test_tensor.py 8.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import numpy as np
import pytest

import megengine.functional as F
from megengine import Buffer, Parameter, is_cuda_available, tensor
from megengine.core.tensor.utils import astensor1d
from megengine.test import assertTensorClose


def _default_compare_fn(x, y):
    assertTensorClose(x.numpy(), y)


def opr_test(cases, func, compare_fn=_default_compare_fn, ref_fn=None, **kwargs):
    """
    func: the function to run opr.
    compare_fn: the function to compare the result and expected, use assertTensorClose if None.
    ref_fn: the function to generate expected data, should assign output if None.
    cases: the list which have dict element, the list length should be 2 for dynamic shape test.
           and the dict should have input,
           and should have output if ref_fn is None.
           should use list for multiple inputs and outputs for each case.
    kwargs: The additional kwargs for opr func.

    simple examples:

        dtype = np.float32
        cases = [{"input": [10, 20]}, {"input": [20, 30]}]
        opr_test(cases,
                 F.eye,
                 ref_fn=lambda n, m: np.eye(n, m).astype(dtype),
                 dtype=dtype)

    """

    def check_results(results, expected):
        if not isinstance(results, tuple):
            results = (results,)
        for r, e in zip(results, expected):
            compare_fn(r, e)

    def get_param(cases, idx):
        case = cases[idx]
        inp = case.get("input", None)
        outp = case.get("output", None)
        if inp is None:
            raise ValueError("the test case should have input")
        if not isinstance(inp, list):
            inp = (inp,)
        else:
            inp = tuple(inp)
        if ref_fn is not None and callable(ref_fn):
            outp = ref_fn(*inp)
        if outp is None:
            raise ValueError("the test case should have output or reference function")
        if not isinstance(outp, list):
            outp = (outp,)
        else:
            outp = tuple(outp)

        return inp, outp

    if len(cases) == 0:
        raise ValueError("should give one case at least")

    if not callable(func):
        raise ValueError("the input func should be callable")

    inp, outp = get_param(cases, 0)
    inp_tensor = [tensor(inpi) for inpi in inp]

    results = func(*inp_tensor, **kwargs)
    check_results(results, outp)


def test_eye():
    dtype = np.float32
    cases = [{"input": [10, 20]}, {"input": [20, 30]}]
    for case in cases:
        assertTensorClose(
            F.eye(case["input"], dtype=dtype).numpy(),
            np.eye(*case["input"]).astype(dtype),
        )


def test_concat():
    def get_data_shape(length: int):
        return (length, 2, 3)

    data1 = np.random.random(get_data_shape(5)).astype("float32")
    data2 = np.random.random(get_data_shape(6)).astype("float32")
    data3 = np.random.random(get_data_shape(7)).astype("float32")

    def run(data1, data2):
        return F.concat([data1, data2])

    cases = [{"input": [data1, data2]}, {"input": [data1, data3]}]
    opr_test(cases, run, ref_fn=lambda x, y: np.concatenate([x, y]))


def test_stack():
    data1 = np.random.random((3, 2, 2)).astype("float32")
    data2 = np.random.random((3, 2, 2)).astype("float32")
    data3 = np.random.random((3, 2, 2)).astype("float32")

    cases = [{"input": [data1, data2]}, {"input": [data1, data3]}]
    for ai in range(3):

        def run(data1, data2):
            return F.stack([data1, data2], axis=ai)

        opr_test(cases, run, ref_fn=lambda x, y: np.stack([x, y], axis=ai))


def test_split():
    data = np.random.random((2, 3, 4, 5)).astype(np.float32)
    mge_out1 = F.split(tensor(data), 2, axis=3)
    mge_out2 = F.split(tensor(data), [3, 5], axis=3)

    np_out = np.split(data, [3, 5], axis=3)

    np.testing.assert_equal(mge_out1[0].numpy(), mge_out2[0].numpy())
    np.testing.assert_equal(mge_out1[0].numpy(), np_out[0])


def test_reshape():
    x = np.arange(6, dtype="float32")
    xx = tensor(x)
    y = x.reshape(1, 2, 3)

    for shape in [
        (1, 2, 3),
        (1, -1, 3),
        (1, tensor(-1), 3),
        np.array([1, -1, 3], dtype="int32"),
        tensor([1, -1, 3]),
    ]:
        yy = F.reshape(xx, shape)
        np.testing.assert_equal(yy.numpy(), y)


def test_squeeze():
    x = np.arange(6, dtype="float32").reshape(1, 2, 3, 1)
    xx = tensor(x)

    for axis in [None, 3, -4, (3, -4)]:
        y = np.squeeze(x, axis)
        yy = F.squeeze(xx, axis)
        np.testing.assert_equal(y, yy.numpy())


def test_expand_dims():
    x = np.arange(6, dtype="float32").reshape(2, 3)
    xx = tensor(x)

    for axis in [2, -3, (3, -4), (1, -4)]:
        y = np.expand_dims(x, axis)
        yy = F.expand_dims(xx, axis)
        np.testing.assert_equal(y, yy.numpy())


def test_elemwise_dtype_promotion():
    x = np.random.rand(2, 3).astype("float32")
    y = np.random.rand(1, 3).astype("float16")
    xx = tensor(x)
    yy = tensor(y)
    z = xx * yy
    np.testing.assert_equal(z.numpy(), x * y)

    z = xx + y
    np.testing.assert_equal(z.numpy(), x + y)

    z = x - yy
    np.testing.assert_equal(z.numpy(), x - y)


def test_linspace():
    cases = [
        {"input": [1, 9, 9]},
        {"input": [3, 10, 8]},
    ]
    opr_test(
        cases,
        F.linspace,
        ref_fn=lambda start, end, step: np.linspace(start, end, step, dtype=np.float32),
    )

    cases = [
        {"input": [9, 1, 9]},
        {"input": [10, 3, 8]},
    ]
    opr_test(
        cases,
        F.linspace,
        ref_fn=lambda start, end, step: np.linspace(start, end, step, dtype=np.float32),
    )


def test_arange():
    cases = [
        {"input": [1, 9, 1]},
        {"input": [2, 10, 2]},
    ]
    opr_test(
        cases,
        F.arange,
        ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
    )

    cases = [
        {"input": [9, 1, -1]},
        {"input": [10, 2, -2]},
    ]
    opr_test(
        cases,
        F.arange,
        ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
    )

    cases = [
        {"input": [9.3, 1.2, -0.5]},
        {"input": [10.3, 2.1, -1.7]},
    ]
    opr_test(
        cases,
        F.arange,
        ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
    )


def test_round():
    data1_shape = (15,)
    data2_shape = (25,)
    data1 = np.random.random(data1_shape).astype(np.float32)
    data2 = np.random.random(data2_shape).astype(np.float32)

    cases = [{"input": data1}, {"input": data2}]
    opr_test(cases, F.round, ref_fn=np.round)


def test_broadcast():
    input1_shape = (20, 30)
    output1_shape = (30, 20, 30)
    data1 = np.random.random(input1_shape).astype(np.float32)

    input2_shape = (10, 20)
    output2_shape = (20, 10, 20)
    data2 = np.random.random(input2_shape).astype(np.float32)

    def compare_fn(x, y):
        assert x.numpy().shape == y

    cases = [
        {"input": [data1, output1_shape], "output": output1_shape},
        {"input": [data2, output2_shape], "output": output2_shape},
    ]
    opr_test(cases, F.broadcast, compare_fn=compare_fn)


def test_utils_astensor1d():
    reference = tensor(0)

    # literal
    x = [1, 2, 3]
    for dtype in [None, "float32"]:
        xx = astensor1d(x, reference, dtype=dtype)
        assert type(xx) is tensor
        np.testing.assert_equal(xx.numpy(), x)

    # numpy array
    x = np.asarray([1, 2, 3], dtype="int32")
    for dtype in [None, "float32"]:
        xx = astensor1d(x, reference, dtype=dtype)
        assert type(xx) is tensor
        np.testing.assert_equal(xx.numpy(), x.astype(dtype) if dtype else x)

    # tensor
    x = tensor([1, 2, 3], dtype="int32")
    for dtype in [None, "float32"]:
        xx = astensor1d(x, reference, dtype=dtype)
        assert type(xx) is tensor
        np.testing.assert_equal(xx.numpy(), x.numpy())

    # mixed
    x = [1, tensor(2), 3]
    for dtype in [None, "float32"]:
        xx = astensor1d(x, reference, dtype=dtype)
        assert type(xx) is tensor
        np.testing.assert_equal(xx.numpy(), [1, 2, 3])


def test_device():
    x = tensor([1, 2, 3], dtype="float32")

    y1 = F.eye(x.shape, dtype="float32")
    y2 = F.eye(x.shape, dtype="float32", device=None)
    np.testing.assert_almost_equal(y1.numpy(), y2.numpy())

    y3 = F.eye(x.shape, dtype="float32", device="xpux")
    y4 = F.eye(x.shape, dtype="float32", device=x.device.to_c())
    np.testing.assert_almost_equal(y3.numpy(), y4.numpy())

    y5 = F.full((3, 2), 4, device=x.device)
    y6 = F.full((3, 2), 4, device="xpux")
    np.testing.assert_almost_equal(y5.numpy(), y6.numpy())