framework.cpp 27.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
/**
 * \file src/gopt/impl/framework.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "megbrain/gopt/framework.h"
#include "megbrain/gopt/inference.h"
#include "megbrain/gopt/basic_arith.h"
#include "megbrain/gopt/misc.h"
#include "megbrain/gopt/gtrans.h"
#include "megbrain/graph/event.h"
#include "megbrain/graph/exc_extra_info.h"
#include "megbrain/serialization/serializer.h"
#include "megbrain/serialization/opr_shallow_copy.h"
#include "megbrain/utils/timer.h"

#if MGB_JIT
#include "megbrain/jit/fusion_pass.h"
#endif

#if MGB_ENABLE_TENSOR_RT
#include "megbrain/tensorrt/opr_replace.h"
#endif

using namespace mgb;
using namespace gopt;

/* ================ SubGraph ================ */

OperatorNodeBase* SubGraph::Rewriter::auto_replace_outputs(
        OperatorNodeBase *opr) {
    auto &&new_inp = m_opr_new_inp_cache;
    new_inp.clear();
    new_inp.reserve(opr->input().size());
    bool has_replaced_inp = false;

    for (auto i: opr->input()) {
        auto new_var = get_var(i);
        if (new_var != i) {
            has_replaced_inp = true;
            new_inp.push_back(new_var);
        } else {
            new_inp.push_back(i);
        }
    }

    if (has_replaced_inp) {
        auto new_opr = serialization::copy_opr_shallow(
                *opr, new_inp, opr->config());
        auto &&out0 = opr->output(), &&out1 = new_opr->output();
        size_t i = 0;
        auto err_msg = [opr, new_opr] {
            return ssprintf("bad opr copy: src=%s{%s} dst=%s{%s}",
                    opr->cname(), opr->dyn_typeinfo()->name,
                    new_opr->cname(), new_opr->dyn_typeinfo()->name);
        };
        MGB_MARK_USED_VAR(err_msg);
        // opr output size mismatch may be caused by:
        //     0) inplace arith optimization (e.g. PowC need an extra workspace)
        //     1) other post-insert optimization (e.g. const folding)
        // we can't handle only usable_output here, since some output var with
        // volatile flag could be the graph's endpoint (e.g. RemoteSend)
        for (; i < std::min(out0.size(), out1.size()); ++ i) {
            bool v0 = out0[i]->contain_flag(VarNode::Flag::VOLATILE_CONTENT),
                 v1 = out1[i]->contain_flag(VarNode::Flag::VOLATILE_CONTENT);
            mgb_assert(v0 == v1, "%s", err_msg().c_str());

            auto &&ins = m_varmap.insert({out0[i], {true, nullptr}});
            mgb_assert(ins.second || ins.first->second.first,
                    "opr output already replaced");
            // handle repeated call on the same opr
            ins.first->second.second = out1[i];
            on_var_replaced(out0[i], out1[i], nullptr);
        }
        for (; i < out0.size(); ++ i) {
            mgb_assert(out0[i]->contain_flag(VarNode::Flag::VOLATILE_CONTENT),
                    "%s", err_msg().c_str());
        }
        for (; i < out1.size(); ++ i) {
            mgb_assert(out1[i]->contain_flag(VarNode::Flag::VOLATILE_CONTENT),
                    "%s", err_msg().c_str());
        }
        return new_opr;
    }
    return opr;
}

void SubGraph::Rewriter::replace_var(
        VarNode *src, VarNode *dst, const char *msg) {
    if (src == dst)
        return;

    // Optimizers should not create a loop in varaible replace map.
    mgb_throw_if(
            get_var_internal(dst).second == src, InternalError,
            "dst %s maps back to src %s in SubGraph::Rewriter::replace_var",
            dst->cname(), src->cname());

    auto &&ins = m_varmap.insert({src, {false, dst}});
    if (!ins.second) {
        auto &&old_rep = ins.first->second;
        mgb_assert(old_rep.first || old_rep.second == dst,
                "can not replace a var twice");
        old_rep.first = false;
        old_rep.second = dst;
    }
    on_var_replaced(src, dst, msg);
}

void SubGraph::Rewriter::on_var_replaced(
        VarNode* src, VarNode* dst, const char* msg) {
    if (auto state = m_owner_graph->owner_opt_state()) {
        state->on_var_replaced(src, dst, msg);
    }
}

void SubGraph::Rewriter::apply_inplace() const {
    m_owner_graph->m_endpoint_oprs.clear();
    m_owner_graph->m_endpoint_vars_set.clear();
    for (auto &&var: m_owner_graph->m_endpoint_vars) {
        var = get_var(var.node());
        m_owner_graph->m_endpoint_oprs.insert(var.node()->owner_opr());
        m_owner_graph->m_endpoint_vars_set.insert(var.node());
    }
}

std::pair<bool, VarNode*> SubGraph::Rewriter::get_var_internal(VarNode* var) {
    // The implementation is (manually) unrolled once, background:
    // git-core/brain-sdk/MegBrain/merge_requests/486#note_76971
    auto it = m_varmap.find(var);
    if (it == m_varmap.end()) {
        return {true, var};
    }
    mgb_assert(it->second.second != var, "loop detected in m_varmap");
    auto it_next = m_varmap.find(it->second.second);
    if (it_next == m_varmap.end()) {
        return it->second;
    }
    mgb_assert(it_next->second.second != it->second.second,
               "loop detected in m_varmap");
    auto next = get_var_internal(it_next->second.second);
    it_next->second = {next.first & it_next->second.first, next.second};
    return it->second = {it_next->second.first & it->second.first, next.second};
}

SubGraph::SubGraph(const SymbolVarArray &endpoint_vars):
    m_endpoint_vars(endpoint_vars)
{
    mgb_assert(!endpoint_vars.empty(), "endpoints can not be empty");
    m_comp_graph = endpoint_vars[0].node()->owner_graph();
    for (auto i: endpoint_vars) {
        m_endpoint_oprs.insert(i.node()->owner_opr());
        m_endpoint_vars_set.insert(i.node());
        mgb_assert(m_comp_graph == i.node()->owner_graph(),
                "endpoints belong to different computing graphs");
    }
}

void SubGraph::iter(
        const Callback& cb,
        std::shared_ptr<ExtraDep> extra_dep) const {
    Callback on_opr;

    if (m_owner_opt_state) {
        on_opr = [state=m_owner_opt_state, &cb](OperatorNodeBase *opr) {
            state->m_opr_property_flag = OprPropertyFlag::ALL;
            state->m_cur_iter_src_opr = cg::get_opr_root_source_opr(opr);
            state->m_cur_iter_opr_priority =
                opr->node_prop().attribute().priority;
            state->m_cur_iter_opr_stream_prop_type =
                state->m_comp_node_opt.stream_prop_type(
                        opr->output(0));
            mgb_assert(state->m_oprs_inserted.empty());
            cb(opr);
            state->m_opr_property_flag = OprPropertyFlag::NONE;
            state->m_cur_iter_src_opr = nullptr;
            state->m_oprs_inserted.clear();
        };
    } else {
        on_opr = cb;
    }

    cg::DepOprIter dep_iter{on_opr, std::move(extra_dep)};
    for (auto i: m_endpoint_oprs)
        dep_iter.add(i);
}

ThinHashMap<VarNode*, size_t> SubGraph::get_var2nr_val_dep_oprs() const {
    ThinHashMap<VarNode*, size_t> ret;
    auto cb = [&](OperatorNodeBase *opr) {
        for (auto &&i: opr->node_prop().dep_map()) {
            if (OperatorNodeBase::NodeProp::is_device_value_dep(i.second)) {
                ++ ret.at(i.first);
            }
        }
        for (auto i: opr->output()) {
            if (!i->contain_flag(VarNode::Flag::VOLATILE_CONTENT)) {
                auto ins = ret.insert({i, 0});
                mgb_assert(ins.second);
            }
        }
    };
    iter(cb);
    for (auto i: m_endpoint_vars_set) {
        auto iter = ret.find(i);
        if (iter == ret.end()) {
            mgb_assert(i->contain_flag(VarNode::Flag::VOLATILE_CONTENT));
            ret[i] = 1;
        } else {
            ++ ret.at(i);
        }
    }
    return ret;
}

/* ================ UniqReaderCheck ================ */

UniqReaderCheck::UniqReaderCheck(const SubGraph &graph):
    m_var2nr_val_dep{graph.get_var2nr_val_dep_oprs()}
{
}

void UniqReaderCheck::update_on_opr_auto_replace(OperatorNodeBase* opr,
                                                 OperatorNodeBase* repl_opr) {
    auto non_volatile_size = [](const VarNodeArray& vars) -> size_t {
        size_t size = 0;
        for (size_t i = 0; i < vars.size(); ++i) {
            if (!vars[i]->contain_flag(VarNode::Flag::VOLATILE_CONTENT)) {
                size++;
            }
        }
        return size;
    };
    if (opr != repl_opr) {
        auto &&o0 = opr->output(), &&o1 = repl_opr->output();
        mgb_assert(non_volatile_size(o0) == non_volatile_size(o1));
        for (size_t i = 0; i < o0.size(); ++i) {
            auto iter = m_var2nr_val_dep.find(o0[i]);
            if (iter != m_var2nr_val_dep.end()) {
                auto n = iter->second;
                m_var2nr_val_dep[o1[i]] = n;
            }
        }
    }
}

/* ================ OptState ================ */

OptState::OptState(
        const GraphOptimizer *owner_optimizer, const SubGraph& graph):
    m_owner_optimizer{owner_optimizer},
    m_var_replace_map{
        const_cast<ThinHashMap<VarNode*, VarNode*>*>(
                &GraphOptimizer::var_replace_map(*graph.comp_graph()))},
    m_comp_node_opt{graph.comp_graph()->seq_comp_node_optimizer()},
    m_graph{graph}
{
    mgb_assert(!m_graph.m_owner_opt_state);
    m_var_replace_map->clear();
    m_graph.m_owner_opt_state = this;
    m_oprs_inserted.clear();

    auto on_opr_insert = [this](const cg::event::OprInserted &ev) {
        auto need_src_opr = m_opr_property_flag & OprPropertyFlag::SOURCE_OPR,
             need_priority = m_opr_property_flag & OprPropertyFlag::PRIORITY;
        if (need_src_opr)
            mgb_assert(m_cur_iter_src_opr, "opr %s{%s} created outside from "
                    "SubGraph::iter",
                    ev.opr->cname(), ev.opr->dyn_typeinfo()->name);
        if (ev.exc || ev.is_dedup)
            return;

        auto &&new_attr = ev.opr->node_prop().attribute();
        auto &&ins = m_oprs_inserted.insert({ev.opr, OprPropertyFlag::NONE});
        mgb_assert(ins.second);

        if (need_src_opr && !new_attr.src_opr) {
            auto src_opr = m_cur_iter_src_opr;
            if (ev.opr != src_opr)
                new_attr.src_opr = src_opr;
            ins.first->second |= OprPropertyFlag::SOURCE_OPR;
        }
        if (need_priority) {
            new_attr.priority = m_cur_iter_opr_priority;
            if (!ev.opr->update_priority()) {
                ins.first->second |= OprPropertyFlag::PRIORITY;
            }
        }

        auto csp = m_cur_iter_opr_stream_prop_type;
        if (csp.prop_type != cg::SeqCompNodeOptimizer::StreamPropType::NONE) {
            for (auto i: ev.opr->output())
                m_comp_node_opt.register_stream_var(i, csp);
        }
    };
    m_on_opr_insert_handler = graph.comp_graph()->event().register_receiver<
        cg::event::OprInserted>(on_opr_insert);
}

void OptState::on_var_replaced(VarNode *src, VarNode *dst, const char *msg) {
    if (src->contain_flag(VarNode::Flag::VOLATILE_CONTENT)) {
        // this can only happen in auto_replace_outputs()
        mgb_assert(dst->contain_flag(VarNode::Flag::VOLATILE_CONTENT) &&
                src->owner_opr()->dyn_typeinfo() ==
                dst->owner_opr()->dyn_typeinfo());
        mgb_assert(!msg);
        return;
    }

    //! check_property
    {
        auto iter = m_oprs_inserted.find(dst->owner_opr());
        if (iter != m_oprs_inserted.end()) {
            auto &&src_attr = src->owner_opr()->node_prop().attribute(),
                 &&dst_attr = dst->owner_opr()->node_prop().attribute();
            auto opr_info = [&](OperatorNodeBase* opr) {
                return opr ? opr->name() + "(" + std::to_string(opr->id()) + ")"
                           : "NULL";
            };
            auto err_msg = [&] {
                std::string ret = "Please contact Engine group:\n";
                ret += "src opr: ";
                ret += opr_info(src->owner_opr());
                ret += ", dst opr: ";
                ret += opr_info(dst->owner_opr());
                return ret;
            };
            MGB_MARK_USED_VAR(err_msg);
            if (iter->second & OprPropertyFlag::SOURCE_OPR) {
                auto &&src_rt = get_opr_root_source_opr(src->owner_opr()),
                     &&dst_rt = get_opr_root_source_opr(dst->owner_opr());
                mgb_assert(dst_rt == src_rt,
                           "%s\nsrc source_opr: %s, dst source_opr: %s\n",
                           err_msg().c_str(), opr_info(src_rt).c_str(),
                           opr_info(dst_rt).c_str());
            }
            if (iter->second & OprPropertyFlag::PRIORITY) {
                mgb_assert(src_attr.priority == dst_attr.priority,
                           "%s\nsrc priority: %d, dst priority %d\n",
                           err_msg().c_str(), src_attr.priority,
                           dst_attr.priority);
            }
        }
    }

    {
        bool suc = true;
        SmallVector<std::string> fail_chks;
        if (m_var_replace_check_flag & VarReplaceCheckFlag::CHECK_INFER_TYPE) {
            auto&& mgr = src->owner_graph()->static_infer_manager();
            auto it0 = mgr.get_infer_type(src), it1 = mgr.get_infer_type(dst);
            using cg::static_infer::InferType;
            // only check wheter inferable
            auto norm = [](InferType::Flag f) -> bool {
                return f & (InferType::RT_STATIC | InferType::CONST);
            };
            if (!(norm(it0.shape) == norm(it1.shape) &&
                norm(it0.value) <= norm(it1.value))) {
                suc = false;
                fail_chks.push_back("infer-type");
            }
        }
        if (m_var_replace_check_flag & VarReplaceCheckFlag::CHECK_DTYPE) {
            if (src->dtype() != dst->dtype()) {
                suc = false;
                fail_chks.push_back("dtype");
            }
        }
        if (m_var_replace_check_flag & VarReplaceCheckFlag::CHECK_SHAPE) {
            if (!(src->shape().eq_shape(dst->shape()))) {
                suc = false;
                fail_chks.push_back("shape");
            }
        }
        if (!suc) {
            std::string fail_msg = "{";
            for (size_t i = 0; i < fail_chks.size(); i++) {
                fail_msg += fail_chks[i];
                if (i < fail_chks.size() - 1) {
                    fail_msg += ",";
                }
            }
            fail_msg += "}";
            mgb_throw_raw(
                    cg::OperatorNodeExcExtraInfo::ExcMaker{src->owner_opr()}
                            .make<InternalError>(ssprintf(
                                    "%s mismatch for replace_var: %s",
                                    fail_msg.c_str(),
                                    cg::dump_var_info({src, dst}).c_str())));
        }
    }

    if (src->has_name_set() && !dst->has_name_set()) {
        dst->name(src->name());
    }
    (*m_var_replace_map)[src] = dst;
    // dst should be considered as newly inserted, and previous replace
    // record should be ignored
    m_var_replace_map->erase(dst);

#if MGB_ENABLE_LOGGING
    if (msg && m_owner_optimizer->verbosity()) {
        m_log_msg.
            append("\n ").
            append(std::to_string(m_log_nr_item)).
            append(": ").
            append(src->owner_opr()->cname()).
            append(" => ").
            append(dst->owner_opr()->cname()).
            append(" (").
            append(msg).
            append(")");
    }
    ++ m_log_nr_item;
#endif
}

size_t OptState::flush_log(const char *title) {
    if (m_owner_optimizer->verbosity() >= 2) {
        if (m_log_msg.empty()) {
            m_log_msg = mgb_cstr_log(" no var replacement logged");
        }
        mgb_log("%s%s", title, m_log_msg.c_str());
        m_log_msg.clear();
    }
    auto ret = m_log_nr_item;
    m_log_nr_item = 0;
    return ret;
}

void OptState::call_with_opr(OperatorNodeBase *opr, thin_function<void(void)> func,
                             OprPropertyFlag opr_property_flag) {
    auto src_opr = cg::get_opr_root_source_opr(opr);
    auto opr_priority = opr->node_prop().attribute().priority;
    auto stream_prop_type = m_comp_node_opt.stream_prop_type(opr->output(0));
    ThinHashMap<OperatorNodeBase*, OprPropertyFlag> oprs_inserted;

    auto swap_properties = [&,
        need_src_opr = opr_property_flag & OprPropertyFlag::SOURCE_OPR,
        need_priority = opr_property_flag & OprPropertyFlag::PRIORITY] {
        if (need_src_opr) {
            std::swap(m_cur_iter_src_opr, src_opr);
        }
        if (need_priority) {
            std::swap(m_cur_iter_opr_priority, opr_priority);
        }
        std::swap(m_cur_iter_opr_stream_prop_type, stream_prop_type);
        std::swap(m_opr_property_flag, opr_property_flag);
        std::swap(m_oprs_inserted, oprs_inserted);
    };
    MGB_TRY {
        swap_properties();
        func();
    } MGB_FINALLY({
        swap_properties();
    });
}

/* ================ RecursiveSubGraphRewriteHelper ================ */
RecursiveSubGraphRewriteHelper::
~RecursiveSubGraphRewriteHelper() noexcept = default;

RecursiveSubGraphRewriteHelper::RecursiveSubGraphRewriteHelper(OptState &state):
    m_opt_state{state}, m_rewriter{state.graph().make_rewriter()}
{
}

void RecursiveSubGraphRewriteHelper::apply() {
    using namespace std::placeholders;
    m_opt_state.graph().iter(
            std::bind(&RecursiveSubGraphRewriteHelper::on_opr, this, _1));
    m_rewriter.apply_inplace();
}

void RecursiveSubGraphRewriteHelper::on_opr(OperatorNodeBase *opr) {
    auto on_new_opr = [this](OperatorNodeBase *opr) {
        auto repl_opr = m_rewriter.auto_replace_outputs(opr);
        return on_new_opr_check_should_process(opr, repl_opr);
    };

    if (!on_new_opr(opr))
        return;

    auto orig_out = get_opr_single_output_var(opr);
    if (!orig_out)
        return;

    mgb_assert(m_opr_stack.empty());
    m_opr_stack.push_back({
            orig_out, m_rewriter.get_var(orig_out)->owner_opr()});

    bool first = true;
    while (!m_opr_stack.empty()) {
        auto cur_frame = m_opr_stack.back();
        m_opr_stack.pop_back();
        auto cur_opr = cur_frame.opr;
        bool should_process;
        if (first) {
            should_process = true;
            first = false;
        } else {
            should_process = on_new_opr(cur_opr);
        }
        auto cur_out = get_opr_single_output_var(cur_opr);
        mgb_assert(cur_out);
        cur_out = m_rewriter.get_var(cur_out);

        if (should_process) {
            auto trans = process_opr(cur_out);
            if (trans.valid()) {
                m_opr_stack.push_back({
                        cur_frame.orig_var, trans->result->owner_opr()});
                for (auto i: reverse_adaptor(trans->internal)) {
                    if (i)
                        m_opr_stack.push_back({i, i->owner_opr()});
                }
                if (trans->msg) {
                    if (!m_log_msg.empty())
                        m_log_msg.push_back(';');
                    m_log_msg.append(trans->msg);
                }
                continue;
            }
        }

        auto src = cur_frame.orig_var;
        if (m_rewriter.get_var(src) != cur_out) {
            const char *msg = nullptr;
            if (m_opr_stack.empty()) {
                msg = m_log_msg.c_str();
            }
            m_rewriter.replace_var(src, cur_out, msg);
            after_replace_var(src, cur_out);
            if (m_opr_stack.empty()) {
                m_log_msg.clear();
                break;
            }
        }
    }
}

/* ================ GraphOptimizer ================ */

GraphOptimizer::~GraphOptimizer() noexcept = default;

class GraphOptimizer::VarReplaceMapStorage :public UserDataContainer::UserData {
    MGB_TYPEINFO_OBJ_DECL;

    public:
        ThinHashMap<VarNode*, VarNode*> map;
};
MGB_TYPEINFO_OBJ_IMPL(GraphOptimizer::VarReplaceMapStorage);

GraphOptimizer& GraphOptimizer::add_pass(std::unique_ptr<Pass> pass) {
    mgb_assert(!pass->m_owner_optimizer);
    pass->m_owner_optimizer = this;
    m_passes.emplace_back(std::move(pass));
    return *this;
}

SubGraph GraphOptimizer::apply(const SubGraph &graph) const {
    RealTimer timer;
    OptState state{this, graph};

    size_t tot_nr_replace = 0;

    // first update output var shapes of all oprs
    state.graph().iter(cg::update_output_var_shapes);

    auto &&opt = graph.comp_graph()->options();
    auto orig_setting = opt.graph_opt_level;
    Pass *cur_pass = nullptr;
    MGB_MARK_USED_VAR(cur_pass);
    MGB_TRY {
        for (auto &&i: m_passes) {
            state.set_var_replace_check_flag(VarReplaceCheckFlag::CHECK_ALL);
            cur_pass = i.get();
            opt.graph_opt_level = 1;
            i->apply(state);
            tot_nr_replace += state.flush_log(
                    mgb_ssprintf_log(
                        "apply optimization pass %s:", i->name()).c_str());
        }
    } MGB_CATCH(std::exception &exc, {
        mgb_log_error("error while applying optimization pass %s: %s",
                cur_pass->name(), exc.what());
        opt.graph_opt_level = orig_setting;
        throw;
    })
    MGB_FINALLY(
        opt.graph_opt_level = orig_setting
    );
    if (verbosity() >= 1) {
        mgb_log_debug("graph optimization: applied %zu passes, "
                "total %zu var(s) replaced; time=%.2fms",
                m_passes.size(), tot_nr_replace, timer.get_msecs());
    }
    return state.graph();
}

const GraphOptimizer& GraphOptimizer::apply_inplace(VarNodeArray &vars) const {
    if (m_passes.empty()) {
        // this check is necessary, since OptState would clear
        // var_replace_map()
        return *this;
    }

    auto g = apply({{vars.begin(), vars.end()}});
    for (size_t i = 0; i < vars.size(); ++ i) {
        vars[i] = g.endpoint_vars()[i].node();
    }
    return *this;
}

GraphOptimizer& GraphOptimizer::add_preset_passes(
        bool after_grad, const OptimizeForInferenceOptions* inference_opt,
        const ComputingGraph::Options* comp_graph_opt) {
    auto cv_type = inference_opt ? ConstVarType::IMMUTABLE_AND_PARAM
                                 : ConstVarType::IMMUTABLE;
    if (inference_opt) {
        add_pass<ConvertBatchNormToElemwisePass>();
    }
    if (!after_grad || inference_opt) {
        add_pass<CondExecConstPredicateFolding>();
    }
    if (after_grad || inference_opt) {
        add_pass<RemoveNonComputingOprPass>();
    }
    add_pass<DelayBroadcastPass>();
    add_pass<ExpandFusedArithPass>();
    add_pass<NormalizeArithChainPass>();
    if (inference_opt) {
        add_pass<ParamRedistributePass>();
        add_pass<ParamFusePass>();
    }
    add_pass<ArithMulDistributePass>();
    add_pass<ReorderArithChainPass>(cv_type);

    if (inference_opt) {
        if (inference_opt->use_nhwcd4) {
            add_pass(ConvertFormatPass::make_nhwcd4_converter());
        }
        if (inference_opt->f16_io_f32_comp) {
            add_pass(ConvertF32ToF16Pass::make(true));
        }
        if (inference_opt->f16_io_comp) {
            add_pass(ConvertF32ToF16Pass::make(false));
        }

        // fuse again after reordering
        add_pass<ParamFusePass>();
    }

    add_pass<ArithFusePass>();
    // reorder again because shapes of fused oprs might change
    add_pass<ReorderArithChainPass>(cv_type);
    add_pass<FinalArithTransformPass>();
    add_pass<RemoveRedundantTypeCvtPass>();

#if MGB_JIT
    bool need_jit = false;
    if (comp_graph_opt && (std::abs(comp_graph_opt->graph_opt_level) >= 3 ||
            comp_graph_opt->graph_opt.jit)) {
        need_jit = true;
    }
    if (need_jit && after_grad) {
        add_pass<gopt::RecompTypeCvtPass>();
    }
#endif

    // combine astype and reduce.
    // Note: apply this pass before JITFusion, so the TypeCvt which
    // read by both Reduce and Elemwise could be fused correctly.
    add_pass<CombineAstypeAndReducePass>();

#if MGB_JIT
    if (need_jit) {
        add_pass<gopt::JITFusionPass>(
                after_grad,
                std::max<uint8_t>(comp_graph_opt->graph_opt.jit, 1));
    }
#endif

    if (inference_opt) {
        if (inference_opt->fuse_conv_bias_nonlinearity)
            add_pass<FuseConvBiasNonlinPass>();
        if (inference_opt->fuse_conv_bias_with_z) {
            mgb_assert(inference_opt->fuse_conv_bias_nonlinearity,
                       "fuse conv bias with z input should fuse conv bias "
                       "activation "
                       "first");
            add_pass<FuseConvBiasZPass>();
        }
        if (inference_opt->use_nchw88) {
            add_pass(EnableNchwxxPass::make_nchwxx_converter(8));
        }
        if (inference_opt->use_tensor_core) {
            mgb_assert(inference_opt->fuse_conv_bias_nonlinearity,
                       "enable tensor core should fuse conv bias activation "
                       "first");
            add_pass(EnableTensorCorePass::make_tensorcore_converter());
            add_pass<ShuffleShuffleRemovePass>();
            add_pass<RemoveRedundantTypeCvtPass>();
        }
        add_pass<ParamFusePass>();
    }

    if (inference_opt) {
        // merge params to reduce loading time and graph overhead
        add_pass<ParamMergePass>();
        add_pass<FuseDeconvCvtPass>();
    }
    return *this;
}

const ThinHashMap<VarNode*, VarNode*>& GraphOptimizer::var_replace_map(
        ComputingGraph &graph) {
    auto storage = graph.options().user_data.get_user_data_or_create<
        VarReplaceMapStorage>();
    return storage->map;
}

VarNode* GraphOptimizer::var_replace_lookup(VarNode *var) {
    auto &&map = var_replace_map(*(var->owner_graph()));
    for (; ; ) {
        auto iter = map.find(var);
        if (iter == map.end())
            return var;
        var = iter->second;
    }
}

/* ================ ConstVarPropogateBase ================ */

ConstVarPropogateBase::AddOprResult ConstVarPropogateBase::add_opr(
        OperatorNodeBase *opr) {
    using ProfFlag = OperatorNodeBase::NodeProp::Flag;
    auto &&info = m_oprinfo[opr];
    if (info.processed)
        return info.result;
    info.processed = true;

#if MGB_ENABLE_JSON
    (*opr->to_json_extra_json)["gopt::cvprop"] = json::Bool::make(false);
#endif

    AddOprResult ret{false, false, false};
    auto make_ret = [&ret, &info]() {
        info.result = ret;
        return ret;
    };

    if (is_const_var(m_const_var_type, opr)) {
        auto sz = var_mem_size(opr->output(0));
        mgb_assert(sz);
        info.is_const = true;
        info.max_size = sz;
        return make_ret();
    }

    if (opr->input().empty())
        return make_ret();

    if (opr->node_prop().contain(
                ProfFlag::FORCE_UPDATE_INPUT_VAR |
                ProfFlag::IMPURE_FUNC)) {
        return make_ret();
    }

    size_t max_input_size = 0;
    ret.all_const_inp = true;
    for (auto i: opr->input()) {
        auto io = i->owner_opr();
        auto iter = m_oprinfo.find(io);
        if (iter == m_oprinfo.end()) {
            add_opr(io);
            iter = m_oprinfo.find(io);
            mgb_assert(iter != m_oprinfo.end());
        }
        auto &&src = iter->second;
        if (src.is_const) {
            update_max(max_input_size, src.max_size);
            ret.has_const_inp = true;
            if (!is_const_var(m_const_var_type, i->owner_opr())) {
                ret.has_midconst_inp = true;
            }
        } else {
            ret.all_const_inp = false;
        }
    }
    if (ret.all_const_inp) {
#if MGB_ENABLE_JSON
        (*opr->to_json_extra_json)["gopt::cvprop"] = json::Bool::make(true);
#endif
        info.max_size = max_input_size;
        info.is_const = true;
        on_midconst_opr(opr, max_input_size);
    }
    return make_ret();
}

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}