opr_impl.cpp 32.7 KB
Newer Older
1
/**
2
 g * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
3
 *
4
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
5 6 7
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
8 9
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
10
 */
M
Megvii Engine Team 已提交
11
#include "src/fallback/conv_bias/opr_impl.h"
12 13 14 15 16
#include "src/common/algo_chooser.h"
#include "src/common/metahelper.h"
#include "src/common/opr_delegate.h"
#include "src/common/utils.h"
#include "src/fallback/conv_bias/algos.h"
17
#include "src/fallback/conv_bias/conv1x1/algos.h"
18
#include "src/fallback/conv_bias/conv1x1/algos_conv1x1_gemv.h"
19
#include "src/fallback/conv_bias/gi/fp32/algos.h"
20
#include "src/fallback/conv_bias/im2col/algos.h"
21
#include "src/fallback/convolution/opr_impl.h"
22 23 24
#include "src/naive/convolution/algorithms.h"
#include "src/naive/handle.h"

25 26 27 28 29 30 31 32
#if MEGDNN_X86
#include "src/x86/conv_bias/opr_impl.h"
#elif MEGDNN_AARCH64
#include "src/aarch64/conv_bias/opr_impl.h"
#elif MEGDNN_ARMV7
#include "src/armv7/conv_bias/opr_impl.h"
#endif

33 34 35 36 37
#include <cstring>

using namespace megdnn;
using namespace fallback;

38 39 40 41 42 43 44 45
namespace {

//! TODO: imp is_fallback_exclude_gi_or_naive
bool is_naive(const detail::Algorithm* algo) {
    return algo->handle_type() == Handle::HandleType::NAIVE;
}
}  // anonymous namespace

46
size_t megdnn::fallback::pack_size(param::ConvBias::Format format) {
47
    switch (format) {
48
        case param::ConvBias::Format::NCHW44:
49
        case param::ConvBias::Format::NCHW44_DOT:
50 51 52 53 54 55 56 57 58
        case param::ConvBias::Format::NCHW4:
            return 4_z;
        case param::ConvBias::Format::NCHW88:
            return 8_z;
        default:
            return 1_z;
    }
}

59 60 61 62 63 64 65 66
namespace {
template <typename T>
void incr_ptr(T*& dst, ptrdiff_t delta) {
    dst = reinterpret_cast<T*>(reinterpret_cast<uintptr_t>(dst) + delta);
}

}  // namespace

67 68 69 70 71 72 73 74 75 76 77 78 79
#if MEGDNN_X86
#define SKIP_GEMV()
//! As we haven't direct conv for int8x8x16 yet, if we disable gemv here, it may
//! fallback to naive implementation, which may cause performance very low, so
//! here we just enable im2col for gemv in x86 backend.
//! FIXME: remove it when we add direct conv support for int8x8x16
#else
#define SKIP_GEMV()                                                            \
    if (algo->algoset() == MatrixMulImpl::AlgoBase::AlgoSet::ALGO_TYPE_GEMV) { \
        continue;                                                              \
    }
#endif

80 81 82
class ConvBiasImpl::AlgoPack : NonCopyableObj {
    AlgoNaive algo_naive;
    SmallVector<std::unique_ptr<AlgoBase>> refhold;
83 84
    SmallVector<AlgoBase*> m_all_algos;
    AlgoBase::Mapper m_all_algos_map;
85 86 87 88 89 90 91 92 93
    SmallVector<fallback::ConvBiasImpl::AlgoBase*> m_gi_winograd_algos;

    AlgoF32DirectNCHWNCHW44 f32_direct_stride2_nchw_nchw44;
    AlgoF32ChannelWiseNCHW44 f32_chanel_wise_nchw44;
    AlgoF32DirectNCHW44 f32_direct_nchw44;

    AlgoF32Direct f32_direct;
    AlgoF32DirectStride2 f32_direct_stride2;
    AlgoF32DirectStride1 f32_direct_stride1;
94 95 96

public:
    AlgoPack() {
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
        // fallback gi fp32 algo
        m_all_algos.emplace_back(&f32_direct_stride2_nchw_nchw44);
        m_all_algos.emplace_back(&f32_chanel_wise_nchw44);
        m_all_algos.emplace_back(&f32_direct_nchw44);
        m_all_algos.emplace_back(&f32_direct_stride1);
        m_all_algos.emplace_back(&f32_direct_stride2);
        m_all_algos.emplace_back(&f32_direct);

        static CpuOprDelegationStorage<2> storage;
        auto matmul_opr = storage.get<MatrixMul, 0>();
        using MatmulFormat = param::MatrixMul::Format;
        auto&& matmul_algos =
                static_cast<fallback::MatrixMulImpl*>(matmul_opr)
                        ->select_algo_type({AlgoDataType::FLOAT32, MatmulFormat::MK4});
        for (auto&& algo : matmul_algos) {
            if (is_naive(algo))
                continue;
            for (uint32_t tile_size : {16, 8, 24, 32}) {
                refhold.emplace_back(new AlgoFP32WinogradF23_4x4(
                        static_cast<fallback::MatrixMulImpl::AlgoBase*>(algo),
                        tile_size));
                m_gi_winograd_algos.emplace_back(refhold.back().get());
                refhold.emplace_back(new AlgoFP32WinogradF63_4x4(
                        static_cast<fallback::MatrixMulImpl::AlgoBase*>(algo),
                        tile_size));
                m_gi_winograd_algos.emplace_back(refhold.back().get());
                refhold.emplace_back(new AlgoFP32WinogradF63_4x4_NCHW44(
                        static_cast<fallback::MatrixMulImpl::AlgoBase*>(algo),
                        tile_size));
                m_gi_winograd_algos.emplace_back(refhold.back().get());
                refhold.emplace_back(new AlgoFP32WinogradF23_4x4_NCHW44(
                        static_cast<fallback::MatrixMulImpl::AlgoBase*>(algo),
                        tile_size));
                m_gi_winograd_algos.emplace_back(refhold.back().get());
//! uncomment this when low precision mode is done
#if 0
                refhold.emplace_back(new AlgoFP32WinogradF73_4x4_NCHW44(
                        static_cast<fallback::MatrixMulImpl::AlgoBase*>(algo),
                        tile_size));
                m_gi_winograd_algos.emplace_back(refhold.back().get());
#endif
            }
        }

        //! TODO: move arm_v7 MatrixMulImpl::AlgoF32 matmul to gi fallback, for nchw
        //! prefetch algo, also need update dnn/test/common/conv_bias.cpp:check_winograd
        matmul_algos = static_cast<fallback::MatrixMulImpl*>(matmul_opr)
                               ->select_algo_type(
                                       {AlgoDataType::FLOAT32, MatmulFormat::DEFAULT});
        for (auto&& algo : matmul_algos) {
            if (is_naive(algo))
                continue;
            for (uint32_t tile_size : {16, 8, 24, 32}) {
                refhold.emplace_back(new AlgoFP32WinogradF63(
                        static_cast<fallback::MatrixMulImpl::AlgoBase*>(algo),
                        tile_size));
                m_gi_winograd_algos.emplace_back(refhold.back().get());
                refhold.emplace_back(new AlgoFP32WinogradF54(
                        static_cast<fallback::MatrixMulImpl::AlgoBase*>(algo),
                        tile_size));
                m_gi_winograd_algos.emplace_back(refhold.back().get());
                refhold.emplace_back(new AlgoFP32WinogradF45(
                        static_cast<fallback::MatrixMulImpl::AlgoBase*>(algo),
                        tile_size));
                m_gi_winograd_algos.emplace_back(refhold.back().get());
            }
        }
        for (auto&& algo : m_gi_winograd_algos) {
            m_all_algos.emplace_back(algo);
        }
        // end fallback gi fp32 algo

169
        refhold.emplace_back(new AlgoConv1x1Gemv());
170
        m_all_algos.emplace_back(refhold.back().get());
171

172 173
        matmul_algos = static_cast<fallback::MatrixMulImpl*>(matmul_opr)
                               ->get_all_packed_algo();
174
        for (auto&& algo : matmul_algos) {
175 176 177 178 179 180
#if MEGDNN_X86
//! As we haven't direct conv for int8x8x16 yet, if we disable gemv here, it may
//! fallback to naive implementation, which may cause performance very low, so
//! here we just enable im2col for gemv in x86 backend.
//! FIXME: remove it when we add direct conv support for int8x8x16
#else
M
Megvii Engine Team 已提交
181
            if (algo->algoset() == MatrixMulImpl::AlgoBase::AlgoSet::ALGO_TYPE_GEMV) {
182 183
                continue;
            }
184 185
#endif

186 187 188 189
//! As we haven't riscv64 postprocess yet, im2col and conv1x1 can not pass ci
//! test. so we just disable all im2col and conv1x1 in riscv64
//! FIXME: remove it when impl postprocess for riscv64
#if !MEGDNN_RISCV64
190 191
            for (size_t ohw_tile_size : {192, 384, 96, 48, 24}) {
                refhold.emplace_back(new AlgoIm2col(
M
Megvii Engine Team 已提交
192
                        static_cast<MatrixMulImpl::AlgoBase*>(algo), ohw_tile_size));
193
                m_all_algos.emplace_back(refhold.back().get());
194
            }
195
            for (size_t oc_tile_size : {48, 24}) {
196
                refhold.emplace_back(new AlgoConv1x1(
M
Megvii Engine Team 已提交
197
                        static_cast<MatrixMulImpl::AlgoBase*>(algo), oc_tile_size));
198
                m_all_algos.emplace_back(refhold.back().get());
199
            }
200 201
#endif

202
#if 0
203 204 205 206 207
        //! As these algos maybe very slow, it will make fastrun search slow, so
        //! we disable it, but for the test of strategyhelper, we just keep it.
        //! FIXME: I do not know a better way to do it.
            refhold.emplace_back(new AlgoWinogradF32(
                    static_cast<MatrixMulImpl::AlgoBase*>(algo)));
208
            m_all_algos.emplace_back(refhold.back().get());
209 210
            refhold.emplace_back(new AlgoWinogradF32_4x4(
                    static_cast<MatrixMulImpl::AlgoBase*>(algo)));
211
            m_all_algos.emplace_back(refhold.back().get());
212 213
            refhold.emplace_back(new AlgoWinogradQS8(
                    static_cast<MatrixMulImpl::AlgoBase*>(algo)));
214
            m_all_algos.emplace_back(refhold.back().get());
215 216
            refhold.emplace_back(new AlgoWinogradQS8_8x8(
                    static_cast<MatrixMulImpl::AlgoBase*>(algo)));
217
            m_all_algos.emplace_back(refhold.back().get());
218 219
#endif
        }
220 221 222 223 224
        m_all_algos.emplace_back(&algo_naive);

        for (auto&& algo : m_all_algos) {
            m_all_algos_map.emplace(algo->info().desc, algo);
        }
225
    }
226 227
    const SmallVector<AlgoBase*>& all_algos() const { return m_all_algos; }
    const AlgoBase::Mapper& all_algos_map() const { return m_all_algos_map; }
228 229
};

230 231 232 233 234 235 236
const ConvBiasImpl::AlgoPack& ConvBiasImpl::algo_pack() {
    static AlgoPack algo_pack;
    return algo_pack;
}

SmallVector<ConvBiasImpl::AlgoBase*> ConvBiasImpl::get_all_packed_algo() {
    return algo_pack().all_algos();
237
}
238 239 240

SmallVector<ConvBiasImpl::AlgoBase*> ConvBiasImpl::select_algo_type(
        ConvAlgoTypePack target_type) {
M
Megvii Engine Team 已提交
241 242 243
    megdnn_assert(
            nr_type_contain(target_type.data_type),
            "ConvBias algo selection only support one type");
244
    SmallVector<ConvBiasImpl::AlgoBase*> algos;
245
    for (auto&& algo : get_all_packed_algo()) {
246 247 248 249 250 251 252 253 254
        auto algo_type = algo->get_algo_type();
        if (contain_data_type(algo_type.data_type, target_type.data_type) &&
            algo_type.algo_category == target_type.algo_category) {
            algos.push_back(algo);
        }
    }
    return algos;
}

255 256 257
bool ConvBiasImpl::is_naive_algo(ConvBiasImpl::Algorithm* algo) {
    return algo == nullptr || strcmp(algo->name(), "DEFAULT") == 0;
}
258

M
Megvii Engine Team 已提交
259 260 261 262 263 264 265 266 267 268 269
#define NCB_ALGO_FUNC(name, algo, param) static_cast<AlgoBase*>(algo)->name(param)

void ConvBiasImpl::exec(
        _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_in bias,
        _megdnn_tensor_in z, _megdnn_tensor_out dst,
        const PreprocessedFilter* preprocessed_filter, _megdnn_workspace workspace) {
    check_exec(
            src.layout, filter.layout, bias.layout, z.layout, dst.layout,
            workspace.size, preprocessed_filter);
    auto fparam =
            make_ncb_kern_param(src, filter, bias, dst, workspace, preprocessed_filter);
270
    auto&& algo = get_algorithm(fparam, workspace.size);
271
    if (!is_naive_algo(algo) &&
272
        NCB_ALGO_FUNC(get_workspace, algo, fparam) <= workspace.size) {
273 274
        exec_with_ncb_kern(fparam, algo);
    } else {
M
Megvii Engine Team 已提交
275 276
        naive::ConvBiasForwardImpl::exec(
                src, filter, bias, z, dst, preprocessed_filter, workspace);
277 278 279
    }
}

M
Megvii Engine Team 已提交
280 281 282 283 284
void ConvBiasImpl::exec_preprocess(
        const TensorLayout& src_layout, _megdnn_tensor_in filter,
        _megdnn_tensor_in bias, const TensorLayout& z_layout,
        const TensorLayout& dst_layout, PreprocessedFilter* preprocessed_filter,
        _megdnn_workspace workspace) {
285 286 287
    //! exec_preprocess currently only support preprocess weights and bias
    //! before exec, src/dst/z will be ignored, just set to nullptr
    TensorND src{nullptr, src_layout}, dst{nullptr, dst_layout};
M
Megvii Engine Team 已提交
288 289
    auto fparam =
            make_ncb_kern_param(src, filter, bias, dst, workspace, preprocessed_filter);
290
    //! should not pass workspace_size limit otherwise can not find match algo
291 292
    auto&& algo = get_algorithm(fparam);
    if (!is_naive_algo(algo) &&
M
Megvii Engine Team 已提交
293
        NCB_ALGO_FUNC(get_preprocess_workspace, algo, fparam) <= workspace.size) {
294 295 296
        exec_preprocess_with_ncb_kern(fparam, algo);
    } else {
        naive::ConvBiasForwardImpl::exec_preprocess(
M
Megvii Engine Team 已提交
297 298
                src_layout, filter, bias, z_layout, dst_layout, preprocessed_filter,
                workspace);
299 300 301
    }
}

302
size_t ConvBiasImpl::get_workspace_in_bytes(
M
Megvii Engine Team 已提交
303 304
        const TensorLayout& src, const TensorLayout& filter, const TensorLayout& bias,
        const TensorLayout& z, const TensorLayout& dst,
305
        const PreprocessedFilter* preprocessed_filter) {
306
    TensorLayoutArray layouts{src, filter, bias, z, dst};
307
    AlgorithmCache::Key key{this->handle(), this->get_opr_type(),
M
Megvii Engine Team 已提交
308 309
                            layouts.data(), layouts.size(),
                            &this->param(), sizeof(this->param())};
310
    auto rst = AlgorithmCache::instance().get(key);
311 312 313 314
    if (rst.policy.algo.valid()) {
        return rst.workspace;
    }

M
Megvii Engine Team 已提交
315
    auto fparam = make_ncb_kern_size_param(src, filter, bias, dst, preprocessed_filter);
316
    auto&& algo = get_algorithm(fparam);
317
    if (is_naive_algo(algo)) {
318 319
        return naive::ConvBiasForwardImpl::get_workspace_in_bytes(
                src, filter, bias, z, dst, preprocessed_filter);
320
    } else {
321 322 323 324 325
        return NCB_ALGO_FUNC(get_workspace, algo, fparam);
    }
}

size_t ConvBiasImpl::get_preprocess_workspace_in_bytes(
M
Megvii Engine Team 已提交
326 327
        const TensorLayout& src, const TensorLayout& filter, const TensorLayout& bias,
        const TensorLayout& z, const TensorLayout& dst) {
328
    auto fparam = make_ncb_kern_size_param(src, filter, bias, dst, nullptr);
329
    auto&& algo = get_algorithm(fparam);
330 331 332 333 334 335 336 337 338
    if (is_naive_algo(algo)) {
        return naive::ConvBiasForwardImpl::get_preprocess_workspace_in_bytes(
                src, filter, bias, z, dst);
    } else {
        return NCB_ALGO_FUNC(get_preprocess_workspace, algo, fparam);
    }
}

SmallVector<TensorLayout> ConvBiasImpl::deduce_preprocessed_filter_layout(
M
Megvii Engine Team 已提交
339 340
        const TensorLayout& src, const TensorLayout& filter, const TensorLayout& bias,
        const TensorLayout& z, const TensorLayout& dst) {
341
    auto fparam = make_ncb_kern_size_param(src, filter, bias, dst, nullptr);
342
    auto&& algo = get_algorithm(fparam);
343 344 345 346 347
    if (is_naive_algo(algo)) {
        return naive::ConvBiasForwardImpl::deduce_preprocessed_filter_layout(
                src, filter, bias, z, dst);
    } else {
        return NCB_ALGO_FUNC(deduce_preprocessed_filter_layout, algo, fparam);
348 349 350 351
    }
}

std::vector<ConvBiasImpl::Algorithm*> ConvBiasImpl::get_all_algorithms(
M
Megvii Engine Team 已提交
352 353
        const TensorLayout& src, const TensorLayout& filter, const TensorLayout& bias,
        const TensorLayout& z, const TensorLayout& dst) {
354
    auto fparam = make_ncb_kern_size_param(src, filter, bias, dst, nullptr);
355 356
    auto ret = get_all_algorithms_with_ncb(fparam);
    if (ret.empty()) {
M
Megvii Engine Team 已提交
357 358
        return naive::ConvBiasForwardImpl::get_all_algorithms_safe(
                src, filter, bias, z, dst);
359 360 361
    }
    return ret;
}
362
std::vector<ConvBiasImpl::Algorithm*> ConvBiasImpl::get_all_algorithms_safe(
M
Megvii Engine Team 已提交
363 364 365
        const TensorLayout& src, const TensorLayout& filter, const TensorLayout& bias,
        const TensorLayout& z, const TensorLayout& dst) {
    auto ret_safe = ConvBiasImpl::get_all_algorithms(src, filter, bias, z, dst);
366 367
    return ret_safe;
}
368 369

ConvBiasImpl::Algorithm* ConvBiasImpl::get_algorithm_heuristic(
M
Megvii Engine Team 已提交
370 371 372
        const TensorLayout& src, const TensorLayout& filter, const TensorLayout& bias,
        const TensorLayout& z, const TensorLayout& dst, size_t workspace_limit_in_bytes,
        const AlgoAttribute& positive_attr, const AlgoAttribute& negative_attr) {
373
    auto fparam = make_ncb_kern_size_param(src, filter, bias, dst, nullptr);
374
    auto result = get_algorithm_heuristic_with_ncb(
375
            fparam, workspace_limit_in_bytes, positive_attr, negative_attr);
376 377
    if (result == nullptr) {
        result = naive::ConvBiasForwardImpl::get_algorithm_heuristic(
M
Megvii Engine Team 已提交
378 379
                src, filter, bias, z, dst, workspace_limit_in_bytes, positive_attr,
                negative_attr);
380 381 382 383
    }
    return result;
}

384 385
ConvBiasImpl::Algorithm* ConvBiasImpl::get_algorithm_heuristic_with_ncb(
        const NCBKernSizeParam& param, size_t workspace_limit_in_bytes,
M
Megvii Engine Team 已提交
386
        const AlgoAttribute& positive_attr, const AlgoAttribute& negative_attr) {
387 388 389
    if (ConvBiasImpl::param().format == Param::Format::NHWCD4) {
        return nullptr;
    }
390 391 392 393 394 395
    auto algo_data_type = param.deduce_algo_data_type();
    auto suggest_category_order = suggest_algo_category_order(param);
    for (auto category : suggest_category_order) {
        auto&& origin_algos = select_algo_type({algo_data_type, category});
        ConvBiasImpl::Algorithm* heuristic_algo = nullptr;
        for (auto i : origin_algos) {
396
            bool usable_attribute = static_cast<AlgoBase*>(i)->usable_attribute(
397 398
                    param, AlgoSelectionStrategy::HEURISTIC, positive_attr,
                    negative_attr);
M
Megvii Engine Team 已提交
399 400
            if (usable_attribute && static_cast<AlgoBase*>(i)->get_workspace(param) <=
                                            workspace_limit_in_bytes) {
401 402 403 404 405 406 407 408 409 410 411 412 413
                //! store the first usable algo if no prefer algo, choose it as
                //! the target algo
                if (!heuristic_algo) {
                    heuristic_algo = i;
                }
                //! choose the first prefer algo
                if (i->is_preferred(param)) {
                    return i;
                }
            }
        }
        if (heuristic_algo) {
            return heuristic_algo;
414 415 416 417 418
        }
    }
    return nullptr;
}

419
ConvBiasImpl::NCBKernSizeParam ConvBiasImpl::make_ncb_kern_size_param(
M
Megvii Engine Team 已提交
420 421
        const TensorLayout& src, const TensorLayout& filter, const TensorLayout& bias,
        const TensorLayout& dst, const PreprocessedFilter* preprocessed_filter) {
422
    auto safe_u32 = [](size_t v) -> uint32_t {
M
Megvii Engine Team 已提交
423 424
        megdnn_assert(
                v <= std::numeric_limits<uint32_t>::max(), "value too large: %zu", v);
425 426 427 428 429 430
        return v;
    };
    size_t spatial_pos;
    if (param().format == Param::Format::NCHW88 ||
        param().format == Param::Format::NCHW8 ||
        param().format == Param::Format::NCHW4 ||
431
        param().format == Param::Format::NCHW44 ||
432
        param().format == Param::Format::NCHW44_DOT ||
433 434
        param().format == Param::Format::NCHW ||
        param().format == Param::Format::NCHW32 ||
435
        param().format == Param::Format::NCHW64) {
436
        spatial_pos = 2;
M
Megvii Engine Team 已提交
437 438 439
    } else if (
            param().format == Param::Format::NHWC ||
            param().format == Param::Format::NHWCD4) {
440 441
        spatial_pos = 1;
    } else {
M
Megvii Engine Team 已提交
442
        megdnn_assert(0, "invalid conv format %d", static_cast<int>(param().format));
443 444 445 446 447 448 449 450 451 452 453 454
    }
    BiasMode bias_mode;
    if (bias.ndim == 0) {
        bias_mode = BiasMode::NO_BIAS;
    } else if (bias.eq_shape(dst)) {
        bias_mode = BiasMode::BIAS;
    } else {
        //! just check the ndim, the detail shape check is in check_exec
        megdnn_assert(bias.ndim == dst.ndim);
        bias_mode = BiasMode::BROADCAST_CHANNEL_BIAS;
    }

M
Megvii Engine Team 已提交
455 456 457 458
    static_assert(
            sizeof(CanonizedFilterMeta) == sizeof(ConvolutionImpl::CanonizedFilterMeta),
            "sizeof CanonizedFilterMeta in convolution and conv_bias "
            "should be equal");
459 460
    auto&& fm = check_layout_fwd(src, filter, dst);
    auto& conv_fm = reinterpret_cast<ConvolutionImpl::CanonizedFilterMeta&>(fm);
461

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
    size_t nr_threads = static_cast<naive::HandleImpl*>(handle())
                                ->megcore_dispatcher()
                                ->nr_threads();
    return {{safe_u32(src[0]),
             {{safe_u32(src[spatial_pos]), safe_u32(src[spatial_pos + 1])}},
             {{safe_u32(dst[spatial_pos]), safe_u32(dst[spatial_pos + 1])}},
             conv_fm,
             src.dtype,
             filter.dtype,
             dst.dtype,
             src.stride[0],
             dst.stride[0],
             {src.stride[0], src.stride[1], src.stride[2], src.stride[3]},
             {dst.stride[0], dst.stride[1], dst.stride[2], dst.stride[3]},
             param().compute_mode,
477 478 479
             nr_threads,
             reinterpret_cast<const ConvolutionForward::PreprocessedFilter*>(
                     preprocessed_filter)},
480 481 482 483 484 485 486 487
            bias.dtype,
            bias.stride[0],
            bias_mode,
            param().nonlineMode};
}

ConvBiasImpl::NCBKernParam ConvBiasImpl::make_ncb_kern_param(
        _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_in bias,
488 489
        _megdnn_tensor_out dst, _megdnn_workspace workspace,
        const PreprocessedFilter* preprocessed_filter) {
490
    NCBKernParam ret;
M
Megvii Engine Team 已提交
491 492
    static_cast<NCBKernSizeParam&>(ret) = make_ncb_kern_size_param(
            src.layout, filter.layout, bias.layout, dst.layout, preprocessed_filter);
493 494 495 496
    ret.src_ptr = src.get_ref_ptr();
    ret.filter_ptr = filter.get_ref_ptr();
    ret.bias_ptr = bias.get_ref_ptr();
    ret.dst_ptr = dst.get_ref_ptr();
497 498 499 500 501
    ret.workspace_ptr = workspace.raw_ptr;
    ret.workspace_size = workspace.size;
    return ret;
}

M
Megvii Engine Team 已提交
502 503
void ConvBiasImpl::exec_with_ncb_kern(
        const NCBKernParam& param, ConvBiasImpl::Algorithm* algo) {
504
    auto&& ncb_kerns = NCB_ALGO_FUNC(dispatch_kerns, algo, param);
505
    for (auto&& kernel : ncb_kerns) {
506
        auto run = [kernel, param](size_t index, size_t thread_id) {
507
            CpuNDRange ndrange_id(kernel.global_size, index);
508
            kernel.kern(param, {thread_id, ndrange_id});
509 510 511 512 513 514
        };
        static_cast<naive::HandleImpl*>(handle())->dispatch_kern(
                run, kernel.global_size.total_size());
    }
}

515 516
void ConvBiasImpl::exec_preprocess_with_ncb_kern(
        const NCBKernParam& param, ConvBiasImpl::Algorithm* algo) {
517
    auto&& ncb_kerns = NCB_ALGO_FUNC(dispatch_preprocess_kerns, algo, param);
518 519 520 521 522 523 524 525
    for (auto&& kernel : ncb_kerns) {
        auto run = [kernel, param](size_t index, size_t thread_id) {
            CpuNDRange ndrange_id(kernel.global_size, index);
            kernel.kern(param, {thread_id, ndrange_id});
        };
        static_cast<naive::HandleImpl*>(handle())->dispatch_kern(
                run, kernel.global_size.total_size());
    }
526 527 528 529 530 531 532
}

std::vector<ConvBiasImpl::Algorithm*> ConvBiasImpl::get_all_algorithms_with_ncb(
        const NCBKernSizeParam& param) {
    MEGDNN_MARK_USED_VAR(param);
    std::vector<Algorithm*> algos;
    std::vector<Algorithm*> prefer_algos;
533
    for (auto&& algo : get_all_packed_algo()) {
534 535
        if (algo->usable(param, AlgoSelectionStrategy::FULL_RUN)) {
            if (algo->is_preferred(param)) {
536 537 538 539 540 541 542 543 544 545 546
                prefer_algos.push_back(algo);
            } else {
                algos.push_back(algo);
            }
        }
    }
    //! Prefer algo inserted from begin
    algos.insert(algos.begin(), prefer_algos.begin(), prefer_algos.end());
    return algos;
}

547 548
ConvBiasImpl::Algorithm* ConvBiasImpl::get_algorithm_from_desc(
        const AlgorithmDesc& desc) {
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
    if (!desc.valid()) {
        return nullptr;
    } else {
        switch (desc.handle_type) {
            case Handle::HandleType::FALLBACK: {
                const auto& map = algo_pack().all_algos_map();
                megdnn_assert(map.find(desc) != map.end());
                return map.at(desc);
            };

#if MEGDNN_X86
            case Handle::HandleType::X86:
                return x86::ConvBiasImpl::get_algo_from_desc(desc);
#elif MEGDNN_AARCH64 || MEGDNN_ARMV7
            case Handle::HandleType::ARM_COMMON:
                return arm_common::ConvBiasImpl::get_algo_from_desc(desc);
#if MEGDNN_AARCH64
            case Handle::HandleType::AARCH64:
                return aarch64::ConvBiasImpl::get_algo_from_desc(desc);
#else
            case Handle::HandleType::ARMV7:
                return armv7::ConvBiasImpl::get_algo_from_desc(desc);
#endif
#endif
            case Handle::HandleType::NAIVE: {
                auto algo = static_cast<naive::HandleImpl*>(handle())
                                    ->default_conv_bias_fwd_algo();
                megdnn_assert(algo->info().desc == desc);
                return algo;
            }
            default:
                megdnn_throw("Unknown handle type");
                return nullptr;
        }
    }
}

586 587
ConvBiasImpl::Algorithm* ConvBiasImpl::get_algorithm(
        const NCBKernSizeParam& param, size_t workspace_size) {
588 589 590
    if (ConvBiasImpl::param().format == Param::Format::NHWCD4) {
        return nullptr;
    }
591
    if (auto algo = get_algorithm_from_desc(execution_policy().algo)) {
592
        return algo;
593 594 595
    }
    if (!m_prev_selected_algo ||
        memcmp(&m_prev_selected_algo_sizep, &param, sizeof(NCBKernSizeParam))) {
596
        m_prev_selected_algo = get_algorithm_heuristic_with_ncb(
M
Megvii Engine Team 已提交
597
                param, workspace_size, AlgoAttribute::DEFAULT, AlgoAttribute::DEFAULT);
598 599 600 601 602
        m_prev_selected_algo_sizep = param;
    }
    return m_prev_selected_algo;
}

603 604 605 606 607 608 609
SmallVector<AlgoCategory> ConvBiasImpl::suggest_algo_category_order(
        const NCBKernSizeParam& param) const {
    auto IC = param.filter_meta.icpg;
    auto OC = param.filter_meta.ocpg;
    auto FH = param.filter_meta.spatial[0];
    auto FW = param.filter_meta.spatial[1];
    //! TODO: now winograd only support in fast-run
610

611 612 613 614 615 616 617 618 619
    //! im2col + matmul
    bool im2col_prefer = (IC >= 32 || OC >= 32);
    //! quantized algo use matmul when direct algo is unusable
    if (param.src_type.category() == DTypeCategory::QUANTIZED) {
        im2col_prefer = is_matmul_quantized_prefer(param);
    }
    //! conv1x1
    im2col_prefer |= (FH == 1 && FW == 1);
    if (im2col_prefer) {
M
Megvii Engine Team 已提交
620
        return {AlgoCategory::IM2COL, AlgoCategory::DIRECT, AlgoCategory::NAIVE};
621
    } else {
M
Megvii Engine Team 已提交
622
        return {AlgoCategory::DIRECT, AlgoCategory::IM2COL, AlgoCategory::NAIVE};
623 624 625
    }
}

626 627 628 629 630
const char* ConvBiasImpl::get_algorithm_set_name() const {
    // fallback version 0
    return "F0";
}

631
namespace megdnn {
632
namespace fallback {
633

634
size_t ConvBiasImpl::NCBKernParam::src_offset(
M
Megvii Engine Team 已提交
635 636
        size_t batch_id, size_t group_pack_id, size_t channel_pack_id,
        size_t group_pack_size, size_t channel_pack_size) const {
637
    size_t batch_offset = batch_id * inp_bs * src_type.size();
M
Megvii Engine Team 已提交
638 639 640 641
    size_t group_offset = group_pack_size * group_pack_id * filter_meta.icpg * isz[0] *
                          isz[1] * src_type.size();
    size_t channel_offset =
            channel_pack_size * channel_pack_id * isz[0] * isz[1] * src_type.size();
642
    return (batch_offset + group_offset + channel_offset);
643 644 645
}

template <typename T>
646 647 648 649 650 651 652 653 654 655 656
const T* ConvBiasImpl::NCBKernParam::src(
        size_t batch_id, size_t group_pack_id, size_t channel_pack_id,
        size_t group_pack_size, size_t channel_pack_size) const {
    return reinterpret_cast<T*>(
            reinterpret_cast<ptrdiff_t>(src_ptr.get_ptr()) +
            src_offset(
                    batch_id, group_pack_id, channel_pack_id, group_pack_size,
                    channel_pack_size));
}

size_t ConvBiasImpl::NCBKernParam::filter_offset(
M
Megvii Engine Team 已提交
657
        size_t group_pack_id, size_t pack_group_size) const {
658 659 660
    size_t group_offset = 0_z;
    switch (filter_meta.format) {
        case Param::Format::NCHW: {
661
            group_offset = pack_group_size * group_pack_id * filter_meta.icpg *
662 663 664 665 666 667 668 669 670
                           filter_meta.ocpg * filter_meta.spatial[0] *
                           filter_meta.spatial[1] * filter_type.size();
            break;
        }
        case Param::Format::NCHW88: {
            size_t group = filter_meta.group;
            size_t icpg = filter_meta.icpg;
            size_t ocpg = filter_meta.ocpg;
            //! four format of weight layout
671 672 673
            //! 1. {oc/8, ic/8, fh, fw, 8, 8},
            //! 2. {g, oc/8, ic/8, fh, fw, 8, 8},
            //! 3. {g/8, fh, fw, 1, 1, 8}, 4. {oc/8, fh, fw, ic, 8}
M
Megvii Engine Team 已提交
674 675 676 677 678 679
            megdnn_assert(
                    (icpg % 8 == 0 && ocpg % 8 == 0) ||
                            (group % 8 == 0 && icpg == 1 && ocpg == 1 &&
                             pack_group_size > 1) ||
                            (group == 1 && ocpg % 8 == 0),
                    "The filter shepe is not right of nchw88");
680 681 682 683 684 685
            group_offset = pack_group_size * group_pack_id * filter_meta.icpg *
                           filter_meta.ocpg * filter_meta.spatial[0] *
                           filter_meta.spatial[1] * filter_type.size();

            break;
        }
686
        case Param::Format::NCHW44_DOT:
687 688 689 690 691 692 693
        case Param::Format::NCHW44: {
            size_t group = filter_meta.group;
            size_t icpg = filter_meta.icpg;
            size_t ocpg = filter_meta.ocpg;
            //! four format of weight layout
            //! 1. {oc/4, ic/4, fh, fw, 4, 4},
            //! 2. {g, oc/4, ic/4, fh, fw, 4, 4},
694 695
            //! 3. {g/4, fh, fw, 1, 1, 4},
            //! 4. {oc/4, fh, fw, ic, 4}
M
Megvii Engine Team 已提交
696 697 698 699 700 701
            megdnn_assert(
                    (icpg % 4 == 0 && ocpg % 4 == 0) ||
                            (group % 4 == 0 && icpg == 1 && ocpg == 1 &&
                             pack_group_size > 1) ||
                            (group == 1 && ocpg % 4 == 0),
                    "The filter shepe is not right of nchw44");
702
            group_offset = pack_group_size * group_pack_id * filter_meta.icpg *
703 704 705 706 707 708
                           filter_meta.ocpg * filter_meta.spatial[0] *
                           filter_meta.spatial[1] * filter_type.size();

            break;
        }
        default:
709
            megdnn_assert(0, "other filter format is not support yet");
710
    }
711
    return group_offset;
712 713 714
}

template <typename T>
715 716 717 718 719 720 721 722
const T* ConvBiasImpl::NCBKernParam::filter(
        size_t group_pack_id, size_t pack_group_size) const {
    size_t group_offset = filter_offset(group_pack_id, pack_group_size);
    return reinterpret_cast<T*>(
            reinterpret_cast<ptrdiff_t>(filter_ptr.get_ptr()) + group_offset);
}

size_t ConvBiasImpl::NCBKernParam::bias_offset(
M
Megvii Engine Team 已提交
723 724
        size_t batch_id, size_t group_pack_id, size_t channel_pack_id,
        size_t group_pack_size, size_t channel_pack_size) const {
725 726
    size_t batch_offset = 0_z;
    size_t group_offset = 0_z;
727
    size_t channel_offset = 0_z;
728 729
    if (bias_mode == BiasMode::BIAS) {
        batch_offset = batch_id * bias_bs * bias_type.size();
M
Megvii Engine Team 已提交
730 731
        group_offset = group_pack_size * group_pack_id * filter_meta.ocpg * osz[0] *
                       osz[1] * bias_type.size();
732 733
        channel_offset = channel_pack_size * channel_pack_id * osz[0] * osz[1] *
                         bias_type.size();
734
    } else if (bias_mode == BiasMode::BROADCAST_CHANNEL_BIAS) {
M
Megvii Engine Team 已提交
735 736
        group_offset =
                group_pack_size * group_pack_id * filter_meta.ocpg * bias_type.size();
737
        channel_offset = channel_pack_size * channel_pack_id * bias_type.size();
738
    }
739
    return (batch_offset + group_offset + channel_offset);
740 741 742
}

template <typename T>
743 744 745 746 747 748 749 750 751 752 753
const T* ConvBiasImpl::NCBKernParam::bias(
        size_t batch_id, size_t group_pack_id, size_t channel_pack_id,
        size_t group_pack_size, size_t channel_pack_size) const {
    return reinterpret_cast<T*>(
            reinterpret_cast<ptrdiff_t>(bias_ptr.get_ptr()) +
            bias_offset(
                    batch_id, group_pack_id, channel_pack_id, group_pack_size,
                    channel_pack_size));
}

size_t ConvBiasImpl::NCBKernParam::dst_offset(
M
Megvii Engine Team 已提交
754 755
        size_t batch_id, size_t group_pack_id, size_t channel_pack_id,
        size_t group_pack_size, size_t channel_pack_size) const {
756
    size_t batch_offset = batch_id * out_bs * dst_type.size();
M
Megvii Engine Team 已提交
757 758 759 760
    size_t group_offset = group_pack_size * group_pack_id * filter_meta.ocpg * osz[0] *
                          osz[1] * dst_type.size();
    size_t channel_offset =
            channel_pack_size * channel_pack_id * osz[0] * osz[1] * dst_type.size();
761 762 763 764 765 766 767
    return (batch_offset + group_offset + channel_offset);
}

template <typename T>
T* ConvBiasImpl::NCBKernParam::dst(
        size_t batch_id, size_t group_pack_id, size_t channel_pack_id,
        size_t group_pack_size, size_t channel_pack_size) const {
M
Megvii Engine Team 已提交
768
    return reinterpret_cast<T*>(
769 770 771 772
            reinterpret_cast<ptrdiff_t>(dst_ptr.get_ptr()) +
            dst_offset(
                    batch_id, group_pack_id, channel_pack_id, group_pack_size,
                    channel_pack_size));
773 774
}

775 776 777 778 779 780 781 782 783 784 785 786
#define INST(T)                                                      \
    template const T* ConvBiasImpl::NCBKernParam::src<T>(            \
            size_t batch_id, size_t group_id, size_t channel_id,     \
            size_t group_pack_size, size_t channel_pack_size) const; \
    template const T* ConvBiasImpl::NCBKernParam::bias<T>(           \
            size_t batch_id, size_t group_id, size_t channel_id,     \
            size_t group_pack_size, size_t channel_pack_size) const; \
    template const T* ConvBiasImpl::NCBKernParam::filter<T>(         \
            size_t group_id, size_t group_pack_size) const;          \
    template T* ConvBiasImpl::NCBKernParam::dst<T>(                  \
            size_t batch_id, size_t group_id, size_t channel_id,     \
            size_t group_pack_size, size_t channel_pack_size) const;
787 788 789 790

#define INST_DT(d) INST(DTypeTrait<d>::ctype)

MEGDNN_FOREACH_COMPUTING_DTYPE(INST_DT)
791
INST(void)
792 793 794 795 796
#undef INST
#undef INST_DT
}  // namespace fallback
}  // namespace megdnn

797
// vim: syntax=cpp.doxygen