test_module.py 21.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import os
import tempfile
from collections import OrderedDict
from io import BytesIO

import numpy as np
import pytest

import megengine as mge
import megengine.functional as F
M
Megvii Engine Team 已提交
19
from megengine import Parameter, Tensor, tensor
20 21 22
from megengine.module import (
    BatchNorm1d,
    BatchNorm2d,
23
    Conv1d,
24
    Conv2d,
25
    Dropout,
26
    Linear,
27
    MaxPool2d,
28 29
    Module,
    Sequential,
30
    Softmax,
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
)
from megengine.quantization.quantize import quantize, quantize_qat


class MLP(Module):
    def __init__(self):
        super().__init__()
        self.dense0 = Linear(28, 50)
        self.dense1 = Linear(50, 20)

    def forward(self, x):
        x = self.dense0(x)
        x = F.relu(x)
        x = self.dense1(x)
        return x


def has_gpu(num=1):
    try:
        mgb.comp_node("gpu{}".format(num - 1))
    except mgb.MegBrainError:
        return False

    return True


def randomNp(*args):
    for arg in args:
        assert isinstance(arg, int)
    return np.random.random(args)


def randomTorch(*args):
    import torch  # pylint: disable=import-outside-toplevel

    for arg in args:
        assert isinstance(arg, int)
    return torch.tensor(randomNp(*args), dtype=torch.float32)


def graph_mode(*modes):
    if not set(modes).issubset({"eager", "static"}):
        raise ValueError("graph mode must be in (eager, static)")

    def decorator(func):
        def wrapper(*args, **kwargs):
            if "eager" in set(modes):
                func(*args, **kwargs)
            if "static" in set(modes):
                with Graph() as cg:
                    cg.set_option("eager_evaluation", False)
                    func(*args, **kwargs)

        return wrapper

    return decorator


def _default_compare_fn(x, y):
90
    np.testing.assert_allclose(x.numpy(), y, rtol=1e-6)
91 92 93 94 95 96 97 98 99 100 101 102 103 104


def opr_test(
    cases,
    func,
    mode=("eager", "static", "dynamic_shape"),
    compare_fn=_default_compare_fn,
    ref_fn=None,
    **kwargs
):
    """
    mode: the list of test mode which are eager, static and dynamic_shape
          will test all the cases if None.
    func: the function to run opr.
105
    compare_fn: the function to compare the result and expected, use np.testing.assert_allclose if None.
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
    ref_fn: the function to generate expected data, should assign output if None.
    cases: the list which have dict element, the list length should be 2 for dynamic shape test.
           and the dict should have input,
           and should have output if ref_fn is None.
           should use list for multiple inputs and outputs for each case.
    kwargs: The additional kwargs for opr func.

    simple examples:

        dtype = np.float32
        cases = [{"input": [10, 20]}, {"input": [20, 30]}]
        opr_test(cases,
                 F.eye,
                 ref_fn=lambda n, m: np.eye(n, m).astype(dtype),
                 dtype=dtype)

    """

    def check_results(results, expected):
        if not isinstance(results, Tuple):
            results = (results,)
        for r, e in zip(results, expected):
            compare_fn(r, e)

    def get_trace_fn(func, enabled, symbolic):
        jit.trace.enabled = enabled
        return jit.trace(func, symbolic=symbolic)

    def get_param(cases, idx):
        case = cases[idx]
        inp = case.get("input", None)
        outp = case.get("output", None)
        if inp is None:
            raise ValueError("the test case should have input")
        if not isinstance(inp, List):
            inp = (inp,)
        else:
            inp = tuple(inp)
        if ref_fn is not None and callable(ref_fn):
            outp = ref_fn(*inp)
        if outp is None:
            raise ValueError("the test case should have output or reference function")
        if not isinstance(outp, List):
            outp = (outp,)
        else:
            outp = tuple(outp)

        return inp, outp

    if not set(mode).issubset({"eager", "static", "dynamic_shape"}):
        raise ValueError("opr test mode must be in (eager, static, dynamic_shape)")

    if len(cases) == 0:
        raise ValueError("should give one case at least")

    if "dynamic_shape" in set(mode):
        if len(cases) != 2:
            raise ValueError("should give 2 cases for dynamic shape test")

    if not callable(func):
        raise ValueError("the input func should be callable")

    inp, outp = get_param(cases, 0)

    def run(*args, **kwargs):
        return func(*args, **kwargs)

    if "eager" in set(mode):
        f = get_trace_fn(run, False, False)
        results = f(*inp, **kwargs)
        check_results(results, outp)

    if "static" in set(mode) or "dynamic_shape" in set(mode):
        f = get_trace_fn(run, True, True)
        results = f(*inp, **kwargs)
        check_results(results, outp)
        if "dynamic_shape" in set(mode):
            inp, outp = get_param(cases, 1)
            results = f(*inp, **kwargs)
            check_results(results, outp)


class MyModule(Module):
    class InnerModule(Module):
        def __init__(self):
            super().__init__()
            self.bn = BatchNorm2d(4)

        def forward(self, x):
            return self.bn(x)

    def __init__(self):
        super().__init__()
        self.i = self.InnerModule()
        self.bn = BatchNorm2d(4)
        self.param = Parameter(np.ones(1, dtype=np.float32))
M
Megvii Engine Team 已提交
202
        self.buff = Tensor(np.ones(1, dtype=np.float32))
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330

    def forward(self, x):
        x = self.i(x)
        x = self.bn(x)
        return x


def test_module_api():
    m = MyModule()
    assert list(m.children()) == [m.bn, m.i]
    assert list(m.named_children()) == [("bn", m.bn), ("i", m.i)]
    assert list(m.modules()) == [m, m.bn, m.i, m.i.bn]
    assert list(m.named_modules()) == [
        ("", m),
        ("bn", m.bn),
        ("i", m.i),
        ("i.bn", m.i.bn),
    ]
    assert list(m.named_modules(prefix="x")) == [
        ("x", m),
        ("x.bn", m.bn),
        ("x.i", m.i),
        ("x.i.bn", m.i.bn),
    ]
    assert list(m.buffers()) == [
        m.bn.running_mean,
        m.bn.running_var,
        m.buff,
        m.i.bn.running_mean,
        m.i.bn.running_var,
    ]
    assert list(m.buffers(recursive=False)) == [m.buff]
    assert list(m.named_buffers()) == [
        ("bn.running_mean", m.bn.running_mean),
        ("bn.running_var", m.bn.running_var),
        ("buff", m.buff),
        ("i.bn.running_mean", m.i.bn.running_mean),
        ("i.bn.running_var", m.i.bn.running_var),
    ]
    assert list(m.parameters()) == [
        m.bn.bias,
        m.bn.weight,
        m.i.bn.bias,
        m.i.bn.weight,
        m.param,
    ]
    assert list(m.named_parameters()) == [
        ("bn.bias", m.bn.bias),
        ("bn.weight", m.bn.weight),
        ("i.bn.bias", m.i.bn.bias),
        ("i.bn.weight", m.i.bn.weight),
        ("param", m.param),
    ]
    m.eval()
    assert (
        m.training == False
        and m.bn.training == False
        and m.i.training == False
        and m.i.bn.training == False
    )
    m.bn.train()
    assert m.training == False and m.bn.training == True and m.i.bn.training == False
    m.eval()
    m.i.train()
    assert (
        m.training == False
        and m.bn.training == False
        and m.i.training == True
        and m.i.bn.training == True
    )
    m.eval()
    m.train()
    assert m.training == True and m.bn.training == True and m.i.bn.training == True

    def fn(m):
        m.training = False

    m.apply(fn)
    assert m.bn.training == False and m.i.bn.training == False


def test_module_api_reuse_submodule():
    m = MyModule()
    m.h = m.i  # pylint: disable=attribute-defined-outside-init
    assert list(m.modules()) == [m, m.bn, m.i, m.i.bn]
    assert list(m.named_modules()) == [
        ("", m),
        ("bn", m.bn),
        ("h", m.i),
        ("h.bn", m.i.bn),
    ]


def test_module_api_iterable_stability():
    m = MyModule()
    l = list(m.modules())
    for _ in range(100):
        assert list(m.modules()) == l


def test_module_api_hooks():
    net = MyModule()
    pre_hook_num = 0
    post_hook_num = 0
    hooks = []

    def pre_hook(module, inputs):
        nonlocal pre_hook_num
        pre_hook_num += 1
        modified_inputs = tuple(inp + 1 for inp in inputs)
        return modified_inputs

    def post_hook(module, inputs, outputs):
        nonlocal post_hook_num
        post_hook_num += 1
        outputs += 1
        return outputs

    net.apply(lambda module: hooks.append(module.register_forward_pre_hook(pre_hook)))
    net.apply(lambda module: hooks.append(module.register_forward_hook(post_hook)))

    shape = (1, 4, 1, 1)
    x = tensor(np.zeros(shape, dtype=np.float32))
    y = net(x)

    assert pre_hook_num == 4
    assert post_hook_num == 4
    mean1 = Parameter(np.zeros(shape), dtype=np.float32)
331
    bn1 = F.batch_norm(
332 333
        x + 3, mean1, Parameter(np.ones(shape), dtype=np.float32), training=True
    )
334
    np.testing.assert_allclose(
335 336 337
        net.i.bn.running_mean.numpy(), mean1.numpy(),
    )
    mean2 = Parameter(np.zeros(shape), dtype=np.float32)
338
    bn2 = F.batch_norm(
339 340
        bn1 + 3, mean2, Parameter(np.ones(shape), dtype=np.float32), training=True
    )
341
    np.testing.assert_allclose(
342 343
        net.bn.running_mean.numpy(), mean2.numpy(),
    )
344
    np.testing.assert_allclose((bn2 + 2).numpy(), y.numpy())
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462

    assert len(hooks) == 8
    for handler in hooks:
        handler.remove()
    y = net(x)
    assert pre_hook_num == 4
    assert post_hook_num == 4


class MyModule2(Module):
    class InnerModule(Module):
        def __init__(self):
            super().__init__()
            self.bn = BatchNorm2d(4)
            self.test_bool_key = {True: 1, False: 0}

        def forward(self, x):
            x = self.bn(x)

    def __init__(self):
        super().__init__()
        self.bn = BatchNorm2d(4)
        self.a = [
            BatchNorm2d(4),
            {"x": BatchNorm2d(4), "y": [BatchNorm2d(4), self.InnerModule()], "z": 0},
            (self.InnerModule(),),
        ]

    def forward(self, x):
        return x


def test_expand_structure():
    m = MyModule2()
    assert list(m.named_modules()) == [
        ("", m),
        ("a.0", m.a[0]),
        ("a.1.x", m.a[1]["x"]),
        ("a.1.y.0", m.a[1]["y"][0]),
        ("a.1.y.1", m.a[1]["y"][1]),
        ("a.1.y.1.bn", m.a[1]["y"][1].bn),
        ("a.2.0", m.a[2][0]),
        ("a.2.0.bn", m.a[2][0].bn),
        ("bn", m.bn),
    ]


def test_flatten_others():
    def be_others(obj):
        return not isinstance(obj, (Tensor, Module))

    m = MyModule2()
    assert len(list(m._flatten(with_key=True, predicate=be_others))) == 0


def test_flatten_with_parent():
    m = MyModule2()
    assert list(m.named_modules(with_parent=True)) == [
        ("", m, None),
        ("a.0", m.a[0], m),
        ("a.1.x", m.a[1]["x"], m),
        ("a.1.y.0", m.a[1]["y"][0], m),
        ("a.1.y.1", m.a[1]["y"][1], m),
        ("a.1.y.1.bn", m.a[1]["y"][1].bn, m.a[1]["y"][1]),
        ("a.2.0", m.a[2][0], m),
        ("a.2.0.bn", m.a[2][0].bn, m.a[2][0]),
        ("bn", m.bn, m),
    ]
    assert list(m.modules(with_parent=True)) == [
        (m, None),
        (m.a[0], m),
        (m.a[1]["x"], m),
        (m.a[1]["y"][0], m),
        (m.a[1]["y"][1], m),
        (m.a[1]["y"][1].bn, m.a[1]["y"][1]),
        (m.a[2][0], m),
        (m.a[2][0].bn, m.a[2][0]),
        (m.bn, m),
    ]


class MyModule3(Module):
    class InnerModule(Module):
        def __init__(self):
            super().__init__()
            self.bn = BatchNorm2d(4)

        def forward(self, x):
            x = self.bn(x)

    def __init__(self):
        super().__init__()
        self.bn = BatchNorm2d(4)
        self.seq = Sequential(BatchNorm2d(4), self.InnerModule(),)

    def forward(self, x):
        return x


def test_module_api_with_sequential():
    m = MyModule3()
    assert list(m.named_modules()) == [
        ("", m),
        ("bn", m.bn),
        ("seq", m.seq),
        ("seq.0", m.seq[0]),
        ("seq.1", m.seq[1]),
        ("seq.1.bn", m.seq[1].bn),
    ]


def test_sequential_named_children():
    modules = OrderedDict()
    modules["name0"] = Linear(20, 10)
    modules["name1"] = Linear(10, 5)
    modules["name2"] = Linear(5, 1)
    m = Sequential(modules)
    l = list(m.named_children())
463 464 465
    assert l[0][0] == "name0"
    assert l[1][0] == "name1"
    assert l[2][0] == "name2"
466 467 468 469


def test_state_dict():
    data_shape = (2, 28)
M
Megvii Engine Team 已提交
470
    data = tensor(np.random.random(data_shape))
471 472 473 474 475 476 477 478 479 480 481
    mlp = MLP()
    pred0 = mlp(data)

    with BytesIO() as fout:
        mge.save(mlp.state_dict(), fout)
        fout.seek(0)
        state_dict = mge.load(fout)
        state_dict["extra"] = None
        mlp1 = MLP()
        mlp1.load_state_dict(state_dict, strict=False)
        pred1 = mlp1(data)
482
        np.testing.assert_allclose(pred0.numpy(), pred1.numpy(), atol=5e-6)
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
        with pytest.raises(KeyError):
            mlp1.load_state_dict(state_dict)
        del state_dict["extra"]
        del state_dict["dense0.bias"]
        with pytest.raises(KeyError):
            mlp1.load_state_dict(state_dict)


class AssertModule(Module):
    def __init__(self):
        super().__init__()
        self.error_tensor_key = {True: tensor([]), False: 0}

    def forward(self, x):
        return x


def test_assert_message():
    m = AssertModule()
    with pytest.raises(
        AssertionError, match="keys for Tensor and Module must be str, error key: True"
    ):
        list(m._flatten())


class Simple(Module):
    def __init__(self):
        super().__init__()
        self.conv0 = Conv2d(1, 1, kernel_size=3, bias=False)
        self.conv1 = Conv2d(1, 1, kernel_size=3, bias=False)
        self.conv1.weight = self.conv0.weight

    def forward(self, inputs):
        pass


def test_shared_param():
    net = Simple()
    assert net.conv0.weight is net.conv1.weight
    data = tensor(np.random.random((1, 1, 8, 8)).astype(np.float32))
523
    np.testing.assert_allclose(net.conv0(data).numpy(), net.conv1(data).numpy())
524 525 526 527 528
    with BytesIO() as f:
        mge.save(net, f)
        f.seek(0)
        net1 = mge.load(f)
    assert net1.conv0.weight is net1.conv1.weight
529
    np.testing.assert_allclose(net1.conv0(data).numpy(), net1.conv1(data).numpy())
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566

    with BytesIO() as f:
        mge.save(net.conv0, f)
        f.seek(0)
        conv0 = mge.load(f)

    with BytesIO() as f:
        mge.save(net.conv1, f)
        f.seek(0)
        conv1 = mge.load(f)

    assert conv0.weight is not conv1.weight
    np.testing.assert_allclose(conv0(data).numpy(), conv1(data).numpy())


class Simple2(Module):
    def __init__(self):
        super().__init__()
        self.conv1 = Conv1d(1, 1, kernel_size=3, bias=False)
        self.conv0 = Conv1d(1, 1, kernel_size=3, bias=False)
        self.conv1.weight = self.conv0.weight

    def forward(self, inputs):
        pass


def test_shared_param_1d():
    net = Simple2()
    assert net.conv0.weight is net.conv1.weight
    data = tensor(np.random.random((1, 1, 8)).astype(np.float32))
    np.testing.assert_allclose(net.conv0(data).numpy(), net.conv1(data).numpy())
    with BytesIO() as f:
        mge.save(net, f)
        f.seek(0)
        net1 = mge.load(f)
    assert net1.conv0.weight is net1.conv1.weight
    np.testing.assert_allclose(net1.conv0(data).numpy(), net1.conv1(data).numpy())
567 568 569 570 571 572 573 574 575 576 577 578

    with BytesIO() as f:
        mge.save(net.conv0, f)
        f.seek(0)
        conv0 = mge.load(f)

    with BytesIO() as f:
        mge.save(net.conv1, f)
        f.seek(0)
        conv1 = mge.load(f)

    assert conv0.weight is not conv1.weight
579
    np.testing.assert_allclose(conv0(data).numpy(), conv1(data).numpy())
580 581 582 583


def test_pickle_module():
    data_shape = (2, 28)
M
Megvii Engine Team 已提交
584
    data = tensor(np.random.random(data_shape))
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
    mlp = MLP()
    # pickle before forward
    with BytesIO() as fout:
        mge.save(mlp, fout)
        fout.seek(0)
        mlp1 = mge.load(fout)
        pred0 = mlp1(data)

    pred1 = mlp(data)

    # pickle after forward
    with BytesIO() as fout:
        mge.save(mlp, fout)
        fout.seek(0)
        mlp1 = mge.load(fout)
        pred2 = mlp1(data)

602 603
    np.testing.assert_allclose(pred0.numpy(), pred1.numpy(), atol=5e-6)
    np.testing.assert_allclose(pred0.numpy(), pred2.numpy(), atol=5e-6)
604 605 606 607 608


@pytest.mark.skip(reason="under development")
def test_dump_model():
    data_shape = (2, 28)
M
Megvii Engine Team 已提交
609
    data = Tensor(np.random.random(data_shape))
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
    mlp = MLP()
    pred = mlp(data)
    f = tempfile.NamedTemporaryFile(delete=False)
    f_name = f.name
    try:
        mge.dump(pred, f_name)
    finally:
        f.close()
        os.unlink(f_name)


def test_load_quantized():
    from megengine.core.tensor import dtype

    data_shape = (2, 28)
    data = tensor(np.random.random(data_shape), dtype="float32")
    data = data.astype(dtype.qint8(0.1))
    mlp = MLP()
    quantize_qat(mlp)
    quantize(mlp)
    mlp.dense0.weight = Parameter(mlp.dense0.weight.astype(dtype.qint8(0.001)).numpy())
    mlp.dense1.weight = Parameter(mlp.dense1.weight.astype(dtype.qint8(0.0002)).numpy())
    mlp.eval()
    pred0 = mlp(data)

    with BytesIO() as fout:
        mge.save(mlp.state_dict(), fout)
        fout.seek(0)
        checkpoint = mge.load(fout)
        # change mlp weight.
        mlp.dense0.weight = Parameter(
            mlp.dense0.weight.astype(dtype.qint8(0.00001)).numpy()
        )
        mlp.dense1.weight = Parameter(
            mlp.dense1.weight.astype(dtype.qint8(0.2)).numpy()
        )
        mlp.load_state_dict(checkpoint)
        pred1 = mlp(data)

649 650
    np.testing.assert_allclose(
        pred0.astype("float32").numpy(), pred1.astype("float32").numpy(), atol=5e-6
651
    )
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759


def test_repr_basic():
    # test whether __repr__ can output correct information
    class ConvModel(Module):
        def __init__(self):
            super().__init__()
            self.conv1 = Conv2d(3, 128, 3, stride=2, bias=False)
            self.conv2 = Conv2d(3, 128, 3, padding=1, bias=False)
            self.conv3 = Conv2d(3, 128, 3, dilation=2, bias=False)
            self.bn1 = BatchNorm2d(128)
            self.bn2 = BatchNorm1d(128)
            self.dropout = Dropout(drop_prob=0.1)
            self.softmax = Softmax(axis=100)
            self.pooling = MaxPool2d(kernel_size=2, padding=0)
            self.submodule1 = Sequential(Dropout(drop_prob=0.1), Softmax(axis=100),)
            self.fc1 = Linear(512, 1024)

        def forward(self, inputs):
            pass

    ground_truth = (
        "ConvModel(\n"
        "  (conv1): Conv2d(3, 128, kernel_size=(3, 3), stride=(2, 2), bias=False)\n"
        "  (conv2): Conv2d(3, 128, kernel_size=(3, 3), padding=(1, 1), bias=False)\n"
        "  (conv3): Conv2d(3, 128, kernel_size=(3, 3), dilation=(2, 2), bias=False)\n"
        "  (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.9, affine=True, track_running_stats=True)\n"
        "  (bn2): BatchNorm1d(128, eps=1e-05, momentum=0.9, affine=True, track_running_stats=True)\n"
        "  (dropout): Dropout(drop_prob=0.1)\n  (softmax): Softmax(axis=100)\n"
        "  (pooling): MaxPool2d(kernel_size=2, stride=2, padding=0)\n"
        "  (submodule1): Sequential(\n"
        "    (0): Dropout(drop_prob=0.1)\n"
        "    (1): Softmax(axis=100)\n  )\n"
        "  (fc1): Linear(in_features=512, out_features=1024, bias=True)\n"
        ")"
    )
    net = ConvModel()
    output = net.__repr__()
    assert output == ground_truth


def test_repr_module_reassign():
    # test whether __repr__ can deal with module reassign
    class ConvModel1(Module):
        def __init__(self):
            super().__init__()
            self.conv1 = Conv2d(3, 128, 3, bias=False)
            self.conv2 = Conv2d(3, 128, 3, padding=1, bias=False)
            self.conv1 = Conv2d(3, 256, 3, dilation=2, bias=False)

        def forward(self, inputs):
            pass

    ground_truth = (
        "ConvModel1(\n"
        "  (conv1): Conv2d(3, 256, kernel_size=(3, 3), dilation=(2, 2), bias=False)\n"
        "  (conv2): Conv2d(3, 128, kernel_size=(3, 3), padding=(1, 1), bias=False)\n"
        ")"
    )
    net = ConvModel1()
    output = net.__repr__()
    assert output == ground_truth


def test_repr_module_rereference():
    # test whether __repr__ can deal with module re-reference
    class ConvModel2(Module):
        def __init__(self):
            super().__init__()
            self.conv1 = Conv2d(3, 128, 3, bias=False)
            self.conv2 = self.conv1
            self.conv3 = self.conv1

        def forward(self, inputs):
            pass

    ground_truth = (
        "ConvModel2(\n"
        "  (conv1): Conv2d(3, 128, kernel_size=(3, 3), bias=False)\n"
        "  (conv2): Conv2d(3, 128, kernel_size=(3, 3), bias=False)\n"
        "  (conv3): Conv2d(3, 128, kernel_size=(3, 3), bias=False)\n"
        ")"
    )
    net = ConvModel2()
    output = net.__repr__()
    assert output == ground_truth


def test_repr_module_delete():
    # test whether __repr__ can deal with module delete
    class ConvModel3(Module):
        def __init__(self):
            super().__init__()
            self.conv1 = Conv2d(3, 128, 3, bias=False)
            self.softmax = Softmax(100)

        def forward(self, inputs):
            pass

    ground_truth = (
        "ConvModel3(\n"
        "  (conv1): Conv2d(3, 128, kernel_size=(3, 3), bias=False)\n"
        ")"
    )
    net = ConvModel3()
    del net.softmax
    output = net.__repr__()
    assert output == ground_truth