/** * \file src/gopt/impl/framework.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #include "megbrain/gopt/framework.h" #include "megbrain/gopt/inference.h" #include "megbrain/gopt/basic_arith.h" #include "megbrain/gopt/misc.h" #include "megbrain/gopt/gtrans.h" #include "megbrain/graph/event.h" #include "megbrain/graph/exc_extra_info.h" #include "megbrain/serialization/serializer.h" #include "megbrain/serialization/opr_shallow_copy.h" #include "megbrain/utils/timer.h" #if MGB_JIT #include "megbrain/jit/fusion_pass.h" #endif #if MGB_ENABLE_TENSOR_RT #include "megbrain/tensorrt/opr_replace.h" #endif using namespace mgb; using namespace gopt; /* ================ SubGraph ================ */ OperatorNodeBase* SubGraph::Rewriter::auto_replace_outputs( OperatorNodeBase *opr) { auto &&new_inp = m_opr_new_inp_cache; new_inp.clear(); new_inp.reserve(opr->input().size()); bool has_replaced_inp = false; for (auto i: opr->input()) { auto new_var = get_var(i); if (new_var != i) { has_replaced_inp = true; new_inp.push_back(new_var); } else { new_inp.push_back(i); } } if (has_replaced_inp) { auto new_opr = serialization::copy_opr_shallow( *opr, new_inp, opr->config()); auto &&out0 = opr->output(), &&out1 = new_opr->output(); size_t i = 0; auto err_msg = [opr, new_opr] { return ssprintf("bad opr copy: src=%s{%s} dst=%s{%s}", opr->cname(), opr->dyn_typeinfo()->name, new_opr->cname(), new_opr->dyn_typeinfo()->name); }; MGB_MARK_USED_VAR(err_msg); // opr output size mismatch may be caused by: // 0) inplace arith optimization (e.g. PowC need an extra workspace) // 1) other post-insert optimization (e.g. const folding) // we can't handle only usable_output here, since some output var with // volatile flag could be the graph's endpoint (e.g. RemoteSend) for (; i < std::min(out0.size(), out1.size()); ++ i) { bool v0 = out0[i]->contain_flag(VarNode::Flag::VOLATILE_CONTENT), v1 = out1[i]->contain_flag(VarNode::Flag::VOLATILE_CONTENT); mgb_assert(v0 == v1, "%s", err_msg().c_str()); auto &&ins = m_varmap.insert({out0[i], {true, nullptr}}); mgb_assert(ins.second || ins.first->second.first, "opr output already replaced"); // handle repeated call on the same opr ins.first->second.second = out1[i]; on_var_replaced(out0[i], out1[i], nullptr); } for (; i < out0.size(); ++ i) { mgb_assert(out0[i]->contain_flag(VarNode::Flag::VOLATILE_CONTENT), "%s", err_msg().c_str()); } for (; i < out1.size(); ++ i) { mgb_assert(out1[i]->contain_flag(VarNode::Flag::VOLATILE_CONTENT), "%s", err_msg().c_str()); } return new_opr; } return opr; } void SubGraph::Rewriter::replace_var( VarNode *src, VarNode *dst, const char *msg) { if (src == dst) return; // Optimizers should not create a loop in varaible replace map. mgb_throw_if( get_var_internal(dst).second == src, InternalError, "dst %s maps back to src %s in SubGraph::Rewriter::replace_var", dst->cname(), src->cname()); auto &&ins = m_varmap.insert({src, {false, dst}}); if (!ins.second) { auto &&old_rep = ins.first->second; mgb_assert(old_rep.first || old_rep.second == dst, "can not replace a var twice"); old_rep.first = false; old_rep.second = dst; } on_var_replaced(src, dst, msg); } void SubGraph::Rewriter::on_var_replaced( VarNode* src, VarNode* dst, const char* msg) { if (auto state = m_owner_graph->owner_opt_state()) { state->on_var_replaced(src, dst, msg); } } void SubGraph::Rewriter::apply_inplace() const { m_owner_graph->m_endpoint_oprs.clear(); m_owner_graph->m_endpoint_vars_set.clear(); for (auto &&var: m_owner_graph->m_endpoint_vars) { var = get_var(var.node()); m_owner_graph->m_endpoint_oprs.insert(var.node()->owner_opr()); m_owner_graph->m_endpoint_vars_set.insert(var.node()); } } std::pair SubGraph::Rewriter::get_var_internal(VarNode* var) { // The implementation is (manually) unrolled once, background: // git-core/brain-sdk/MegBrain/merge_requests/486#note_76971 auto it = m_varmap.find(var); if (it == m_varmap.end()) { return {true, var}; } mgb_assert(it->second.second != var, "loop detected in m_varmap"); auto it_next = m_varmap.find(it->second.second); if (it_next == m_varmap.end()) { return it->second; } mgb_assert(it_next->second.second != it->second.second, "loop detected in m_varmap"); auto next = get_var_internal(it_next->second.second); it_next->second = {next.first & it_next->second.first, next.second}; return it->second = {it_next->second.first & it->second.first, next.second}; } SubGraph::SubGraph(const SymbolVarArray &endpoint_vars): m_endpoint_vars(endpoint_vars) { mgb_assert(!endpoint_vars.empty(), "endpoints can not be empty"); m_comp_graph = endpoint_vars[0].node()->owner_graph(); for (auto i: endpoint_vars) { m_endpoint_oprs.insert(i.node()->owner_opr()); m_endpoint_vars_set.insert(i.node()); mgb_assert(m_comp_graph == i.node()->owner_graph(), "endpoints belong to different computing graphs"); } } void SubGraph::iter( const Callback& cb, std::shared_ptr extra_dep) const { Callback on_opr; if (m_owner_opt_state) { on_opr = [state=m_owner_opt_state, &cb](OperatorNodeBase *opr) { state->m_opr_property_flag = OprPropertyFlag::ALL; state->m_cur_iter_src_opr = cg::get_opr_root_source_opr(opr); state->m_cur_iter_opr_priority = opr->node_prop().attribute().priority; state->m_cur_iter_opr_stream_prop_type = state->m_comp_node_opt.stream_prop_type( opr->output(0)); mgb_assert(state->m_oprs_inserted.empty()); cb(opr); state->m_opr_property_flag = OprPropertyFlag::NONE; state->m_cur_iter_src_opr = nullptr; state->m_oprs_inserted.clear(); }; } else { on_opr = cb; } cg::DepOprIter dep_iter{on_opr, std::move(extra_dep)}; for (auto i: m_endpoint_oprs) dep_iter.add(i); } ThinHashMap SubGraph::get_var2nr_val_dep_oprs() const { ThinHashMap ret; auto cb = [&](OperatorNodeBase *opr) { for (auto &&i: opr->node_prop().dep_map()) { if (OperatorNodeBase::NodeProp::is_device_value_dep(i.second)) { ++ ret.at(i.first); } } for (auto i: opr->output()) { if (!i->contain_flag(VarNode::Flag::VOLATILE_CONTENT)) { auto ins = ret.insert({i, 0}); mgb_assert(ins.second); } } }; iter(cb); for (auto i: m_endpoint_vars_set) { auto iter = ret.find(i); if (iter == ret.end()) { mgb_assert(i->contain_flag(VarNode::Flag::VOLATILE_CONTENT)); ret[i] = 1; } else { ++ ret.at(i); } } return ret; } /* ================ UniqReaderCheck ================ */ UniqReaderCheck::UniqReaderCheck(const SubGraph &graph): m_var2nr_val_dep{graph.get_var2nr_val_dep_oprs()} { } void UniqReaderCheck::update_on_opr_auto_replace(OperatorNodeBase* opr, OperatorNodeBase* repl_opr) { auto non_volatile_size = [](const VarNodeArray& vars) -> size_t { size_t size = 0; for (size_t i = 0; i < vars.size(); ++i) { if (!vars[i]->contain_flag(VarNode::Flag::VOLATILE_CONTENT)) { size++; } } return size; }; if (opr != repl_opr) { auto &&o0 = opr->output(), &&o1 = repl_opr->output(); mgb_assert(non_volatile_size(o0) == non_volatile_size(o1)); for (size_t i = 0; i < o0.size(); ++i) { auto iter = m_var2nr_val_dep.find(o0[i]); if (iter != m_var2nr_val_dep.end()) { auto n = iter->second; m_var2nr_val_dep[o1[i]] = n; } } } } /* ================ OptState ================ */ OptState::OptState( const GraphOptimizer *owner_optimizer, const SubGraph& graph): m_owner_optimizer{owner_optimizer}, m_var_replace_map{ const_cast*>( &GraphOptimizer::var_replace_map(*graph.comp_graph()))}, m_comp_node_opt{graph.comp_graph()->seq_comp_node_optimizer()}, m_graph{graph} { mgb_assert(!m_graph.m_owner_opt_state); m_var_replace_map->clear(); m_graph.m_owner_opt_state = this; m_oprs_inserted.clear(); auto on_opr_insert = [this](const cg::event::OprInserted &ev) { auto need_src_opr = m_opr_property_flag & OprPropertyFlag::SOURCE_OPR, need_priority = m_opr_property_flag & OprPropertyFlag::PRIORITY; if (need_src_opr) mgb_assert(m_cur_iter_src_opr, "opr %s{%s} created outside from " "SubGraph::iter", ev.opr->cname(), ev.opr->dyn_typeinfo()->name); if (ev.exc || ev.is_dedup) return; auto &&new_attr = ev.opr->node_prop().attribute(); auto &&ins = m_oprs_inserted.insert({ev.opr, OprPropertyFlag::NONE}); mgb_assert(ins.second); if (need_src_opr && !new_attr.src_opr) { auto src_opr = m_cur_iter_src_opr; if (ev.opr != src_opr) new_attr.src_opr = src_opr; ins.first->second |= OprPropertyFlag::SOURCE_OPR; } if (need_priority) { new_attr.priority = m_cur_iter_opr_priority; if (!ev.opr->update_priority()) { ins.first->second |= OprPropertyFlag::PRIORITY; } } auto csp = m_cur_iter_opr_stream_prop_type; if (csp.prop_type != cg::SeqCompNodeOptimizer::StreamPropType::NONE) { for (auto i: ev.opr->output()) m_comp_node_opt.register_stream_var(i, csp); } }; m_on_opr_insert_handler = graph.comp_graph()->event().register_receiver< cg::event::OprInserted>(on_opr_insert); } void OptState::on_var_replaced(VarNode *src, VarNode *dst, const char *msg) { if (src->contain_flag(VarNode::Flag::VOLATILE_CONTENT)) { // this can only happen in auto_replace_outputs() mgb_assert(dst->contain_flag(VarNode::Flag::VOLATILE_CONTENT) && src->owner_opr()->dyn_typeinfo() == dst->owner_opr()->dyn_typeinfo()); mgb_assert(!msg); return; } //! check_property { auto iter = m_oprs_inserted.find(dst->owner_opr()); if (iter != m_oprs_inserted.end()) { auto &&src_attr = src->owner_opr()->node_prop().attribute(), &&dst_attr = dst->owner_opr()->node_prop().attribute(); auto opr_info = [&](OperatorNodeBase* opr) { return opr ? opr->name() + "(" + std::to_string(opr->id()) + ")" : "NULL"; }; auto err_msg = [&] { std::string ret = "Please contact Engine group:\n"; ret += "src opr: "; ret += opr_info(src->owner_opr()); ret += ", dst opr: "; ret += opr_info(dst->owner_opr()); return ret; }; MGB_MARK_USED_VAR(err_msg); if (iter->second & OprPropertyFlag::SOURCE_OPR) { auto &&src_rt = get_opr_root_source_opr(src->owner_opr()), &&dst_rt = get_opr_root_source_opr(dst->owner_opr()); mgb_assert(dst_rt == src_rt, "%s\nsrc source_opr: %s, dst source_opr: %s\n", err_msg().c_str(), opr_info(src_rt).c_str(), opr_info(dst_rt).c_str()); } if (iter->second & OprPropertyFlag::PRIORITY) { mgb_assert(src_attr.priority == dst_attr.priority, "%s\nsrc priority: %d, dst priority %d\n", err_msg().c_str(), src_attr.priority, dst_attr.priority); } } } { bool suc = true; SmallVector fail_chks; if (m_var_replace_check_flag & VarReplaceCheckFlag::CHECK_INFER_TYPE) { auto&& mgr = src->owner_graph()->static_infer_manager(); auto it0 = mgr.get_infer_type(src), it1 = mgr.get_infer_type(dst); using cg::static_infer::InferType; // only check wheter inferable auto norm = [](InferType::Flag f) -> bool { return f & (InferType::RT_STATIC | InferType::CONST); }; if (!(norm(it0.shape) == norm(it1.shape) && norm(it0.value) <= norm(it1.value))) { suc = false; fail_chks.push_back("infer-type"); } } if (m_var_replace_check_flag & VarReplaceCheckFlag::CHECK_DTYPE) { if (src->dtype() != dst->dtype()) { suc = false; fail_chks.push_back("dtype"); } } if (m_var_replace_check_flag & VarReplaceCheckFlag::CHECK_SHAPE) { if (!(src->shape().eq_shape(dst->shape()))) { suc = false; fail_chks.push_back("shape"); } } if (!suc) { std::string fail_msg = "{"; for (size_t i = 0; i < fail_chks.size(); i++) { fail_msg += fail_chks[i]; if (i < fail_chks.size() - 1) { fail_msg += ","; } } fail_msg += "}"; mgb_throw_raw( cg::OperatorNodeExcExtraInfo::ExcMaker{src->owner_opr()} .make(ssprintf( "%s mismatch for replace_var: %s", fail_msg.c_str(), cg::dump_var_info({src, dst}).c_str()))); } } if (src->has_name_set() && !dst->has_name_set()) { dst->name(src->name()); } (*m_var_replace_map)[src] = dst; // dst should be considered as newly inserted, and previous replace // record should be ignored m_var_replace_map->erase(dst); #if MGB_ENABLE_LOGGING if (msg && m_owner_optimizer->verbosity()) { m_log_msg. append("\n "). append(std::to_string(m_log_nr_item)). append(": "). append(src->owner_opr()->cname()). append(" => "). append(dst->owner_opr()->cname()). append(" ("). append(msg). append(")"); } ++ m_log_nr_item; #endif } size_t OptState::flush_log(const char *title) { if (m_owner_optimizer->verbosity() >= 2) { if (m_log_msg.empty()) { m_log_msg = mgb_cstr_log(" no var replacement logged"); } mgb_log("%s%s", title, m_log_msg.c_str()); m_log_msg.clear(); } auto ret = m_log_nr_item; m_log_nr_item = 0; return ret; } void OptState::call_with_opr(OperatorNodeBase *opr, thin_function func, OprPropertyFlag opr_property_flag) { auto src_opr = cg::get_opr_root_source_opr(opr); auto opr_priority = opr->node_prop().attribute().priority; auto stream_prop_type = m_comp_node_opt.stream_prop_type(opr->output(0)); ThinHashMap oprs_inserted; auto swap_properties = [&, need_src_opr = opr_property_flag & OprPropertyFlag::SOURCE_OPR, need_priority = opr_property_flag & OprPropertyFlag::PRIORITY] { if (need_src_opr) { std::swap(m_cur_iter_src_opr, src_opr); } if (need_priority) { std::swap(m_cur_iter_opr_priority, opr_priority); } std::swap(m_cur_iter_opr_stream_prop_type, stream_prop_type); std::swap(m_opr_property_flag, opr_property_flag); std::swap(m_oprs_inserted, oprs_inserted); }; MGB_TRY { swap_properties(); func(); } MGB_FINALLY({ swap_properties(); }); } /* ================ RecursiveSubGraphRewriteHelper ================ */ RecursiveSubGraphRewriteHelper:: ~RecursiveSubGraphRewriteHelper() noexcept = default; RecursiveSubGraphRewriteHelper::RecursiveSubGraphRewriteHelper(OptState &state): m_opt_state{state}, m_rewriter{state.graph().make_rewriter()} { } void RecursiveSubGraphRewriteHelper::apply() { using namespace std::placeholders; m_opt_state.graph().iter( std::bind(&RecursiveSubGraphRewriteHelper::on_opr, this, _1)); m_rewriter.apply_inplace(); } void RecursiveSubGraphRewriteHelper::on_opr(OperatorNodeBase *opr) { auto on_new_opr = [this](OperatorNodeBase *opr) { auto repl_opr = m_rewriter.auto_replace_outputs(opr); return on_new_opr_check_should_process(opr, repl_opr); }; if (!on_new_opr(opr)) return; auto orig_out = get_opr_single_output_var(opr); if (!orig_out) return; mgb_assert(m_opr_stack.empty()); m_opr_stack.push_back({ orig_out, m_rewriter.get_var(orig_out)->owner_opr()}); bool first = true; while (!m_opr_stack.empty()) { auto cur_frame = m_opr_stack.back(); m_opr_stack.pop_back(); auto cur_opr = cur_frame.opr; bool should_process; if (first) { should_process = true; first = false; } else { should_process = on_new_opr(cur_opr); } auto cur_out = get_opr_single_output_var(cur_opr); mgb_assert(cur_out); cur_out = m_rewriter.get_var(cur_out); if (should_process) { auto trans = process_opr(cur_out); if (trans.valid()) { m_opr_stack.push_back({ cur_frame.orig_var, trans->result->owner_opr()}); for (auto i: reverse_adaptor(trans->internal)) { if (i) m_opr_stack.push_back({i, i->owner_opr()}); } if (trans->msg) { if (!m_log_msg.empty()) m_log_msg.push_back(';'); m_log_msg.append(trans->msg); } continue; } } auto src = cur_frame.orig_var; if (m_rewriter.get_var(src) != cur_out) { const char *msg = nullptr; if (m_opr_stack.empty()) { msg = m_log_msg.c_str(); } m_rewriter.replace_var(src, cur_out, msg); after_replace_var(src, cur_out); if (m_opr_stack.empty()) { m_log_msg.clear(); break; } } } } /* ================ GraphOptimizer ================ */ GraphOptimizer::~GraphOptimizer() noexcept = default; class GraphOptimizer::VarReplaceMapStorage :public UserDataContainer::UserData { MGB_TYPEINFO_OBJ_DECL; public: ThinHashMap map; }; MGB_TYPEINFO_OBJ_IMPL(GraphOptimizer::VarReplaceMapStorage); GraphOptimizer& GraphOptimizer::add_pass(std::unique_ptr pass) { mgb_assert(!pass->m_owner_optimizer); pass->m_owner_optimizer = this; m_passes.emplace_back(std::move(pass)); return *this; } SubGraph GraphOptimizer::apply(const SubGraph &graph) const { RealTimer timer; OptState state{this, graph}; size_t tot_nr_replace = 0; // first update output var shapes of all oprs state.graph().iter(cg::update_output_var_shapes); auto &&opt = graph.comp_graph()->options(); auto orig_setting = opt.graph_opt_level; Pass *cur_pass = nullptr; MGB_MARK_USED_VAR(cur_pass); MGB_TRY { for (auto &&i: m_passes) { state.set_var_replace_check_flag(VarReplaceCheckFlag::CHECK_ALL); cur_pass = i.get(); opt.graph_opt_level = 1; i->apply(state); tot_nr_replace += state.flush_log( mgb_ssprintf_log( "apply optimization pass %s:", i->name()).c_str()); } } MGB_CATCH(std::exception &exc, { mgb_log_error("error while applying optimization pass %s: %s", cur_pass->name(), exc.what()); opt.graph_opt_level = orig_setting; throw; }) MGB_FINALLY( opt.graph_opt_level = orig_setting ); if (verbosity() >= 1) { mgb_log_debug("graph optimization: applied %zu passes, " "total %zu var(s) replaced; time=%.2fms", m_passes.size(), tot_nr_replace, timer.get_msecs()); } return state.graph(); } const GraphOptimizer& GraphOptimizer::apply_inplace(VarNodeArray &vars) const { if (m_passes.empty()) { // this check is necessary, since OptState would clear // var_replace_map() return *this; } auto g = apply({{vars.begin(), vars.end()}}); for (size_t i = 0; i < vars.size(); ++ i) { vars[i] = g.endpoint_vars()[i].node(); } return *this; } GraphOptimizer& GraphOptimizer::add_preset_passes( bool after_grad, const OptimizeForInferenceOptions* inference_opt, const ComputingGraph::Options* comp_graph_opt) { auto cv_type = inference_opt ? ConstVarType::IMMUTABLE_AND_PARAM : ConstVarType::IMMUTABLE; if (inference_opt) { add_pass(); } if (!after_grad || inference_opt) { add_pass(); } if (after_grad || inference_opt) { add_pass(); } add_pass(); add_pass(); add_pass(); if (inference_opt) { add_pass(); add_pass(); } add_pass(); add_pass(cv_type); if (inference_opt) { if (inference_opt->use_nhwcd4) { add_pass(ConvertFormatPass::make_nhwcd4_converter()); } if (inference_opt->f16_io_f32_comp) { add_pass(ConvertF32ToF16Pass::make(true)); } if (inference_opt->f16_io_comp) { add_pass(ConvertF32ToF16Pass::make(false)); } // fuse again after reordering add_pass(); } add_pass(); // reorder again because shapes of fused oprs might change add_pass(cv_type); add_pass(); add_pass(); #if MGB_JIT bool need_jit = false; if (comp_graph_opt && (std::abs(comp_graph_opt->graph_opt_level) >= 3 || comp_graph_opt->graph_opt.jit)) { need_jit = true; } if (need_jit && after_grad) { add_pass(); } #endif // combine astype and reduce. // Note: apply this pass before JITFusion, so the TypeCvt which // read by both Reduce and Elemwise could be fused correctly. add_pass(); #if MGB_JIT if (need_jit) { add_pass( after_grad, std::max(comp_graph_opt->graph_opt.jit, 1)); } #endif if (inference_opt) { if (inference_opt->fuse_conv_bias_nonlinearity) add_pass(); if (inference_opt->fuse_conv_bias_with_z) { mgb_assert(inference_opt->fuse_conv_bias_nonlinearity, "fuse conv bias with z input should fuse conv bias " "activation " "first"); add_pass(); } if (inference_opt->use_nchw88) { add_pass(EnableNchwxxPass::make_nchwxx_converter(8)); } if (inference_opt->use_tensor_core) { mgb_assert(inference_opt->fuse_conv_bias_nonlinearity, "enable tensor core should fuse conv bias activation " "first"); add_pass(EnableTensorCorePass::make_tensorcore_converter()); add_pass(); add_pass(); } add_pass(); } if (inference_opt) { // merge params to reduce loading time and graph overhead add_pass(); add_pass(); } return *this; } const ThinHashMap& GraphOptimizer::var_replace_map( ComputingGraph &graph) { auto storage = graph.options().user_data.get_user_data_or_create< VarReplaceMapStorage>(); return storage->map; } VarNode* GraphOptimizer::var_replace_lookup(VarNode *var) { auto &&map = var_replace_map(*(var->owner_graph())); for (; ; ) { auto iter = map.find(var); if (iter == map.end()) return var; var = iter->second; } } /* ================ ConstVarPropogateBase ================ */ ConstVarPropogateBase::AddOprResult ConstVarPropogateBase::add_opr( OperatorNodeBase *opr) { using ProfFlag = OperatorNodeBase::NodeProp::Flag; auto &&info = m_oprinfo[opr]; if (info.processed) return info.result; info.processed = true; #if MGB_ENABLE_JSON (*opr->to_json_extra_json)["gopt::cvprop"] = json::Bool::make(false); #endif AddOprResult ret{false, false, false}; auto make_ret = [&ret, &info]() { info.result = ret; return ret; }; if (is_const_var(m_const_var_type, opr)) { auto sz = var_mem_size(opr->output(0)); mgb_assert(sz); info.is_const = true; info.max_size = sz; return make_ret(); } if (opr->input().empty()) return make_ret(); if (opr->node_prop().contain( ProfFlag::FORCE_UPDATE_INPUT_VAR | ProfFlag::IMPURE_FUNC)) { return make_ret(); } size_t max_input_size = 0; ret.all_const_inp = true; for (auto i: opr->input()) { auto io = i->owner_opr(); auto iter = m_oprinfo.find(io); if (iter == m_oprinfo.end()) { add_opr(io); iter = m_oprinfo.find(io); mgb_assert(iter != m_oprinfo.end()); } auto &&src = iter->second; if (src.is_const) { update_max(max_input_size, src.max_size); ret.has_const_inp = true; if (!is_const_var(m_const_var_type, i->owner_opr())) { ret.has_midconst_inp = true; } } else { ret.all_const_inp = false; } } if (ret.all_const_inp) { #if MGB_ENABLE_JSON (*opr->to_json_extra_json)["gopt::cvprop"] = json::Bool::make(true); #endif info.max_size = max_input_size; info.is_const = true; on_midconst_opr(opr, max_input_size); } return make_ret(); } // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}