algos.cpp 21.1 KB
Newer Older
1 2 3 4 5 6 7 8
/**
 * \file dnn/src/x86/matrix_mul/algos.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 */

#include "src/x86/matrix_mul/algos.h"
#include "midout.h"
#include "src/common/utils.h"
#include "src/fallback/matrix_mul/gemm_impl.h"
#include "src/x86/matrix_mul/int8/strategy.h"

#include "src/x86/matrix_mul/f32/strategy.h"

MIDOUT_DECL(megdnn_x86_matmul_kern)
MIDOUT_DECL(megdnn_x86_matmul_kern_mk8_8x8)
using namespace megdnn;
using namespace x86;

/* ===================== F32 Blas algo ===================== */
namespace {

void f32_blas_kern(const MatrixMulImpl::KernParam& kern_param) {
30
#if MEGDNN_X86_WITH_MKL || MEGDNN_X86_WITH_OPENBLAS
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
    auto m = kern_param.M, n = kern_param.N, k = kern_param.K;
    bool trA = kern_param.trA, trB = kern_param.trB;
    const auto Aptr = kern_param.A<dt_float32>(),
               Bptr = kern_param.B<dt_float32>();
    auto Cptr = kern_param.C<dt_float32>();
    auto Atrd = kern_param.LDA, Btrd = kern_param.LDB, Ctrd = kern_param.LDC;
    disable_denorm();
    cblas_sgemm(CblasRowMajor, trA ? CblasTrans : CblasNoTrans,
                trB ? CblasTrans : CblasNoTrans, m, n, k, 1.0f, Aptr, Atrd,
                Bptr, Btrd, 0.0f, Cptr, Ctrd);
#else
    megdnn_throw("a blas library is required");
#endif
}

46
#if MEGDNN_X86_WITH_MKL && SUPPORT_MKL_PACKED_GEMM
47
void f32_blas_kern_only_packA(const MatrixMulImpl::KernParam& kern_param,
48 49
                              const void* a_panel, const void* b_panel) {
    MEGDNN_MARK_USED_VAR(b_panel);
50 51 52 53 54 55
    auto m = kern_param.M, n = kern_param.N, k = kern_param.K;
    const auto Bptr = kern_param.B<dt_float32>();
    auto Cptr = kern_param.C<dt_float32>();
    auto Atrd = kern_param.LDA, Btrd = kern_param.LDB, Ctrd = kern_param.LDC;
    disable_denorm();
    cblas_sgemm_compute(CblasRowMajor, CblasPacked, CblasNoTrans, m, n, k,
56 57
                        static_cast<const float*>(a_panel), Atrd, Bptr, Btrd,
                        0.0f, Cptr, Ctrd);
58 59 60 61 62 63 64
}
#endif

}  // anonymous namespace

bool MatrixMulImpl::AlgoF32Blas::usable(
        const KernSizeParam& kern_size_param) const {
65
#if MEGDNN_X86_WITH_MKL || MEGDNN_X86_WITH_OPENBLAS
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    return kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
           kern_size_param.format == param::MatrixMul::Format::DEFAULT &&
           kern_size_param.B_type == kern_size_param.A_type &&
           kern_size_param.C_type == kern_size_param.A_type &&
           kern_size_param.A_type == dtype::Float32() &&
           preferred(kern_size_param);
#else
    return false;
#endif
}

MatrixMulImpl::kern_t MatrixMulImpl::AlgoF32Blas::get_kern(
        const KernSizeParam&) const {
    return f32_blas_kern;
}

/* ===================== AlgoF32BlasPackA====================== */
83
#if MEGDNN_X86_WITH_MKL && SUPPORT_MKL_PACKED_GEMM
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
bool MatrixMulImpl::AlgoF32MKLPackA::usable(
        const KernSizeParam& kern_size_param) const {
    return kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
           kern_size_param.format == param::MatrixMul::Format::DEFAULT &&
           kern_size_param.B_type == kern_size_param.A_type &&
           kern_size_param.C_type == kern_size_param.A_type &&
           kern_size_param.A_type == dtype::Float32() &&
           preferred(kern_size_param);
}

MatrixMulImpl::kern_t MatrixMulImpl::AlgoF32MKLPackA::get_kern(
        const KernSizeParam&) const {
    return f32_blas_kern;
}

MatrixMulImpl::kern_naked_t MatrixMulImpl::AlgoF32MKLPackA::get_kern_naked(
        const KernSizeParam&) const {
    return f32_blas_kern_only_packA;
}

WorkspaceBundle MatrixMulImpl::AlgoF32MKLPackA::get_bundle(
        const KernSizeParam& param) const {
    auto M = param.M;
    auto N = param.N;
    auto K = param.K;
    size_t a_size = cblas_sgemm_pack_get_size(CblasAMatrix, M, N, K);
    return {nullptr, {a_size, 0, 0}};
}

113 114 115
void MatrixMulImpl::AlgoF32MKLPackA::pack_A(const KernParam& kern_param,
                                            void* out, size_t index,
                                            size_t stride) const {
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    MEGDNN_MARK_USED_VAR(stride);
    MEGDNN_MARK_USED_VAR(index);
    auto m = kern_param.M, n = kern_param.N, k = kern_param.K;
    const auto Aptr = kern_param.A<dt_float32>();
    auto Atrd = kern_param.LDA;
    disable_denorm();
    cblas_sgemm_pack(CblasRowMajor, CblasAMatrix, CblasNoTrans, m, n, k, 1.0f,
                     Aptr, Atrd, static_cast<float*>(out));
}
#endif
/* ===================== Int8 Vnni algo ===================== */

#if MEGDNN_X86_WITH_VNNI
#define ALIGN_SIZE 64
namespace {
void int8x8x32_kern_vnni(const MatrixMulImpl::KernParam& kern_param) {
    MEGDNN_MARK_USED_VAR(kern_param);
    MIDOUT_BEGIN(megdnn_x86_matmul_kern_vnni, midout_iv(0)) {
        auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
        auto trA = kern_param.trA, trB = kern_param.trB;
        auto LDA = kern_param.LDA, LDB = kern_param.LDB, LDC = kern_param.LDC;
        auto A_type = kern_param.A_type, B_type = kern_param.B_type,
             C_type = kern_param.C_type;
        const auto Aptr = kern_param.A<dt_int8>(),
                   Bptr = kern_param.B<dt_int8>();
        auto Cptr = kern_param.C<dt_int32>();
        x86::matmul::gemm_int8_vnni_12x32x4 strategy(M, N, K, A_type, B_type,
                                                     C_type);
        megdnn::matmul::GemmInterleaved<x86::matmul::gemm_int8_vnni_12x32x4>(
                M, N, K, trA, trB, strategy, ALIGN_SIZE)
                .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC,
                         kern_param.workspace_ptr);
    }
    MIDOUT_END();
}

size_t get_kern_workspace(MatrixMulImpl::KernSizeParam kern_size_param) {
    auto M = kern_size_param.M, N = kern_size_param.N, K = kern_size_param.K;
    auto trA = kern_size_param.trA, trB = kern_size_param.trB;
    auto A_type = kern_size_param.A_type, B_type = kern_size_param.B_type,
         C_type = kern_size_param.C_type;
    x86::matmul::gemm_int8_vnni_12x32x4 strategy(M, N, K, A_type, B_type,
                                                 C_type);
    return megdnn::matmul::GemmInterleaved<x86::matmul::gemm_int8_vnni_12x32x4>(
                   M, N, K, trA, trB, strategy, ALIGN_SIZE)
            .get_workspace_size();
}
}  // namespace

bool MatrixMulImpl::AlgoInt8x8x32Vnni::usable(
        const KernSizeParam& kern_size_param) const {
167
    return kern_size_param.A_type.enumv() == kern_size_param.B_type.enumv() &&
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
           ((kern_size_param.A_type.enumv() == DTypeEnum::Int8 &&
             kern_size_param.C_type.enumv() == DTypeEnum::Int32) ||
            (kern_size_param.A_type.enumv() == DTypeEnum::QuantizedS8 &&
             kern_size_param.C_type.enumv() == DTypeEnum::QuantizedS32)) &&
           kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
           preferred(kern_size_param) && is_supported(SIMDType::VNNI);
}

size_t MatrixMulImpl::AlgoInt8x8x32Vnni::get_workspace(
        const KernSizeParam& kern_size_param) const {
    return get_kern_workspace(kern_size_param);
}

MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x32Vnni::get_kern(
        const KernSizeParam&) const {
    return int8x8x32_kern_vnni;
}

186 187 188 189
MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL_DETAIL(AlgoInt8x8x32Vnni,
                                            megdnn_x86_matmul_kern, 5,
                                            x86::matmul::gemm_int8_vnni_12x32x4,
                                            dt_int8, dt_int32, dt_uint8);
190 191 192
#endif

/* ===================== Int8 mkldnn algo ===================== */
193
#if MEGDNN_X86_WITH_MKL_DNN
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
namespace {
void int8x8x32_kern_mkldnn(const MatrixMulImpl::KernParam& kern_param) {
    MEGDNN_MARK_USED_VAR(kern_param);
    MIDOUT_BEGIN(megdnn_x86_matmul_kern_mkldnn, midout_iv(0)) {
        const char transA = kern_param.trA ? 'T' : 'N';
        const char transB = kern_param.trB ? 'T' : 'N';
        const char offsetC = 'F';
        const int64_t M = static_cast<int64_t>(kern_param.M);
        const int64_t N = static_cast<int64_t>(kern_param.N);
        const int64_t K = static_cast<int64_t>(kern_param.K);
        const int64_t LDA = static_cast<int64_t>(kern_param.LDA);
        const int64_t LDB = static_cast<int64_t>(kern_param.LDB);
        const int64_t LDC = static_cast<int64_t>(kern_param.LDC);

        const float alpha = 1.0f, beta = 0.0f;
        const int8_t ao = 0, bo = 0;
        const int32_t co = 0;
        const int8_t* A_ptr = static_cast<const int8_t*>(kern_param.A_ptr);
        const int8_t* B_ptr = static_cast<const int8_t*>(kern_param.B_ptr);
        int32_t* C_ptr = static_cast<int32_t*>(kern_param.C_ptr);
        auto status = mkldnn_gemm_s8s8s32(transA, transB, offsetC, M, N, K,
                                          alpha, A_ptr, LDA, ao, B_ptr, LDB, bo,
                                          beta, C_ptr, LDC, &co);
        megdnn_assert(status == mkldnn_success,
                      "mkldnn_gemm_s8s8s32 compute error!!!");
    }
    MIDOUT_END();
}
}  // namespace

bool MatrixMulImpl::AlgoInt8x8x32Mkldnn::usable(
        const KernSizeParam& kern_size_param) const {
    return kern_size_param.A_type.enumv() == kern_size_param.B_type.enumv() &&
           ((kern_size_param.A_type.enumv() == DTypeEnum::Int8 &&
             kern_size_param.C_type.enumv() == DTypeEnum::Int32) ||
            (kern_size_param.A_type.enumv() == DTypeEnum::QuantizedS8 &&
             kern_size_param.C_type.enumv() == DTypeEnum::QuantizedS32)) &&
           kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
           is_supported(SIMDType::VNNI) && preferred(kern_size_param);
}

MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x32Mkldnn::get_kern(
        const KernSizeParam&) const {
    return int8x8x32_kern_mkldnn;
}
#endif

namespace {

void gemm_s8s8s32_avx2_2x4x16(const MatrixMulImpl::KernParam& kern_param) {
    MEGDNN_MARK_USED_VAR(kern_param);
    MIDOUT_BEGIN(megdnn_x86_matmul_kern_avx2_2x4x16, midout_iv(0)) {
        constexpr int cacheline = 64;
        const size_t m = kern_param.M;
        const size_t n = kern_param.N;
        const size_t k = kern_param.K;
        const bool trans_a = kern_param.trA;
        const bool trans_b = kern_param.trB;
        const size_t lda = kern_param.LDA;
        const size_t ldb = kern_param.LDB;
        const size_t ldc = kern_param.LDC;
        auto a_type = kern_param.A_type;
        auto b_type = kern_param.B_type;
        auto c_type = kern_param.C_type;
        const auto a_ptr = kern_param.A<dt_int8>();
        const auto b_ptr = kern_param.B<dt_int8>();
        auto c_ptr = kern_param.C<dt_int32>();
        x86::matmul::gemm_avx2_s8s8s32_2x4x16 strategy(m, n, k, a_type, b_type,
                                                       c_type);

        megdnn::matmul::GemmInterleaved<x86::matmul::gemm_avx2_s8s8s32_2x4x16>(
                m, n, k, trans_a, trans_b, strategy, cacheline)
                .execute(a_ptr, lda, b_ptr, ldb, c_ptr, ldc,
                         kern_param.workspace_ptr);
    }
    MIDOUT_END();
}

void gemm_s8s8s32_avx2_4x16x2(const MatrixMulImpl::KernParam& kern_param) {
    MEGDNN_MARK_USED_VAR(kern_param);
    MIDOUT_BEGIN(megdnn_x86_matmul_kern_avx2_4x16x2, midout_iv(0)) {
        constexpr int cacheline = 64;
        const size_t m = kern_param.M;
        const size_t n = kern_param.N;
        const size_t k = kern_param.K;
        const bool trans_a = kern_param.trA;
        const bool trans_b = kern_param.trB;
        const size_t lda = kern_param.LDA;
        const size_t ldb = kern_param.LDB;
        const size_t ldc = kern_param.LDC;
        auto a_type = kern_param.A_type;
        auto b_type = kern_param.B_type;
        auto c_type = kern_param.C_type;
        const auto a_ptr = kern_param.A<dt_int8>();
        const auto b_ptr = kern_param.B<dt_int8>();
        auto c_ptr = kern_param.C<dt_int32>();
        x86::matmul::gemm_avx2_s8s8s32_4x16x2 strategy(m, n, k, a_type, b_type,
                                                       c_type);

        megdnn::matmul::GemmInterleaved<x86::matmul::gemm_avx2_s8s8s32_4x16x2>(
                m, n, k, trans_a, trans_b, strategy, cacheline)
                .execute(a_ptr, lda, b_ptr, ldb, c_ptr, ldc,
                         kern_param.workspace_ptr);
    }
    MIDOUT_END();
}

void gemm_s8s8s32_sse_4x8x2(const MatrixMulImpl::KernParam& kern_param) {
    MEGDNN_MARK_USED_VAR(kern_param);
    MIDOUT_BEGIN(megdnn_x86_matmul_kern_sse_4x8x2, midout_iv(0)) {
        constexpr int cacheline = 64;
        x86::matmul::gemm_sse_s8s8s32_4x8x2 strategy(
                kern_param.M, kern_param.N, kern_param.K, kern_param.A_type,
                kern_param.B_type, kern_param.C_type);

        megdnn::matmul::GemmInterleaved<x86::matmul::gemm_sse_s8s8s32_4x8x2>(
                kern_param.M, kern_param.N, kern_param.K, kern_param.trA,
                kern_param.trB, strategy, cacheline)
                .execute(kern_param.A<dt_int8>(), kern_param.LDA,
                         kern_param.B<dt_int8>(), kern_param.LDB,
                         kern_param.C<dt_int32>(), kern_param.LDC,
                         kern_param.workspace_ptr);
    }
    MIDOUT_END();
}

}  // namespace

MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x32AVX2M4N16K2::get_kern(
        const KernSizeParam&) const {
    return gemm_s8s8s32_avx2_4x16x2;
}
bool MatrixMulImpl::AlgoInt8x8x32AVX2M4N16K2::usable(
        const KernSizeParam& kern_size_param) const {
    return kern_size_param.A_type.enumv() == kern_size_param.B_type.enumv() &&
           ((kern_size_param.A_type.enumv() == DTypeEnum::Int8 &&
             kern_size_param.C_type.enumv() == DTypeEnum::Int32) ||
            (kern_size_param.A_type.enumv() == DTypeEnum::QuantizedS8 &&
             kern_size_param.C_type.enumv() == DTypeEnum::QuantizedS32)) &&
           kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
           is_supported(SIMDType::AVX2);
}
size_t MatrixMulImpl::AlgoInt8x8x32AVX2M4N16K2::get_workspace(
        const KernSizeParam& kern_param) const {
    constexpr int cacheline = 64;
    const size_t m = kern_param.M;
    const size_t n = kern_param.N;
    const size_t k = kern_param.K;
    const bool trans_a = kern_param.trA;
    const bool trans_b = kern_param.trB;
    auto a_type = kern_param.A_type;
    auto b_type = kern_param.B_type;
    auto c_type = kern_param.C_type;
    x86::matmul::gemm_avx2_s8s8s32_4x16x2 strategy(m, n, k, a_type, b_type,
                                                   c_type);

    return megdnn::matmul::GemmInterleaved<
                   x86::matmul::gemm_avx2_s8s8s32_4x16x2>(
                   m, n, k, trans_a, trans_b, strategy, cacheline)
            .get_workspace_size();
}
355 356 357
MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL_DETAIL(
        AlgoInt8x8x32AVX2M4N16K2, megdnn_x86_matmul_kern, 8,
        x86::matmul::gemm_avx2_s8s8s32_4x16x2, dt_int8, dt_int32, dt_int16);
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391

MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x32AVX2M2N4K16::get_kern(
        const KernSizeParam&) const {
    return gemm_s8s8s32_avx2_2x4x16;
}
bool MatrixMulImpl::AlgoInt8x8x32AVX2M2N4K16::usable(
        const KernSizeParam& kern_size_param) const {
    return kern_size_param.A_type.enumv() == kern_size_param.B_type.enumv() &&
           ((kern_size_param.A_type.enumv() == DTypeEnum::Int8 &&
             kern_size_param.C_type.enumv() == DTypeEnum::Int32) ||
            (kern_size_param.A_type.enumv() == DTypeEnum::QuantizedS8 &&
             kern_size_param.C_type.enumv() == DTypeEnum::QuantizedS32)) &&
           kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
           is_supported(SIMDType::AVX2);
}
size_t MatrixMulImpl::AlgoInt8x8x32AVX2M2N4K16::get_workspace(
        const KernSizeParam& kern_param) const {
    constexpr int cacheline = 64;
    const size_t m = kern_param.M;
    const size_t n = kern_param.N;
    const size_t k = kern_param.K;
    const bool trans_a = kern_param.trA;
    const bool trans_b = kern_param.trB;
    auto a_type = kern_param.A_type;
    auto b_type = kern_param.B_type;
    auto c_type = kern_param.C_type;
    x86::matmul::gemm_avx2_s8s8s32_2x4x16 strategy(m, n, k, a_type, b_type,
                                                   c_type);

    return megdnn::matmul::GemmInterleaved<
                   x86::matmul::gemm_avx2_s8s8s32_2x4x16>(
                   m, n, k, trans_a, trans_b, strategy, cacheline)
            .get_workspace_size();
}
392 393 394 395
MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL(AlgoInt8x8x32AVX2M2N4K16,
                                     megdnn_x86_matmul_kern, 8,
                                     x86::matmul::gemm_avx2_s8s8s32_2x4x16,
                                     dt_int8, dt_int32);
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429

/*************************AlgoInt8x8x32SSEM4N8K2********************/
MatrixMulImpl::kern_t MatrixMulImpl::AlgoInt8x8x32SSEM4N8K2::get_kern(
        const KernSizeParam&) const {
    return gemm_s8s8s32_sse_4x8x2;
}
bool MatrixMulImpl::AlgoInt8x8x32SSEM4N8K2::usable(
        const KernSizeParam& kern_size_param) const {
    return kern_size_param.A_type.enumv() == kern_size_param.B_type.enumv() &&
           ((kern_size_param.A_type.enumv() == DTypeEnum::Int8 &&
             kern_size_param.C_type.enumv() == DTypeEnum::Int32) ||
            (kern_size_param.A_type.enumv() == DTypeEnum::QuantizedS8 &&
             kern_size_param.C_type.enumv() == DTypeEnum::QuantizedS32)) &&
           kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
           is_supported(SIMDType::SSE4_1);
}
size_t MatrixMulImpl::AlgoInt8x8x32SSEM4N8K2::get_workspace(
        const KernSizeParam& kern_param) const {
    constexpr int cacheline = 64;
    const size_t m = kern_param.M;
    const size_t n = kern_param.N;
    const size_t k = kern_param.K;
    const bool trans_a = kern_param.trA;
    const bool trans_b = kern_param.trB;
    auto a_type = kern_param.A_type;
    auto b_type = kern_param.B_type;
    auto c_type = kern_param.C_type;
    x86::matmul::gemm_sse_s8s8s32_4x8x2 strategy(m, n, k, a_type, b_type,
                                                 c_type);

    return megdnn::matmul::GemmInterleaved<x86::matmul::gemm_sse_s8s8s32_4x8x2>(
                   m, n, k, trans_a, trans_b, strategy, cacheline)
            .get_workspace_size();
}
430 431 432 433
MEGDNN_REG_GEMM_FUNC_FOR_IM2COL_IMPL_DETAIL(AlgoInt8x8x32SSEM4N8K2,
                                            megdnn_x86_matmul_kern, 9,
                                            x86::matmul::gemm_sse_s8s8s32_4x8x2,
                                            dt_int8, dt_int32, dt_int16);
434

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
/*************************AlgoF32MK8_8x8********************/
MatrixMulImpl::kern_t MatrixMulImpl::AlgoF32MK8_8x8::get_kern(
        const KernSizeParam&) const {
    auto f32_kern_mk8_8x8 = [](const MatrixMulImpl::KernParam& kern_param) {
        MIDOUT_BEGIN(megdnn_x86_matmul_kern_mk8_8x8, midout_iv(0)) {
            auto M = kern_param.M, N = kern_param.N, K = kern_param.K;
            auto trA = kern_param.trA, trB = kern_param.trB;
            auto LDA = kern_param.LDA, LDB = kern_param.LDB,
                 LDC = kern_param.LDC;
            auto A_type = kern_param.A_type, B_type = kern_param.B_type,
                 C_type = kern_param.C_type;
            const auto Aptr = kern_param.A<float>(),
                       Bptr = kern_param.B<float>();
            auto Cptr = kern_param.C<float>();

            x86::matmul::sgemm_nopack_8x8_avx2 strategy(A_type, B_type, C_type);
            megdnn::matmul::GemmInterleaved<x86::matmul::sgemm_nopack_8x8_avx2,
                                            false>(M, N, K, trA, trB, strategy)
                    .execute(Aptr, LDA, Bptr, LDB, Cptr, LDC,
                             kern_param.workspace_ptr);
        }
        MIDOUT_END();
    };
    return f32_kern_mk8_8x8;
}

bool MatrixMulImpl::AlgoF32MK8_8x8::usable(
        const KernSizeParam& kern_size_param) const {
    constexpr static size_t MB = 8;
    constexpr static size_t KB = 8;
    return kern_size_param.compute_mode == Param::ComputeMode::DEFAULT &&
           kern_size_param.B_type.enumv() == kern_size_param.A_type.enumv() &&
           kern_size_param.C_type.enumv() == kern_size_param.A_type.enumv() &&
           kern_size_param.A_type.enumv() == DTypeEnum::Float32 &&
           kern_size_param.format == param::MatrixMul::Format::MK8 &&
           !kern_size_param.trA && !kern_size_param.trB &&
           kern_size_param.M % MB == 0 && kern_size_param.K % KB == 0 &&
           is_supported(SIMDType::FMA);
}

size_t MatrixMulImpl::AlgoF32MK8_8x8::get_workspace(
        const KernSizeParam& kern_param) const {
    MIDOUT_BEGIN(megdnn_x86_matmul_kern_mk8_8x8, midout_iv(0)) {
        const size_t m = kern_param.M;
        const size_t n = kern_param.N;
        const size_t k = kern_param.K;
        const bool trans_a = kern_param.trA;
        const bool trans_b = kern_param.trB;
        auto a_type = kern_param.A_type;
        auto b_type = kern_param.B_type;
        auto c_type = kern_param.C_type;
        x86::matmul::sgemm_nopack_8x8_avx2 strategy(a_type, b_type, c_type);
        return megdnn::matmul::GemmInterleaved<
                       x86::matmul::sgemm_nopack_8x8_avx2, false>(
                       m, n, k, trans_a, trans_b, strategy)
                .get_workspace_size();
    }
    MIDOUT_END();
}

// vim: syntax=cpp.doxygen