def f(x):
36
            return -x
M
Megvii Engine Team 已提交
37

38 39
        x = tensor([1])
        y = f(x).numpy()
M
Megvii Engine Team 已提交
40 41

        for i in range(3):
42
            np.testing.assert_equal(f(x).numpy(), y)
M
Megvii Engine Team 已提交
43 44


45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
def test_output_copy_trace():
    class Simple(Module):
        def __init__(self):
            super().__init__()
            self.a = Parameter([1.0], dtype=np.float32)

        def forward(self, x):
            x = x * self.a
            # will result into a copy of output in grad
            x = F.exp(x)
            return x

    net = Simple()

    gm = GradManager().attach(net.parameters())
    opt = optim.SGD(net.parameters(), 1e-3, momentum=0.9)
    data = tensor(np.arange(4).reshape(2, 2), dtype="float32")

    @trace(symbolic=False)
    def train_f1(d):
        with gm:
            loss = net(d)
            gm.backward(loss)
            opt.step().clear_grad()
        return loss

    @trace(symbolic=True)
    def train_f2(d):
        with gm:
            loss = net(d)
            gm.backward(loss)
            opt.step().clear_grad()
        return loss

        for i in range(2):
            y1 = train_f1(data).numpy()
            y2 = train_f2(data).numpy()
            np.testing.assert_equal(y1, y2)


M
Megvii Engine Team 已提交
85
def test_exclude_from_trace():
86
    for symbolic in [False, True]:
M
Megvii Engine Team 已提交
87 88 89

        @trace(symbolic=symbolic)
        def f(x):
90
            x = -x
M
Megvii Engine Team 已提交
91 92
            with exclude_from_trace():
                if i % 2:
93 94
                    x = -x
            x = -x
M
Megvii Engine Team 已提交
95 96
            return x

97
        x = tensor([1])
M
Megvii Engine Team 已提交
98 99

        for i in range(3):
100 101
            y = f(x).numpy()
            np.testing.assert_equal(f(x).numpy(), y)
M
Megvii Engine Team 已提交
102 103 104 105 106 107 108 109


def test_print_in_trace():
    for symbolic in [False]:  # cannot read value in symbolic mode

        @trace(symbolic=symbolic)
        def f(x):
            nonlocal buf
110
            x = -x
M
Megvii Engine Team 已提交
111
            buf = x.numpy()
112
            x = -x
M
Megvii Engine Team 已提交
113 114 115
            return x

        buf = None
116
        x = tensor([1])
M
Megvii Engine Team 已提交
117 118

        for i in range(3):
119
            y = f(x).numpy()
M
Megvii Engine Team 已提交
120 121
            z = buf
            buf = None
122
            np.testing.assert_equal(f(x).numpy(), y)
M
Megvii Engine Team 已提交
123
            np.testing.assert_equal(z, buf)
M
Megvii Engine Team 已提交
124 125 126


def test_dump():
127 128
    @trace(symbolic=True, capture_as_const=True)
    def f(a, b):
129
        return a + b
130

131 132 133
    a = tensor([2])
    b = tensor([4])
    y = f(a, b).numpy()
134 135

    for i in range(3):
136
        np.testing.assert_equal(f(a, b).numpy(), y)
137 138

    file = io.BytesIO()
139 140
    dump_info = f.dump(file)
    assert dump_info.nr_opr == 3
141 142
    np.testing.assert_equal(dump_info.inputs, ["arg_0", "arg_1"])
    np.testing.assert_equal(dump_info.outputs, ["ADD(arg_0,arg_1)[4]"])
143
    file.seek(0)
144 145
    infer_cg = cgtools.GraphInference(file)
    result = list((infer_cg.run(a, b)).values())[0]
146 147 148 149
    np.testing.assert_equal(result[0], y)


def test_capture_dump():
150
    a = tensor([2])
151 152 153

    @trace(symbolic=True, capture_as_const=True)
    def f(x):
154
        return x * a
155

156 157
    x = tensor([3])
    y = f(x).numpy()
158 159

    for i in range(3):
160
        np.testing.assert_equal(f(x).numpy(), y)
161 162 163 164

    file = io.BytesIO()
    f.dump(file)
    file.seek(0)
165 166
    infer_cg = cgtools.GraphInference(file)
    result = list((infer_cg.run(x)).values())[0]
167 168 169 170
    np.testing.assert_equal(result[0], y)


def test_dump_volatile():
171
    p = tensor([2])
172

M
Megvii Engine Team 已提交
173 174
    @trace(symbolic=True, capture_as_const=True)
    def f(x):
175
        return x * p
M
Megvii Engine Team 已提交
176

177 178
    x = tensor([3])
    y = f(x).numpy()
M
Megvii Engine Team 已提交
179 180

    for i in range(3):
181
        np.testing.assert_equal(f(x).numpy(), y)
M
Megvii Engine Team 已提交
182 183

    file = io.BytesIO()
184
    f.dump(file, optimize_for_inference=False)
185
    file.seek(0)
186
    cg, _, outputs = G.load_graph(file)
187 188 189
    (out,) = outputs
    assert (
        cgtools.get_owner_opr_type(cgtools.get_owner_opr_inputs(out)[1])
190
        == "ImmutableTensor"
191
    )
192 193 194 195 196 197 198


def test_trace_profiler():
    for symbolic in [False, True]:

        @trace(symbolic=symbolic, profiling=True)
        def f(x):
199
            return -x
200

201 202
        x = tensor([1])
        y = f(x).numpy()
203

204 205
        f(x)
        f(x)  # XXX: has to run twice
206 207 208

        out = f.get_profile()
        assert out.get("profiler")
209 210


211
@pytest.mark.skip(reason="force opt_level=0 when building graph")
212
def test_goptions():
213 214
    @trace(symbolic=True, opt_level=0, capture_as_const=True)
    def f(x):
215 216 217 218
        # directly return x / x will not trigger gopt
        # since there's no way to tell the two x are the same
        y = 2.0 * x
        return y / y
219 220 221

    @trace(symbolic=True, opt_level=1, capture_as_const=True)
    def g(x):
222 223
        y = 2.0 * x
        return y / y
224

225 226 227
    d = tensor(0.0)
    assert not np.isfinite(f(d).numpy())
    np.testing.assert_equal(g(d).numpy().item(), 1.0)
228 229


230
@pytest.mark.skip(reason="force opt_level=0 when building graph")
231 232 233 234 235 236 237 238 239
def test_goptions_log_sum_exp():
    @trace(symbolic=True, opt_level=0, capture_as_const=True)
    def f(x, y):
        return log(exp(x) + exp(y))

    @trace(symbolic=True, opt_level=1, capture_as_const=True)
    def g(x, y):
        return log(exp(x) + exp(y))

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
    val = 1.0e4
    d = tensor(val)
    o = tensor(0.0)
    assert not np.isfinite(f(d, o).numpy())
    np.testing.assert_almost_equal(g(d, o), val)


def test_goptions_log_exp():
    @trace(symbolic=True, opt_level=0, capture_as_const=True)
    def f(x):
        return log(exp(x))

    @trace(symbolic=True, opt_level=1, capture_as_const=True)
    def g(x):
        return log(exp(x))

    f(tensor(1.0))
257
    _, out = mkstemp()
258 259
    f.dump(out, optimize_for_inference=False)
    *_, outputs = G.load_graph(out)
260 261
    oprs_1 = cgtools.get_oprs_seq(outputs)

262
    g(tensor(1.0))
263 264
    g.dump(out, optimize_for_inference=False)
    *_, outputs = G.load_graph(out)
265 266 267 268 269 270 271 272 273 274 275 276
    oprs_2 = cgtools.get_oprs_seq(outputs)

    assert len(oprs_1) - len(oprs_2) == 2


def test_optimize_for_inference():
    @trace(symbolic=True, capture_as_const=True)
    def f(x):
        return exp(x)

    _, out = mkstemp()
    f(tensor(5.0))
277
    f.dump(out, enable_io16xc32=True)
278

279
    res = G.load_graph(out)
280 281
    computing_input = res.output_vars_list[0].owner.inputs[0]
    assert computing_input.dtype == np.float16
282 283


284 285 286
def test_optimize_for_inference_broadcast():
    a = tensor(np.ones(1, dtype=np.float32))

287
    @trace(capture_as_const=True, symbolic_shape=True)
288
    def f():
289
        return a._broadcast(tensor([1, 10], dtype=np.int32))
290 291 292 293 294

    f()
    f.dump(io.BytesIO())


295 296 297 298 299
def test_trace_cvt_bool():
    x = tensor([0], dtype=np.int32)

    @trace(symbolic=True)
    def f(x):
300 301 302 303
        a = x.shape
        b = a[0]
        assert isscalar(b)
        return b == 0
304 305

    for i in range(3):
306
        np.testing.assert_equal(f(x).numpy(), False)
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322


def test_trace_reshape():
    for symbolic in [False, True]:
        x1 = tensor(np.random.randn(2, 10, 10))
        x2 = tensor(np.random.randn(4, 10, 10))
        x3 = tensor(np.random.randn(8, 10, 10))

        @trace(symbolic=symbolic, capture_as_const=True)
        def f(x):
            y = x.reshape(x.shape[0], 100)
            return y

        f(x1)
        f(x2)
        f(x3)
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355


def test_trace_topk():
    x = tensor([5, 2, 7, 1, 0, 3, 2])

    @trace(symbolic=True)
    def f(x):
        y = F.topk(x, 3)
        np.testing.assert_equal(y[0].shape.numpy(), np.array([3,]))
        return y

    for i in range(3):
        f(x)


def test_trace_warp_perspective():
    inp_shape = (1, 1, 4, 4)
    x = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape))
    M_shape = (1, 3, 3)
    M = tensor(
        np.array(
            [[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]], dtype=np.float32
        ).reshape(M_shape)
    )

    @trace(symbolic=True)
    def f(x, M):
        out = F.warp_perspective(x, M, (2, 2))
        np.testing.assert_equal(out.shape.numpy(), np.array([1, 1, 2, 2]))
        return out

    for i in range(1):
        f(x, M)
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387


def test_raise_on_trace():
    step_count = 0
    catch_count = 0
    bad_step = 10

    class CatchMe(Exception):
        pass

    a = tensor([1, 2, 3, 4])
    b = tensor([5, 6, 7, 8])
    c = tensor([9, 0, 1, 2])

    @trace
    def add_abc(a, b, c):
        ps = a + b
        result = ps + c
        if step_count == bad_step:
            raise CatchMe("catch me")
        return result

    for i in range(100):
        try:
            d = add_abc(a, b, c)
        except CatchMe as e:
            catch_count += 1
        else:
            np.testing.assert_equal(d.numpy(), (a + b + c).numpy())
        step_count += 1

    assert catch_count == 1
388 389 390 391 392 393 394 395 396 397


def test_trace_broadcast():
    for symbolic in [False, True]:
        x1 = tensor(np.random.randn(3, 1, 1))
        x2 = tensor(np.random.randn(1, 4, 1))
        x3 = tensor(np.random.randn(1, 1, 5))

        @trace(symbolic=symbolic, capture_as_const=True)
        def f(x):
398
            y = F.broadcast_to(x, (3, 4, 5))
399 400 401 402 403
            return y

        f(x1)
        f(x2)
        f(x3)
404 405 406 407 408 409 410 411 412 413 414 415 416 417


def test_trace_nms():
    def make_inputs(n):
        boxes = np.zeros((n, 4))
        boxes[:, :2] = np.random.rand(n, 2) * 100
        boxes[:, 2:] = np.random.rand(n, 2) * 100 + 100

        scores = np.random.rand(n)

        return tensor(boxes), tensor(scores)

    @trace(symbolic=False)
    def f(boxes, scores):
418
        # with tracing, max_output must be specified
419
        results = F.nn.nms(boxes, scores=scores, iou_thresh=0.5, max_output=20)
420
        # without tracing, max output can be inferred inside nms
421 422 423 424 425 426 427
        with exclude_from_trace():
            _ = F.nn.nms(boxes, scores=scores, iou_thresh=0.5)
        return results

    f(*make_inputs(10))
    f(*make_inputs(20))
    f(*make_inputs(30))
428 429 430 431 432 433 434 435 436 437 438 439 440 441


def test_trace_valid_broadcast():
    x1 = tensor(np.random.randn(1, 1))
    x2 = tensor(np.random.randn(1, 2))
    shape = (tensor([2]), tensor([2]))

    @trace(symbolic=False)
    def f(x, shape):
        y = F.broadcast_to(x, shape)
        return y

    f(x1, shape)
    f(x2, shape)
442 443 444 445 446 447 448 449 450 451 452 453


def test_clip():
    x = tensor(np.random.randn(10, 10))

    @trace(symbolic=True)
    def f(x, lower, upper):
        y = F.clip(x, lower, upper)
        return y

    for i in range(3):
        f(x, tensor([0]), tensor([1]))
454 455 456 457 458 459 460 461 462 463 464 465 466


# test returning noncontiguous tensor from trace
def test_slice():
    @trace
    def f(x):
        return x[:, 1::2]

    x = F.arange(8).reshape(2, 4)
    f(x)
    y = f(x)
    np.testing.assert_array_equal(y.numpy(), x.numpy()[:, 1::2])
    y + y
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486


def test_random():
    def run_test(op):
        for symbolic_shape in [True, False]:

            @trace(symbolic=True, symbolic_shape=symbolic_shape)
            def f():
                out = op(size=[10, 10])
                out_shape = out.shape
                assert out_shape is not None
                if not isinstance(out_shape, tuple):
                    assert out.shape.numpy() is not None
                return out

            for _ in range(3):
                f()

    run_test(uniform)
    run_test(normal)