opr_impl.cpp 24.4 KB
Newer Older
1 2 3 4 5 6 7 8
/**
 * \file dnn/src/fallback/conv_bias/opr_impl.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13 14 15 16
 */
#include "src/common/algo_chooser.h"
#include "src/common/metahelper.h"
#include "src/common/opr_delegate.h"
#include "src/common/utils.h"
#include "src/fallback/conv_bias/algos.h"
17
#include "src/fallback/conv_bias/conv1x1/algos.h"
18
#include "src/fallback/conv_bias/conv1x1/algos_conv1x1_gemv.h"
19 20
#include "src/fallback/conv_bias/im2col/algos.h"
#include "src/fallback/conv_bias/opr_impl.h"
21
#include "src/fallback/convolution/opr_impl.h"
22 23 24 25 26 27 28 29
#include "src/naive/convolution/algorithms.h"
#include "src/naive/handle.h"

#include <cstring>

using namespace megdnn;
using namespace fallback;

30
size_t megdnn::fallback::pack_size(param::ConvBias::Format format) {
31
    switch (format) {
32
        case param::ConvBias::Format::NCHW44:
33
        case param::ConvBias::Format::NCHW44_DOT:
34 35 36 37 38 39 40 41 42
        case param::ConvBias::Format::NCHW4:
            return 4_z;
        case param::ConvBias::Format::NCHW88:
            return 8_z;
        default:
            return 1_z;
    }
}

43 44 45 46 47 48 49 50 51 52 53 54 55 56
namespace {
template <typename T>
void incr_ptr(T*& dst, ptrdiff_t delta) {
    dst = reinterpret_cast<T*>(reinterpret_cast<uintptr_t>(dst) + delta);
}

}  // namespace

class ConvBiasImpl::AlgoPack : NonCopyableObj {
    AlgoNaive algo_naive;
    SmallVector<std::unique_ptr<AlgoBase>> refhold;

public:
    AlgoPack() {
57 58 59
        refhold.emplace_back(new AlgoConv1x1Gemv());
        all_algos.emplace_back(refhold.back().get());

60 61 62 63 64
        static CpuOprDelegationStorage<> storage;
        auto matmul_opr = storage.get<MatrixMul>();
        auto&& matmul_algos =
                static_cast<fallback::MatrixMulImpl*>(matmul_opr)->algo_pack();
        for (auto&& algo : matmul_algos) {
65 66 67 68 69 70
#if MEGDNN_X86
//! As we haven't direct conv for int8x8x16 yet, if we disable gemv here, it may
//! fallback to naive implementation, which may cause performance very low, so
//! here we just enable im2col for gemv in x86 backend.
//! FIXME: remove it when we add direct conv support for int8x8x16
#else
71 72 73 74
            if (algo->algoset() ==
                MatrixMulImpl::AlgoBase::AlgoSet::ALGO_TYPE_GEMV) {
                continue;
            }
75 76
#endif

77 78 79 80
//! As we haven't riscv64 postprocess yet, im2col and conv1x1 can not pass ci
//! test. so we just disable all im2col and conv1x1 in riscv64
//! FIXME: remove it when impl postprocess for riscv64
#if !MEGDNN_RISCV64
81 82 83 84 85 86
            for (size_t ohw_tile_size : {192, 384, 96, 48, 24}) {
                refhold.emplace_back(new AlgoIm2col(
                        static_cast<MatrixMulImpl::AlgoBase*>(algo),
                        ohw_tile_size));
                all_algos.emplace_back(refhold.back().get());
            }
87
            for (size_t oc_tile_size : {48, 24}) {
88
                refhold.emplace_back(new AlgoConv1x1(
89 90
                        static_cast<MatrixMulImpl::AlgoBase*>(algo),
                        oc_tile_size));
91 92
                all_algos.emplace_back(refhold.back().get());
            }
93 94
#endif

95
#if 0
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
        //! As these algos maybe very slow, it will make fastrun search slow, so
        //! we disable it, but for the test of strategyhelper, we just keep it.
        //! FIXME: I do not know a better way to do it.
            refhold.emplace_back(new AlgoWinogradF32(
                    static_cast<MatrixMulImpl::AlgoBase*>(algo)));
            all_algos.emplace_back(refhold.back().get());
            refhold.emplace_back(new AlgoWinogradF32_4x4(
                    static_cast<MatrixMulImpl::AlgoBase*>(algo)));
            all_algos.emplace_back(refhold.back().get());
            refhold.emplace_back(new AlgoWinogradQS8(
                    static_cast<MatrixMulImpl::AlgoBase*>(algo)));
            all_algos.emplace_back(refhold.back().get());
            refhold.emplace_back(new AlgoWinogradQS8_8x8(
                    static_cast<MatrixMulImpl::AlgoBase*>(algo)));
            all_algos.emplace_back(refhold.back().get());
#endif
        }
        //! reverse matmul algo, when the algo is_prefer can be selected first
        std::reverse(all_algos.begin(), all_algos.end());
        all_algos.emplace_back(&algo_naive);
    }
    SmallVector<AlgoBase*> all_algos;
};

SmallVector<ConvBiasImpl::AlgoBase*> ConvBiasImpl::algo_pack() {
    static AlgoPack sl_algo_pack;
    return sl_algo_pack.all_algos;
}
bool ConvBiasImpl::is_naive_algo(ConvBiasImpl::Algorithm* algo) {
    return algo == nullptr || strcmp(algo->name(), "DEFAULT") == 0;
}
127 128

#define NCB_ALGO_FUNC(name, algo, param) \
129
    static_cast<AlgoBase*>(algo)->name(param)
130

131 132
void ConvBiasImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_in filter,
                        _megdnn_tensor_in bias, _megdnn_tensor_in z,
133 134 135
                        _megdnn_tensor_out dst,
                        const PreprocessedFilter* preprocessed_filter,
                        _megdnn_workspace workspace) {
136
    check_exec(src.layout, filter.layout, bias.layout, z.layout, dst.layout,
137 138 139
               workspace.size, preprocessed_filter);
    auto fparam = make_ncb_kern_param(src, filter, bias, dst, workspace,
                                      preprocessed_filter);
140 141
    ConvBiasImpl::Algorithm* algo = get_algorithm(fparam, workspace.size);
    if (!is_naive_algo(algo) &&
142
        NCB_ALGO_FUNC(get_workspace, algo, fparam) <= workspace.size) {
143 144
        exec_with_ncb_kern(fparam, algo);
    } else {
145 146
        naive::ConvBiasForwardImpl::exec(src, filter, bias, z, dst,
                                         preprocessed_filter, workspace);
147 148 149
    }
}

150 151 152 153 154 155 156 157 158 159 160 161 162
void ConvBiasImpl::exec_preprocess(const TensorLayout& src_layout,
                                   _megdnn_tensor_in filter,
                                   const TensorLayout& bias_layout,
                                   const TensorLayout& z_layout,
                                   const TensorLayout& dst_layout,
                                   PreprocessedFilter* preprocessed_filter,
                                   _megdnn_workspace workspace) {
    //! exec_preprocess currently only support preprocess weights before exec,
    //! src/dst/bias/z will be ignored, just set to nullptr
    TensorND src{nullptr, src_layout}, dst{nullptr, dst_layout},
            bias{nullptr, bias_layout};
    auto fparam = make_ncb_kern_param(src, filter, bias, dst, workspace,
                                      preprocessed_filter);
163 164
    //! should not pass workspace_size limit otherwise can not find match algo
    ConvBiasImpl::Algorithm* algo = get_algorithm(fparam);
165 166 167 168 169 170 171 172 173 174
    if (!is_naive_algo(algo) && NCB_ALGO_FUNC(get_preprocess_workspace, algo,
                                              fparam) <= workspace.size) {
        exec_preprocess_with_ncb_kern(fparam, algo);
    } else {
        naive::ConvBiasForwardImpl::exec_preprocess(
                src_layout, filter, bias_layout, z_layout, dst_layout,
                preprocessed_filter, workspace);
    }
}

175 176 177 178 179
size_t ConvBiasImpl::get_workspace_in_bytes(
        const TensorLayout& src, const TensorLayout& filter,
        const TensorLayout& bias, const TensorLayout& z,
        const TensorLayout& dst,
        const PreprocessedFilter* preprocessed_filter) {
180 181
    auto fparam = make_ncb_kern_size_param(src, filter, bias, dst,
                                           preprocessed_filter);
182 183
    ConvBiasImpl::Algorithm* algo = get_algorithm(fparam);
    if (is_naive_algo(algo)) {
184 185
        return naive::ConvBiasForwardImpl::get_workspace_in_bytes(
                src, filter, bias, z, dst, preprocessed_filter);
186
    } else {
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
        return NCB_ALGO_FUNC(get_workspace, algo, fparam);
    }
}

size_t ConvBiasImpl::get_preprocess_workspace_in_bytes(
        const TensorLayout& src, const TensorLayout& filter,
        const TensorLayout& bias, const TensorLayout& z,
        const TensorLayout& dst) {
    auto fparam = make_ncb_kern_size_param(src, filter, bias, dst, nullptr);
    Algorithm* algo = get_algorithm(fparam);
    if (is_naive_algo(algo)) {
        return naive::ConvBiasForwardImpl::get_preprocess_workspace_in_bytes(
                src, filter, bias, z, dst);
    } else {
        return NCB_ALGO_FUNC(get_preprocess_workspace, algo, fparam);
    }
}

SmallVector<TensorLayout> ConvBiasImpl::deduce_preprocessed_filter_layout(
        const TensorLayout& src, const TensorLayout& filter,
        const TensorLayout& bias, const TensorLayout& z,
        const TensorLayout& dst) {
    auto fparam = make_ncb_kern_size_param(src, filter, bias, dst, nullptr);
    Algorithm* algo = get_algorithm(fparam);
    if (is_naive_algo(algo)) {
        return naive::ConvBiasForwardImpl::deduce_preprocessed_filter_layout(
                src, filter, bias, z, dst);
    } else {
        return NCB_ALGO_FUNC(deduce_preprocessed_filter_layout, algo, fparam);
216 217 218 219 220 221 222
    }
}

std::vector<ConvBiasImpl::Algorithm*> ConvBiasImpl::get_all_algorithms(
        const TensorLayout& src, const TensorLayout& filter,
        const TensorLayout& bias, const TensorLayout& z,
        const TensorLayout& dst) {
223
    auto fparam = make_ncb_kern_size_param(src, filter, bias, dst, nullptr);
224 225 226 227 228 229 230 231 232 233 234 235 236
    auto ret = get_all_algorithms_with_ncb(fparam);
    if (ret.empty()) {
        return naive::ConvBiasForwardImpl::get_all_algorithms(src, filter, bias,
                                                              z, dst);
    }
    return ret;
}

ConvBiasImpl::Algorithm* ConvBiasImpl::get_algorithm_heuristic(
        const TensorLayout& src, const TensorLayout& filter,
        const TensorLayout& bias, const TensorLayout& z,
        const TensorLayout& dst, size_t workspace_limit_in_bytes,
        bool reproducible) {
237
    auto fparam = make_ncb_kern_size_param(src, filter, bias, dst, nullptr);
238 239 240 241 242 243 244 245 246 247
    auto result = get_algorithm_heuristic_with_ncb(
            fparam, workspace_limit_in_bytes, reproducible);
    if (result == nullptr) {
        result = naive::ConvBiasForwardImpl::get_algorithm_heuristic(
                src, filter, bias, z, dst, workspace_limit_in_bytes,
                reproducible);
    }
    return result;
}

248 249 250 251 252
ConvBiasImpl::Algorithm* ConvBiasImpl::get_algorithm_heuristic_with_ncb(
        const NCBKernSizeParam& param, size_t workspace_limit_in_bytes,
        bool reproducible) {
    for (auto i : get_all_algorithms_with_ncb(param)) {
        if (static_cast<AlgoBase*>(i)->usable_reproducible(
253 254 255
                    param, AlgoSelectionStrategy::HEURISTIC, reproducible) &&
            NCB_ALGO_FUNC(get_workspace, i, param) <=
                    workspace_limit_in_bytes) {
256 257 258 259 260 261
            return i;
        }
    }
    return nullptr;
}

262 263
ConvBiasImpl::NCBKernSizeParam ConvBiasImpl::make_ncb_kern_size_param(
        const TensorLayout& src, const TensorLayout& filter,
264 265
        const TensorLayout& bias, const TensorLayout& dst,
        const PreprocessedFilter* preprocessed_filter) {
266 267 268 269 270 271 272 273 274
    auto safe_u32 = [](size_t v) -> uint32_t {
        megdnn_assert(v <= std::numeric_limits<uint32_t>::max(),
                      "value too large: %zu", v);
        return v;
    };
    size_t spatial_pos;
    if (param().format == Param::Format::NCHW88 ||
        param().format == Param::Format::NCHW8 ||
        param().format == Param::Format::NCHW4 ||
275
        param().format == Param::Format::NCHW44 ||
276
        param().format == Param::Format::NCHW44_DOT ||
277 278
        param().format == Param::Format::NCHW ||
        param().format == Param::Format::NCHW_WINOGRAD ||
279 280
        param().format == Param::Format::NCHW88_WINOGRAD ||
        param().format == Param::Format::NCHW44_WINOGRAD) {
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
        spatial_pos = 2;
    } else if (param().format == Param::Format::NHWC) {
        spatial_pos = 1;
    } else {
        megdnn_assert(0, "invalid conv format %d",
                      static_cast<int>(param().format));
    }
    BiasMode bias_mode;
    if (bias.ndim == 0) {
        bias_mode = BiasMode::NO_BIAS;
    } else if (bias.eq_shape(dst)) {
        bias_mode = BiasMode::BIAS;
    } else {
        //! just check the ndim, the detail shape check is in check_exec
        megdnn_assert(bias.ndim == dst.ndim);
        bias_mode = BiasMode::BROADCAST_CHANNEL_BIAS;
    }

    static_assert(sizeof(CanonizedFilterMeta) ==
                          sizeof(ConvolutionImpl::CanonizedFilterMeta),
                  "sizeof CanonizedFilterMeta in convolution and conv_bias "
                  "should be equal");
    CanonizedFilterMeta fm = check_layout_fwd(src, filter, dst);
    ConvolutionImpl::CanonizedFilterMeta conv_fm;
    conv_fm.copy_from(fm);

    param::MatrixMul::Format format = param::MatrixMul::Format::DEFAULT;
    if (param().format == Param::Format::NCHW_WINOGRAD ||
309 310
        param().format == Param::Format::NCHW88_WINOGRAD ||
        param().format == Param::Format::NCHW44_WINOGRAD) {
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
        size_t flt_start = 0;
        if (param().sparse == Param::Sparse::GROUP) {
            flt_start = 1;
        }

        if (filter.ndim == 6 + flt_start) {
            if (filter[5] == 4) {
                format = param::MatrixMul::Format::MK4;
            } else {
                megdnn_assert(filter[5] == 8);
                format = param::MatrixMul::Format::MK8;
            }
        }
    }
    size_t nr_threads = static_cast<naive::HandleImpl*>(handle())
                                ->megcore_dispatcher()
                                ->nr_threads();
    return {{safe_u32(src[0]),
             {{safe_u32(src[spatial_pos]), safe_u32(src[spatial_pos + 1])}},
             {{safe_u32(dst[spatial_pos]), safe_u32(dst[spatial_pos + 1])}},
             conv_fm,
             src.dtype,
             filter.dtype,
             dst.dtype,
             src.stride[0],
             dst.stride[0],
             {src.stride[0], src.stride[1], src.stride[2], src.stride[3]},
             {dst.stride[0], dst.stride[1], dst.stride[2], dst.stride[3]},
             param().compute_mode,
340 341 342
             nr_threads,
             reinterpret_cast<const ConvolutionForward::PreprocessedFilter*>(
                     preprocessed_filter)},
343 344 345 346 347 348 349 350 351 352
            param().output_block_size,
            format,
            bias.dtype,
            bias.stride[0],
            bias_mode,
            param().nonlineMode};
}

ConvBiasImpl::NCBKernParam ConvBiasImpl::make_ncb_kern_param(
        _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_in bias,
353 354
        _megdnn_tensor_out dst, _megdnn_workspace workspace,
        const PreprocessedFilter* preprocessed_filter) {
355
    NCBKernParam ret;
356 357 358
    static_cast<NCBKernSizeParam&>(ret) =
            make_ncb_kern_size_param(src.layout, filter.layout, bias.layout,
                                     dst.layout, preprocessed_filter);
359 360 361 362 363 364 365 366 367 368 369
    ret.src_ptr = src.raw_ptr;
    ret.filter_ptr = filter.raw_ptr;
    ret.bias_ptr = bias.raw_ptr;
    ret.dst_ptr = dst.raw_ptr;
    ret.workspace_ptr = workspace.raw_ptr;
    ret.workspace_size = workspace.size;
    return ret;
}

void ConvBiasImpl::exec_with_ncb_kern(const NCBKernParam& param,
                                      ConvBiasImpl::Algorithm* algo) {
370
    auto ncb_kerns = NCB_ALGO_FUNC(dispatch_kerns, algo, param);
371
    for (auto&& kernel : ncb_kerns) {
372
        auto run = [kernel, param](size_t index, size_t thread_id) {
373
            CpuNDRange ndrange_id(kernel.global_size, index);
374
            kernel.kern(param, {thread_id, ndrange_id});
375 376 377 378 379 380
        };
        static_cast<naive::HandleImpl*>(handle())->dispatch_kern(
                run, kernel.global_size.total_size());
    }
}

381 382 383 384 385 386 387 388 389 390 391
void ConvBiasImpl::exec_preprocess_with_ncb_kern(
        const NCBKernParam& param, ConvBiasImpl::Algorithm* algo) {
    auto ncb_kerns = NCB_ALGO_FUNC(dispatch_preprocess_kerns, algo, param);
    for (auto&& kernel : ncb_kerns) {
        auto run = [kernel, param](size_t index, size_t thread_id) {
            CpuNDRange ndrange_id(kernel.global_size, index);
            kernel.kern(param, {thread_id, ndrange_id});
        };
        static_cast<naive::HandleImpl*>(handle())->dispatch_kern(
                run, kernel.global_size.total_size());
    }
392 393 394 395 396 397 398 399
}

std::vector<ConvBiasImpl::Algorithm*> ConvBiasImpl::get_all_algorithms_with_ncb(
        const NCBKernSizeParam& param) {
    MEGDNN_MARK_USED_VAR(param);
    std::vector<Algorithm*> algos;
    std::vector<Algorithm*> prefer_algos;
    for (auto&& algo : algo_pack()) {
400 401
        if (algo->usable(param, AlgoSelectionStrategy::FULL_RUN)) {
            if (algo->is_preferred(param)) {
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
                prefer_algos.push_back(algo);
            } else {
                algos.push_back(algo);
            }
        }
    }
    std::reverse(prefer_algos.begin(), prefer_algos.end());
    //! Prefer algo inserted from begin
    algos.insert(algos.begin(), prefer_algos.begin(), prefer_algos.end());
    return algos;
}

ConvBiasImpl::Algorithm* ConvBiasImpl::get_algorithm(
        const NCBKernSizeParam& param, size_t workspace_size) {
    if (auto set = execution_policy().algorithm) {
        return set;
    }
    if (!m_prev_selected_algo ||
        memcmp(&m_prev_selected_algo_sizep, &param, sizeof(NCBKernSizeParam))) {
        m_prev_selected_algo =
                get_algorithm_heuristic_with_ncb(param, workspace_size);
        m_prev_selected_algo_sizep = param;
    }
    return m_prev_selected_algo;
}

const char* ConvBiasImpl::get_algorithm_set_name() const {
    // fallback version 0
    return "F0";
}

433
namespace megdnn {
434
namespace fallback {
435

436
template <typename T>
437 438 439 440
const T* ConvBiasImpl::NCBKernParam::src(size_t batch_id, size_t group_pack_id,
                                         size_t channel_pack_id,
                                         size_t group_pack_size,
                                         size_t channel_pack_size) const {
441
    size_t batch_offset = batch_id * inp_bs * src_type.size();
442
    size_t group_offset = group_pack_size * group_pack_id * filter_meta.icpg *
443
                          isz[0] * isz[1] * src_type.size();
444 445
    size_t channel_offset = channel_pack_size * channel_pack_id * isz[0] *
                            isz[1] * src_type.size();
446
    return reinterpret_cast<T*>(reinterpret_cast<ptrdiff_t>(src_ptr) +
447
                                batch_offset + group_offset + channel_offset);
448 449 450
}

template <typename T>
451
const T* ConvBiasImpl::NCBKernParam::filter(size_t group_pack_id,
452 453 454 455
                                            size_t pack_group_size) const {
    size_t group_offset = 0_z;
    switch (filter_meta.format) {
        case Param::Format::NCHW: {
456
            group_offset = pack_group_size * group_pack_id * filter_meta.icpg *
457 458 459 460 461 462 463 464 465
                           filter_meta.ocpg * filter_meta.spatial[0] *
                           filter_meta.spatial[1] * filter_type.size();
            break;
        }
        case Param::Format::NCHW88: {
            size_t group = filter_meta.group;
            size_t icpg = filter_meta.icpg;
            size_t ocpg = filter_meta.ocpg;
            //! four format of weight layout
466 467 468
            //! 1. {oc/8, ic/8, fh, fw, 8, 8},
            //! 2. {g, oc/8, ic/8, fh, fw, 8, 8},
            //! 3. {g/8, fh, fw, 1, 1, 8}, 4. {oc/8, fh, fw, ic, 8}
469 470 471 472 473
            megdnn_assert((icpg % 8 == 0 && ocpg % 8 == 0) ||
                                  (group % 8 == 0 && icpg == 1 && ocpg == 1 &&
                                   pack_group_size > 1) ||
                                  (group == 1 && ocpg % 8 == 0),
                          "The filter shepe is not right of nchw88");
474 475 476 477 478 479
            group_offset = pack_group_size * group_pack_id * filter_meta.icpg *
                           filter_meta.ocpg * filter_meta.spatial[0] *
                           filter_meta.spatial[1] * filter_type.size();

            break;
        }
480
        case Param::Format::NCHW44_DOT:
481 482 483 484 485 486 487
        case Param::Format::NCHW44: {
            size_t group = filter_meta.group;
            size_t icpg = filter_meta.icpg;
            size_t ocpg = filter_meta.ocpg;
            //! four format of weight layout
            //! 1. {oc/4, ic/4, fh, fw, 4, 4},
            //! 2. {g, oc/4, ic/4, fh, fw, 4, 4},
488 489
            //! 3. {g/4, fh, fw, 1, 1, 4},
            //! 4. {oc/4, fh, fw, ic, 4}
490 491 492 493 494
            megdnn_assert((icpg % 4 == 0 && ocpg % 4 == 0) ||
                                  (group % 4 == 0 && icpg == 1 && ocpg == 1 &&
                                   pack_group_size > 1) ||
                                  (group == 1 && ocpg % 4 == 0),
                          "The filter shepe is not right of nchw44");
495
            group_offset = pack_group_size * group_pack_id * filter_meta.icpg *
496 497 498 499 500 501
                           filter_meta.ocpg * filter_meta.spatial[0] *
                           filter_meta.spatial[1] * filter_type.size();

            break;
        }
        case ConvBiasImpl::Param::Format::NCHW_WINOGRAD:
502
        case ConvBiasImpl::Param::Format::NCHW44_WINOGRAD:
503 504 505 506 507 508
        case ConvBiasImpl::Param::Format::NCHW88_WINOGRAD: {
            //! four format of weight layout
            //! 1. {g, alpha, alpha, ocpg/8, icpg/8, 8, 8}
            //! 2. {alpha, alpha, ocpg/8, icpg/8, 8, 8}
            //! 3. {g, alpha, alpha, oc, ic, 8, 8}
            //! 4. {alpha, alpha, oc, ic}
509
            group_offset = pack_group_size * group_pack_id * filter_meta.icpg *
510 511 512 513 514 515 516
                           filter_meta.ocpg *
                           (filter_meta.spatial[0] + output_block_size - 1) *
                           (filter_meta.spatial[1] + output_block_size - 1) *
                           filter_type.size();
            break;
        }
        default:
517
            megdnn_assert(0, "other filter format is not support yet");
518 519 520 521 522 523
    }
    return reinterpret_cast<T*>(reinterpret_cast<ptrdiff_t>(filter_ptr) +
                                group_offset);
}

template <typename T>
524 525 526 527
const T* ConvBiasImpl::NCBKernParam::bias(size_t batch_id, size_t group_pack_id,
                                          size_t channel_pack_id,
                                          size_t group_pack_size,
                                          size_t channel_pack_size) const {
528 529
    size_t batch_offset = 0_z;
    size_t group_offset = 0_z;
530
    size_t channel_offset = 0_z;
531 532
    if (bias_mode == BiasMode::BIAS) {
        batch_offset = batch_id * bias_bs * bias_type.size();
533 534 535 536
        group_offset = group_pack_size * group_pack_id * filter_meta.ocpg *
                       osz[0] * osz[1] * bias_type.size();
        channel_offset = channel_pack_size * channel_pack_id * osz[0] * osz[1] *
                         bias_type.size();
537
    } else if (bias_mode == BiasMode::BROADCAST_CHANNEL_BIAS) {
538
        group_offset = group_pack_size * group_pack_id * filter_meta.ocpg *
539
                       bias_type.size();
540
        channel_offset = channel_pack_size * channel_pack_id * bias_type.size();
541 542
    }
    return reinterpret_cast<T*>(reinterpret_cast<ptrdiff_t>(bias_ptr) +
543
                                batch_offset + group_offset + channel_offset);
544 545 546
}

template <typename T>
547 548 549 550
T* ConvBiasImpl::NCBKernParam::dst(size_t batch_id, size_t group_pack_id,
                                   size_t channel_pack_id,
                                   size_t group_pack_size,
                                   size_t channel_pack_size) const {
551
    size_t batch_offset = batch_id * out_bs * dst_type.size();
552
    size_t group_offset = group_pack_size * group_pack_id * filter_meta.ocpg *
553
                          osz[0] * osz[1] * dst_type.size();
554 555
    size_t channel_offset = channel_pack_size * channel_pack_id * osz[0] *
                            osz[1] * dst_type.size();
556
    return reinterpret_cast<T*>(reinterpret_cast<ptrdiff_t>(dst_ptr) +
557
                                batch_offset + group_offset + channel_offset);
558 559
}

560 561 562 563 564 565 566 567 568 569 570 571
#define INST(T)                                                      \
    template const T* ConvBiasImpl::NCBKernParam::src<T>(            \
            size_t batch_id, size_t group_id, size_t channel_id,     \
            size_t group_pack_size, size_t channel_pack_size) const; \
    template const T* ConvBiasImpl::NCBKernParam::bias<T>(           \
            size_t batch_id, size_t group_id, size_t channel_id,     \
            size_t group_pack_size, size_t channel_pack_size) const; \
    template const T* ConvBiasImpl::NCBKernParam::filter<T>(         \
            size_t group_id, size_t group_pack_size) const;          \
    template T* ConvBiasImpl::NCBKernParam::dst<T>(                  \
            size_t batch_id, size_t group_id, size_t channel_id,     \
            size_t group_pack_size, size_t channel_pack_size) const;
572 573 574 575

#define INST_DT(d) INST(DTypeTrait<d>::ctype)

MEGDNN_FOREACH_COMPUTING_DTYPE(INST_DT)
576
INST(void)
577 578 579 580 581
#undef INST
#undef INST_DT
}  // namespace fallback
}  // namespace megdnn

582
// vim: syntax=cpp.doxygen