algos.cpp 28.7 KB
Newer Older
1 2 3 4 5 6 7 8
/**
 * \file dnn/src/x86/matrix_mul/algos.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13 14
 */

#include "src/common/utils.h"
#include "src/fallback/matrix_mul/gemm_impl.h"
15 16
#include "src/x86/matrix_mul/algos.h"
#include "src/x86/matrix_mul/f32/strategy.h"
17 18
#include "src/x86/matrix_mul/int8/strategy.h"

19
#include "midout.h"
20 21 22 23 24 25 26 27 28 29

MIDOUT_DECL(megdnn_x86_matmul_kern)
MIDOUT_DECL(megdnn_x86_matmul_kern_mk8_8x8)
using namespace megdnn;
using namespace x86;

/* ===================== F32 Blas algo ===================== */
namespace {

void f32_blas_kern(const MatrixMulImpl::KernParam& kern_param) {
30
#if MEGDNN_X86_WITH_MKL || MEGDNN_X86_WITH_OPENBLAS
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
    auto m = kern_param.M, n = kern_param.N, k = kern_param.K;
    bool trA = kern_param.trA, trB = kern_param.trB;
    const auto Aptr = kern_param.A<dt_float32>(),
               Bptr = kern_param.B<dt_float32>();
    auto Cptr = kern_param.C<dt_float32>();
    auto Atrd = kern_param.LDA, Btrd = kern_param.LDB, Ctrd = kern_param.LDC;
    disable_denorm();
    cblas_sgemm(CblasRowMajor, trA ? CblasTrans : CblasNoTrans,
                trB ? CblasTrans : CblasNoTrans, m, n, k, 1.0f, Aptr, Atrd,
                Bptr, Btrd, 0.0f, Cptr, Ctrd);
#else
    megdnn_throw("a blas library is required");
#endif
}

46
#if MEGDNN_X86_WITH_MKL && SUPPORT_MKL_PACKED_GEMM
47
void f32_blas_kern_only_packA(const MatrixMulImpl::KernParam& kern_param,
48 49
                              const void* a_panel, const void* b_panel) {
    MEGDNN_MARK_USED_VAR(b_panel);
50 51 52 53 54 55
    auto m = kern_param.M, n = kern_param.N, k = kern_param.K;
    const auto Bptr = kern_param.B<dt_float32>();
    auto Cptr = kern_param.C<dt_float32>();
    auto Atrd = kern_param.LDA, Btrd = kern_param.LDB, Ctrd = kern_param.LDC;
    disable_denorm();
    cblas_sgemm_compute(CblasRowMajor, CblasPacked, CblasNoTrans, m, n, k,
56 57
                        static_cast<const float*>(a_panel), Atrd, Bptr, Btrd,
                        0.0f, Cptr, Ctrd);
58 59 60 61 62 63 64
}
#endif

}  // anonymous namespace

bool MatrixMulImpl::AlgoF32Blas::usable(
        const KernSizeParam& kern_size_param) const {
65
#if MEGDNN_X86_WITH_MKL || MEGDNN_X86_WITH_OPENBLAS
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    return kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
           kern_size_param.format == param::MatrixMul::Format::DEFAULT &&
           kern_size_param.B_type == kern_size_param.A_type &&
           kern_size_param.C_type == kern_size_param.A_type &&
           kern_size_param.A_type == dtype::Float32() &&
           preferred(kern_size_param);
#else
    return false;
#endif
}

MatrixMulImpl::kern_t MatrixMulImpl::AlgoF32Blas::get_kern(
        const KernSizeParam&) const {
    return f32_blas_kern;
}

/* ===================== AlgoF32BlasPackA====================== */
83
#if MEGDNN_X86_WITH_MKL && SUPPORT_MKL_PACKED_GEMM
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
bool MatrixMulImpl::AlgoF32MKLPackA::usable(
        const KernSizeParam& kern_size_param) const {
    return kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
           kern_size_param.format == param::MatrixMul::Format::DEFAULT &&
           kern_size_param.B_type == kern_size_param.A_type &&
           kern_size_param.C_type == kern_size_param.A_type &&
           kern_size_param.A_type == dtype::Float32() &&
           preferred(kern_size_param);
}

MatrixMulImpl::kern_t MatrixMulImpl::AlgoF32MKLPackA::get_kern(
        const KernSizeParam&) const {
    return f32_blas_kern;
}

MatrixMulImpl::kern_naked_t MatrixMulImpl::AlgoF32MKLPackA::get_kern_naked(
        const KernSizeParam&) const {
    return f32_blas_kern_only_packA;
}

WorkspaceBundle MatrixMulImpl::AlgoF32MKLPackA::get_bundle(
        const KernSizeParam& param) const {
    auto M = param.M;
    auto N = param.N;
    auto K = param.K;
    size_t a_size = cblas_sgemm_pack_get_size(CblasAMatrix, M, N, K);
    return {nullptr, {a_size, 0, 0}};
}

113 114 115
void MatrixMulImpl::AlgoF32MKLPackA::pack_A(const KernParam& kern_param,
                                            void* out, size_t index,
                                            size_t stride) const {
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    MEGDNN_MARK_USED_VAR(stride);
    MEGDNN_MARK_USED_VAR(index);
    auto m = kern_param.M, n = kern_param.N, k = kern_param.K;
    const auto Aptr = kern_param.A<dt_float32>();
    auto Atrd = kern_param.LDA;
    disable_denorm();
    cblas_sgemm_pack(CblasRowMajor, CblasAMatrix, CblasNoTrans, m, n, k, 1.0f,
                     Aptr, Atrd, static_cast<float*>(out));
}
#endif
/* ===================== Int8 Vnni algo ===================== */

#if MEGDNN_X86_WITH_VNNI
#define ALIGN_SIZE 64
namespace {
void int8x8x32_kern_vnni(const MatrixMulImpl::KernParam& kern_param) {
    MEGDNN_MARK_USED_VAR(kern_param);
    MIDOUT_BEGIN(megdnn_x86_matmul_kern_vnni, midout_iv(0)) {
        auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
        auto trA = kern_param.trA, trB = kern_param.trB;
        auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
        auto A_type = kern_param.A_type, B_type = kern_param.B_type,
             C_type = kern_param.C_type;
        const auto Aptr = kern_param.A<dt_int8>(),
                   Bptr = kern_param.B<dt_int8>();
        auto Cptr = kern_param.C<dt_int32>();
        x86::matmul::gemm_int8_vnni_12x32x4 strategy(M, N, K, A_type, B_type,
                                                     C_type);
        megdnn::matmul::GemmInterleaved<x86::matmul::gemm_int8_vnni_12x32x4>(
                M, N, K, trA, trB, strategy, ALIGN_SIZE)
                .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC,
                         kern_param.workspace_ptr);
    }
    MIDOUT_END();
}

size_t get_kern_workspace(MatrixMulImpl::KernSizeParam kern_size_param) {
    auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K;
    auto trA = kern_size_param.trA, trB = kern_size_param.trB;
    auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
         C_type = kern_size_param.C_type;
    x86::matmul::gemm_int8_vnni_12x32x4 strategy(M, N, K, A_type, B_type,
                                                 C_type);
    return megdnn::matmul::GemmInterleaved<x86::matmul::gemm_int8_vnni_12x32x4>(
                   M, N, K, trA, trB, strategy, ALIGN_SIZE)
            .get_workspace_size();
}
}  // namespace

bool MatrixMulImpl::AlgoInt8x8x32Vnni::usable(
        const KernSizeParam& kern_size_param) const {
167
    return kern_size_param.A_type.enumv() == kern_size_param.B_type.enumv() &&
168 169 170 171 172
           ((kern_size_param.A_type.enumv() == DTypeEnum::Int8 &&
             kern_size_param.C_type.enumv() == DTypeEnum::Int32) ||
            (kern_size_param.A_type.enumv() == DTypeEnum::QuantizedS8 &&
             kern_size_param.C_type.enumv() == DTypeEnum::QuantizedS32)) &&
           kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
173
           kern_size_param.format == Param::Format::DEFAULT &&
174 175 176 177 178 179 180 181 182 183 184 185 186
           preferred(kern_size_param) && is_supported(SIMDType::VNNI);
}

size_t MatrixMulImpl::AlgoInt8x8x32Vnni::get_workspace(
        const KernSizeParam& kern_size_param) const {
    return get_kern_workspace(kern_size_param);
}

MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x32Vnni::get_kern(
        const KernSizeParam&) const {
    return int8x8x32_kern_vnni;
}

187 188 189 190
MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL_DETAIL(
        AlgoInt8x8x32Vnni, megdnn_x86_matmul_kern, "AlgoInt8x8x32Vnni"_hash,
        x86::matmul::gemm_int8_vnni_12x32x4, dt_int8, dt_int32,
        dt_uint8AlgoDataType::QINT8X8X32, DEFAULT);
191 192 193
#endif

/* ===================== Int8 mkldnn algo ===================== */
194
#if MEGDNN_X86_WITH_MKL_DNN
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
namespace {
void int8x8x32_kern_mkldnn(const MatrixMulImpl::KernParam& kern_param) {
    MEGDNN_MARK_USED_VAR(kern_param);
    MIDOUT_BEGIN(megdnn_x86_matmul_kern_mkldnn, midout_iv(0)) {
        const char transA = kern_param.trA ? 'T' : 'N';
        const char transB = kern_param.trB ? 'T' : 'N';
        const char offsetC = 'F';
        const int64_t M = static_cast<int64_t>(kern_param.M);
        const int64_t N = static_cast<int64_t>(kern_param.N);
        const int64_t K = static_cast<int64_t>(kern_param.K);
        const int64_t LDA = static_cast<int64_t>(kern_param.LDA);
        const int64_t LDB = static_cast<int64_t>(kern_param.LDB);
        const int64_t LDC = static_cast<int64_t>(kern_param.LDC);

        const float alpha = 1.0f, beta = 0.0f;
        const int8_t ao = 0, bo = 0;
        const int32_t co = 0;
        const int8_t* A_ptr = static_cast<const int8_t*>(kern_param.A_ptr);
        const int8_t* B_ptr = static_cast<const int8_t*>(kern_param.B_ptr);
        int32_t* C_ptr = static_cast<int32_t*>(kern_param.C_ptr);
        auto status = mkldnn_gemm_s8s8s32(transA, transB, offsetC, M, N, K,
                                          alpha, A_ptr, LDA, ao, B_ptr, LDB, bo,
                                          beta, C_ptr, LDC, &co);
        megdnn_assert(status == mkldnn_success,
                      "mkldnn_gemm_s8s8s32 compute error!!!");
    }
    MIDOUT_END();
}
}  // namespace

bool MatrixMulImpl::AlgoInt8x8x32Mkldnn::usable(
        const KernSizeParam& kern_size_param) const {
    return kern_size_param.A_type.enumv() == kern_size_param.B_type.enumv() &&
           ((kern_size_param.A_type.enumv() == DTypeEnum::Int8 &&
             kern_size_param.C_type.enumv() == DTypeEnum::Int32) ||
            (kern_size_param.A_type.enumv() == DTypeEnum::QuantizedS8 &&
             kern_size_param.C_type.enumv() == DTypeEnum::QuantizedS32)) &&
           kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
233
           kern_size_param.format == Param::Format::DEFAULT &&
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
           is_supported(SIMDType::VNNI) && preferred(kern_size_param);
}

MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x32Mkldnn::get_kern(
        const KernSizeParam&) const {
    return int8x8x32_kern_mkldnn;
}
#endif

namespace {

void gemm_s8s8s32_avx2_2x4x16(const MatrixMulImpl::KernParam& kern_param) {
    MEGDNN_MARK_USED_VAR(kern_param);
    MIDOUT_BEGIN(megdnn_x86_matmul_kern_avx2_2x4x16, midout_iv(0)) {
        constexpr int cacheline = 64;
        const size_t m = kern_param.M;
        const size_t n = kern_param.N;
        const size_t k = kern_param.K;
        const bool trans_a = kern_param.trA;
        const bool trans_b = kern_param.trB;
        const size_t lda = kern_param.LDA;
        const size_t ldb = kern_param.LDB;
        const size_t ldc = kern_param.LDC;
        auto a_type = kern_param.A_type;
        auto b_type = kern_param.B_type;
        auto c_type = kern_param.C_type;
        const auto a_ptr = kern_param.A<dt_int8>();
        const auto b_ptr = kern_param.B<dt_int8>();
        auto c_ptr = kern_param.C<dt_int32>();
        x86::matmul::gemm_avx2_s8s8s32_2x4x16 strategy(m, n, k, a_type, b_type,
                                                       c_type);

        megdnn::matmul::GemmInterleaved<x86::matmul::gemm_avx2_s8s8s32_2x4x16>(
                m, n, k, trans_a, trans_b, strategy, cacheline)
                .execute(a_ptr, lda, b_ptr, ldb, c_ptr, ldc,
                         kern_param.workspace_ptr);
    }
    MIDOUT_END();
}

void gemm_s8s8s32_avx2_4x16x2(const MatrixMulImpl::KernParam& kern_param) {
    MEGDNN_MARK_USED_VAR(kern_param);
    MIDOUT_BEGIN(megdnn_x86_matmul_kern_avx2_4x16x2, midout_iv(0)) {
        constexpr int cacheline = 64;
        const size_t m = kern_param.M;
        const size_t n = kern_param.N;
        const size_t k = kern_param.K;
        const bool trans_a = kern_param.trA;
        const bool trans_b = kern_param.trB;
        const size_t lda = kern_param.LDA;
        const size_t ldb = kern_param.LDB;
        const size_t ldc = kern_param.LDC;
        auto a_type = kern_param.A_type;
        auto b_type = kern_param.B_type;
        auto c_type = kern_param.C_type;
        const auto a_ptr = kern_param.A<dt_int8>();
        const auto b_ptr = kern_param.B<dt_int8>();
        auto c_ptr = kern_param.C<dt_int32>();
        x86::matmul::gemm_avx2_s8s8s32_4x16x2 strategy(m, n, k, a_type, b_type,
                                                       c_type);

        megdnn::matmul::GemmInterleaved<x86::matmul::gemm_avx2_s8s8s32_4x16x2>(
                m, n, k, trans_a, trans_b, strategy, cacheline)
                .execute(a_ptr, lda, b_ptr, ldb, c_ptr, ldc,
                         kern_param.workspace_ptr);
    }
    MIDOUT_END();
}

void gemm_s8s8s32_sse_4x8x2(const MatrixMulImpl::KernParam& kern_param) {
    MEGDNN_MARK_USED_VAR(kern_param);
    MIDOUT_BEGIN(megdnn_x86_matmul_kern_sse_4x8x2, midout_iv(0)) {
        constexpr int cacheline = 64;
        x86::matmul::gemm_sse_s8s8s32_4x8x2 strategy(
                kern_param.M, kern_param.N, kern_param.K, kern_param.A_type,
                kern_param.B_type, kern_param.C_type);

        megdnn::matmul::GemmInterleaved<x86::matmul::gemm_sse_s8s8s32_4x8x2>(
                kern_param.M, kern_param.N, kern_param.K, kern_param.trA,
                kern_param.trB, strategy, cacheline)
                .execute(kern_param.A<dt_int8>(), kern_param.LDA,
                         kern_param.B<dt_int8>(), kern_param.LDB,
                         kern_param.C<dt_int32>(), kern_param.LDC,
                         kern_param.workspace_ptr);
    }
    MIDOUT_END();
}

}  // namespace
323 324

/*************************AlgoInt8x8x16AVX2********************/
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
void MatrixMulImpl::AlgoInt8x8x16AVX2::gemm_s8s8s16_avx2_4x16x2(
        const MatrixMulImpl::KernParam& kern_param) {
    MEGDNN_MARK_USED_VAR(kern_param);
    MIDOUT_BEGIN(megdnn_x86_matmul_kern_avx2_4x16x2, midout_iv(1)) {
        constexpr int cacheline = 64;
        const size_t m = kern_param.M;
        const size_t n = kern_param.N;
        const size_t k = kern_param.K;
        const bool trans_a = kern_param.trA;
        const bool trans_b = kern_param.trB;
        const size_t lda = kern_param.LDA;
        const size_t ldb = kern_param.LDB;
        const size_t ldc = kern_param.LDC;
        auto a_type = kern_param.A_type;
        auto b_type = kern_param.B_type;
        auto c_type = kern_param.C_type;
        const auto a_ptr = kern_param.A<dt_int8>();
        const auto b_ptr = kern_param.B<dt_int8>();
        auto c_ptr = kern_param.C<dt_int16>();
        x86::matmul::gemm_avx2_s8s8s16_4x16x2 strategy(m, n, k, a_type, b_type,
                                                       c_type);

        megdnn::matmul::GemmInterleaved<x86::matmul::gemm_avx2_s8s8s16_4x16x2>(
                m, n, k, trans_a, trans_b, strategy, cacheline)
                .execute(a_ptr, lda, b_ptr, ldb, c_ptr, ldc,
                         kern_param.workspace_ptr);
    }
    MIDOUT_END();
}
MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x16AVX2::get_kern(
        const KernSizeParam&) const {
    return gemm_s8s8s16_avx2_4x16x2;
}
bool MatrixMulImpl::AlgoInt8x8x16AVX2::usable(
        const KernSizeParam& kern_size_param) const {
    bool is_ab_same =
            kern_size_param.A_type.enumv() == kern_size_param.B_type.enumv();
    bool is_type_ok =
            ((kern_size_param.A_type.enumv() == DTypeEnum::Int8 &&
              kern_size_param.C_type.enumv() == DTypeEnum::Int16) ||
             (kern_size_param.A_type.enumv() == DTypeEnum::QuantizedS8 &&
              kern_size_param.C_type.enumv() == DTypeEnum::QuantizedS16));
    bool is_mode_ok =
            kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
369
            kern_size_param.format == Param::Format::DEFAULT &&
370 371
            is_supported(SIMDType::AVX2);
    bool is_param_ok = is_ab_same && is_type_ok && is_mode_ok;
372

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
    return is_param_ok;
}
bool MatrixMulImpl::AlgoInt8x8x16AVX2::preferred(const KernSizeParam&) const {
    return true;
}
size_t MatrixMulImpl::AlgoInt8x8x16AVX2::get_workspace(
        const KernSizeParam& kern_param) const {
    constexpr int cacheline = 64;
    const size_t m = kern_param.M;
    const size_t n = kern_param.N;
    const size_t k = kern_param.K;
    const bool trans_a = kern_param.trA;
    const bool trans_b = kern_param.trB;
    auto a_type = kern_param.A_type;
    auto b_type = kern_param.B_type;
    auto c_type = kern_param.C_type;
    x86::matmul::gemm_avx2_s8s8s16_4x16x2 strategy(m, n, k, a_type, b_type,
                                                   c_type);

    return megdnn::matmul::GemmInterleaved<
                   x86::matmul::gemm_avx2_s8s8s16_4x16x2>(
                   m, n, k, trans_a, trans_b, strategy, cacheline)
            .get_workspace_size();
}
MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL_DETAIL(
398
        AlgoInt8x8x16AVX2, megdnn_x86_matmul_kern, "AlgoInt8x8x16AVX2"_hash,
399 400
        x86::matmul::gemm_avx2_s8s8s16_4x16x2, dt_int8, dt_int16, dt_int16,
        AlgoDataType::INT8X8X16, DEFAULT);
401

402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
/*************************AlgoInt8x8x16SSE********************/
void MatrixMulImpl::AlgoInt8x8x16SSE::gemm_s8s8s16_sse_4x8x2(
        const MatrixMulImpl::KernParam& kern_param) {
    MEGDNN_MARK_USED_VAR(kern_param);
    MIDOUT_BEGIN(megdnn_x86_matmul_kern_sse_4x8x2, midout_iv(2)) {
        constexpr int cacheline = 64;
        const size_t m = kern_param.M;
        const size_t n = kern_param.N;
        const size_t k = kern_param.K;
        const bool trans_a = kern_param.trA;
        const bool trans_b = kern_param.trB;
        const size_t lda = kern_param.LDA;
        const size_t ldb = kern_param.LDB;
        const size_t ldc = kern_param.LDC;
        auto a_type = kern_param.A_type;
        auto b_type = kern_param.B_type;
        auto c_type = kern_param.C_type;
        const auto a_ptr = kern_param.A<dt_int8>();
        const auto b_ptr = kern_param.B<dt_int8>();
        auto c_ptr = kern_param.C<dt_int16>();
        x86::matmul::gemm_sse_s8s8s16_4x8x2 strategy(m, n, k, a_type, b_type,
                                                     c_type);

        megdnn::matmul::GemmInterleaved<x86::matmul::gemm_sse_s8s8s16_4x8x2>(
                m, n, k, trans_a, trans_b, strategy, cacheline)
                .execute(a_ptr, lda, b_ptr, ldb, c_ptr, ldc,
                         kern_param.workspace_ptr);
    }
    MIDOUT_END();
}
MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x16SSE::get_kern(
        const KernSizeParam&) const {
    return gemm_s8s8s16_sse_4x8x2;
}
bool MatrixMulImpl::AlgoInt8x8x16SSE::usable(
        const KernSizeParam& kern_size_param) const {
    bool is_ab_same =
            kern_size_param.A_type.enumv() == kern_size_param.B_type.enumv();
    bool is_type_ok =
            ((kern_size_param.A_type.enumv() == DTypeEnum::Int8 &&
              kern_size_param.C_type.enumv() == DTypeEnum::Int16) ||
             (kern_size_param.A_type.enumv() == DTypeEnum::QuantizedS8 &&
              kern_size_param.C_type.enumv() == DTypeEnum::QuantizedS16));
    bool is_mode_ok =
            kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
447
            kern_size_param.format == Param::Format::DEFAULT &&
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
            is_supported(SIMDType::SSE4_1);
    bool is_param_ok = is_ab_same && is_type_ok && is_mode_ok;
    return is_param_ok;
}
bool MatrixMulImpl::AlgoInt8x8x16SSE::preferred(const KernSizeParam&) const {
    return true;
}
size_t MatrixMulImpl::AlgoInt8x8x16SSE::get_workspace(
        const KernSizeParam& kern_param) const {
    constexpr int cacheline = 64;
    const size_t m = kern_param.M;
    const size_t n = kern_param.N;
    const size_t k = kern_param.K;
    const bool trans_a = kern_param.trA;
    const bool trans_b = kern_param.trB;
    auto a_type = kern_param.A_type;
    auto b_type = kern_param.B_type;
    auto c_type = kern_param.C_type;
    x86::matmul::gemm_sse_s8s8s16_4x8x2 strategy(m, n, k, a_type, b_type,
                                                 c_type);

    return megdnn::matmul::GemmInterleaved<x86::matmul::gemm_sse_s8s8s16_4x8x2>(
                   m, n, k, trans_a, trans_b, strategy, cacheline)
            .get_workspace_size();
}
MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL_DETAIL(AlgoInt8x8x16SSE,
                                            megdnn_x86_matmul_kern,
                                            "AlgoInt8x8x16SSE"_hash,
                                            x86::matmul::gemm_sse_s8s8s16_4x8x2,
477 478
                                            dt_int8, dt_int16, dt_int16,
                                            AlgoDataType::INT8X8X16, DEFAULT);
479 480

/*************************AlgoInt8x8x32AVX2M4N16K2********************/
481 482 483 484 485 486
MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x32AVX2M4N16K2::get_kern(
        const KernSizeParam&) const {
    return gemm_s8s8s32_avx2_4x16x2;
}
bool MatrixMulImpl::AlgoInt8x8x32AVX2M4N16K2::usable(
        const KernSizeParam& kern_size_param) const {
487 488 489 490 491 492 493 494 495 496
    bool is_param_ok =
            kern_size_param.A_type.enumv() == kern_size_param.B_type.enumv() &&
            ((kern_size_param.A_type.enumv() == DTypeEnum::Int8 &&
              kern_size_param.C_type.enumv() == DTypeEnum::Int32) ||
             (kern_size_param.A_type.enumv() == DTypeEnum::QuantizedS8 &&
              kern_size_param.C_type.enumv() == DTypeEnum::QuantizedS32)) &&
            kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
            kern_size_param.format == Param::Format::DEFAULT &&
            is_supported(SIMDType::AVX2);
    return is_param_ok;
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
}
size_t MatrixMulImpl::AlgoInt8x8x32AVX2M4N16K2::get_workspace(
        const KernSizeParam& kern_param) const {
    constexpr int cacheline = 64;
    const size_t m = kern_param.M;
    const size_t n = kern_param.N;
    const size_t k = kern_param.K;
    const bool trans_a = kern_param.trA;
    const bool trans_b = kern_param.trB;
    auto a_type = kern_param.A_type;
    auto b_type = kern_param.B_type;
    auto c_type = kern_param.C_type;
    x86::matmul::gemm_avx2_s8s8s32_4x16x2 strategy(m, n, k, a_type, b_type,
                                                   c_type);

    return megdnn::matmul::GemmInterleaved<
                   x86::matmul::gemm_avx2_s8s8s32_4x16x2>(
                   m, n, k, trans_a, trans_b, strategy, cacheline)
            .get_workspace_size();
}
517
MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL_DETAIL(
518 519
        AlgoInt8x8x32AVX2M4N16K2, megdnn_x86_matmul_kern,
        "AlgoInt8x8x32AVX2M4N16K2"_hash, x86::matmul::gemm_avx2_s8s8s32_4x16x2,
520
        dt_int8, dt_int32, dt_int16, AlgoDataType::QINT8X8X32, DEFAULT);
521 522 523 524 525 526 527 528 529 530 531 532 533

MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x32AVX2M2N4K16::get_kern(
        const KernSizeParam&) const {
    return gemm_s8s8s32_avx2_2x4x16;
}
bool MatrixMulImpl::AlgoInt8x8x32AVX2M2N4K16::usable(
        const KernSizeParam& kern_size_param) const {
    return kern_size_param.A_type.enumv() == kern_size_param.B_type.enumv() &&
           ((kern_size_param.A_type.enumv() == DTypeEnum::Int8 &&
             kern_size_param.C_type.enumv() == DTypeEnum::Int32) ||
            (kern_size_param.A_type.enumv() == DTypeEnum::QuantizedS8 &&
             kern_size_param.C_type.enumv() == DTypeEnum::QuantizedS32)) &&
           kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
534
           kern_size_param.format == Param::Format::DEFAULT &&
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
           is_supported(SIMDType::AVX2);
}
size_t MatrixMulImpl::AlgoInt8x8x32AVX2M2N4K16::get_workspace(
        const KernSizeParam& kern_param) const {
    constexpr int cacheline = 64;
    const size_t m = kern_param.M;
    const size_t n = kern_param.N;
    const size_t k = kern_param.K;
    const bool trans_a = kern_param.trA;
    const bool trans_b = kern_param.trB;
    auto a_type = kern_param.A_type;
    auto b_type = kern_param.B_type;
    auto c_type = kern_param.C_type;
    x86::matmul::gemm_avx2_s8s8s32_2x4x16 strategy(m, n, k, a_type, b_type,
                                                   c_type);

    return megdnn::matmul::GemmInterleaved<
                   x86::matmul::gemm_avx2_s8s8s32_2x4x16>(
                   m, n, k, trans_a, trans_b, strategy, cacheline)
            .get_workspace_size();
}
556
MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(AlgoInt8x8x32AVX2M2N4K16,
557 558
                                     megdnn_x86_matmul_kern,
                                     "AlgoInt8x8x32AVX2M2N4K16"_hash,
559
                                     x86::matmul::gemm_avx2_s8s8s32_2x4x16,
560 561
                                     dt_int8, dt_int32,
                                     AlgoDataType::QINT8X8X32, DEFAULT);
562 563 564 565 566 567 568 569 570 571 572 573 574 575

/*************************AlgoInt8x8x32SSEM4N8K2********************/
MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x32SSEM4N8K2::get_kern(
        const KernSizeParam&) const {
    return gemm_s8s8s32_sse_4x8x2;
}
bool MatrixMulImpl::AlgoInt8x8x32SSEM4N8K2::usable(
        const KernSizeParam& kern_size_param) const {
    return kern_size_param.A_type.enumv() == kern_size_param.B_type.enumv() &&
           ((kern_size_param.A_type.enumv() == DTypeEnum::Int8 &&
             kern_size_param.C_type.enumv() == DTypeEnum::Int32) ||
            (kern_size_param.A_type.enumv() == DTypeEnum::QuantizedS8 &&
             kern_size_param.C_type.enumv() == DTypeEnum::QuantizedS32)) &&
           kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
576
           kern_size_param.format == Param::Format::DEFAULT &&
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
           is_supported(SIMDType::SSE4_1);
}
size_t MatrixMulImpl::AlgoInt8x8x32SSEM4N8K2::get_workspace(
        const KernSizeParam& kern_param) const {
    constexpr int cacheline = 64;
    const size_t m = kern_param.M;
    const size_t n = kern_param.N;
    const size_t k = kern_param.K;
    const bool trans_a = kern_param.trA;
    const bool trans_b = kern_param.trB;
    auto a_type = kern_param.A_type;
    auto b_type = kern_param.B_type;
    auto c_type = kern_param.C_type;
    x86::matmul::gemm_sse_s8s8s32_4x8x2 strategy(m, n, k, a_type, b_type,
                                                 c_type);

    return megdnn::matmul::GemmInterleaved<x86::matmul::gemm_sse_s8s8s32_4x8x2>(
                   m, n, k, trans_a, trans_b, strategy, cacheline)
            .get_workspace_size();
}
597
MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL_DETAIL(AlgoInt8x8x32SSEM4N8K2,
598 599
                                            megdnn_x86_matmul_kern,
                                            "AlgoInt8x8x32SSEM4N8K2"_hash,
600
                                            x86::matmul::gemm_sse_s8s8s32_4x8x2,
601 602
                                            dt_int8, dt_int32, dt_int16,
                                            AlgoDataType::QINT8X8X32, DEFAULT);
603

604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
/*************************AlgoF32MK8_8x8********************/
MatrixMulImpl::kern_t MatrixMulImpl::AlgoF32MK8_8x8::get_kern(
        const KernSizeParam&) const {
    auto f32_kern_mk8_8x8 = [](const MatrixMulImpl::KernParam& kern_param) {
        MIDOUT_BEGIN(megdnn_x86_matmul_kern_mk8_8x8, midout_iv(0)) {
            auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
            auto trA = kern_param.trA, trB = kern_param.trB;
            auto LDA = kern_param.LDA, LDB = kern_param.LDB,
                 LDC = kern_param.LDC;
            auto A_type = kern_param.A_type, B_type = kern_param.B_type,
                 C_type = kern_param.C_type;
            const auto Aptr = kern_param.A<float>(),
                       Bptr = kern_param.B<float>();
            auto Cptr = kern_param.C<float>();

            x86::matmul::sgemm_nopack_8x8_avx2 strategy(A_type, B_type, C_type);
            megdnn::matmul::GemmInterleaved<x86::matmul::sgemm_nopack_8x8_avx2,
                                            false>(M, N, K, trA, trB, strategy)
                    .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC,
                             kern_param.workspace_ptr);
        }
        MIDOUT_END();
    };
    return f32_kern_mk8_8x8;
}

bool MatrixMulImpl::AlgoF32MK8_8x8::usable(
        const KernSizeParam& kern_size_param) const {
    constexpr static size_t MB = 8;
    constexpr static size_t KB = 8;
    return kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
           kern_size_param.B_type.enumv() == kern_size_param.A_type.enumv() &&
           kern_size_param.C_type.enumv() == kern_size_param.A_type.enumv() &&
           kern_size_param.A_type.enumv() == DTypeEnum::Float32 &&
           kern_size_param.format == param::MatrixMul::Format::MK8 &&
           !kern_size_param.trA && !kern_size_param.trB &&
           kern_size_param.M % MB == 0 && kern_size_param.K % KB == 0 &&
           is_supported(SIMDType::FMA);
}

size_t MatrixMulImpl::AlgoF32MK8_8x8::get_workspace(
        const KernSizeParam& kern_param) const {
    MIDOUT_BEGIN(megdnn_x86_matmul_kern_mk8_8x8, midout_iv(0)) {
        const size_t m = kern_param.M;
        const size_t n = kern_param.N;
        const size_t k = kern_param.K;
        const bool trans_a = kern_param.trA;
        const bool trans_b = kern_param.trB;
        auto a_type = kern_param.A_type;
        auto b_type = kern_param.B_type;
        auto c_type = kern_param.C_type;
        x86::matmul::sgemm_nopack_8x8_avx2 strategy(a_type, b_type, c_type);
        return megdnn::matmul::GemmInterleaved<
                       x86::matmul::sgemm_nopack_8x8_avx2, false>(
                       m, n, k, trans_a, trans_b, strategy)
                .get_workspace_size();
    }
    MIDOUT_END();
}

// vim: syntax=cpp.doxygen