serializer_oss_v2.cpp 37.8 KB
Newer Older
1 2
#if MGB_ENABLE_FBS_SERIALIZATION

3
#include <map>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
#include "megbrain/comp_node_env.h"
#include "megbrain/opr/io.h"
#include "megbrain/serialization/helper.h"
#include "megbrain/serialization/internal/flatbuffers_helper.h"
#include "megbrain/serialization/internal/schema_v2_generated.h"
#include "megbrain/serialization/metadata.h"
#include "megbrain/serialization/opr_load_dump.h"
#include "megbrain/serialization/oss_opr_load_dump.h"
#include "megbrain/utils/hash_ct.h"
#include "megdnn/tensor_format.h"
#include "serializer_oss_common.h"

#include "megbrain/gopt/framework.h"

namespace mgb {
namespace serialization {

/*!
 * \brief replace the the opr who has the replace_opr methord in OprLoadDumpImplV2
 */
class PassConvertToCompatible : public gopt::Pass {
    ThinHashMap<
            Typeinfo*, thin_function<cg::OperatorNodeBase*(
                               cg::OperatorNodeBase*, const VarNodeArray&)>>
            m_opr_replace_func;
    gopt::VarReplaceCheckFlag m_var_replace_check_flag =
            gopt::VarReplaceCheckFlag::CHECK_ALL;

public:
    const char* name() const override { return "PassConvertToCompatible"; };

    PassConvertToCompatible& set_var_replace_check_flag(
            gopt::VarReplaceCheckFlag flag) {
        m_var_replace_check_flag = flag;
        return *this;
    }

    void apply(gopt::OptState& state) const override {
        state.set_var_replace_check_flag(m_var_replace_check_flag);
        auto rewriter = state.graph().make_rewriter();

        auto on_opr = [this, &rewriter](cg::OperatorNodeBase* opr) {
            auto it = m_opr_replace_func.find(opr->dyn_typeinfo());
            if (it != m_opr_replace_func.end()) {
                VarNodeArray new_inp;
                new_inp.clear();
                new_inp.reserve(opr->input().size());
                for (auto i : opr->input()) {
                    new_inp.push_back(rewriter.get_var(i));
                }
                auto new_opr = (it->second)(opr, new_inp);

                auto &&origin_out = opr->output(), &&cur_out = new_opr->output();
                for (size_t i = 0; i < std::min(origin_out.size(), cur_out.size());
                     i++) {
                    rewriter.replace_var(origin_out[i], cur_out[i], nullptr);
                }
            } else {
                rewriter.auto_replace_outputs(opr);
            }
        };
        state.graph().iter(on_opr);
        rewriter.apply_inplace();
    }

    static std::unique_ptr<PassConvertToCompatible> make(
            const SymbolVarArray& output_vars) {
        auto ret = std::make_unique<PassConvertToCompatible>();
        // iterate oprs to init
        auto on_opr = [&](cg::OperatorNodeBase* opr) {
            if (!GraphDumper::should_remove_in_dump(opr)) {
                auto registry = OprRegistryV2::versioned_find_by_typeinfo(
                        opr->dyn_typeinfo(), CURRENT_VERSION);
                mgb_throw_if(
                        !registry,
                        cg::OperatorNodeExcExtraInfo::ExcMaker{opr}.make<MegBrainError>,
                        "serialization as FlatBuffers is not supported for "
                        "operator %s, typeinfo %p",
                        opr->dyn_typeinfo()->name, opr->dyn_typeinfo());
                if (registry->converter) {
                    ret->m_opr_replace_func[opr->dyn_typeinfo()] = registry->converter;
                }
            }
        };
        cg::DepOprIter dep_opr_iter{on_opr};
        for (auto i : output_vars) {
            dep_opr_iter.add(i.node()->owner_opr());
        }
        return ret;
    };
};

namespace {
fbs::v2::TensorFormat get_flatbuffer_tensor_format_type(
        const TensorLayout::Format& format) {
    using Type = megdnn::TensorFormat::Type;
    switch (format.type()) {
        case Type::DEFAULT:
            return fbs::v2::TensorFormat::TensorFormat_DefaultTensorFormat;
        case Type::IMAGE2D_PACK4:
            return fbs::v2::TensorFormat::TensorFormat_Image2DPackedTensorFormat;
        case Type::LOWBITS_ALIGNED_TO_BYTE:
            return fbs::v2::TensorFormat::TensorFormat_LowbitsAlignedTensorFormat;
        default:
            mgb_throw(
                    SerializationError, "invalid tensor format type in serialization.");
    }
}
}  // namespace

flatbuffers::Offset<fbs::DType> GraphDumperOSSV2::build_dtype(DType dtype) {
    return fbs::intl::build_dtype(m_builder, dtype);
}

flatbuffers::Offset<void> GraphDumperOSSV2::build_tensor_format(
        const TensorLayout::Format& format) {
    using Type = megdnn::TensorFormat::Type;
    switch (format.type()) {
        case Type::DEFAULT:
            return fbs::v2::CreateDefaultTensorFormat(m_builder).Union();
        case Type::IMAGE2D_PACK4:
            return fbs::v2::CreateImage2DPackedTensorFormat(
                           m_builder, format.as_impl<megdnn::Image2DPack4TensorFormat>()
                                              .align_axis())
                    .Union();
        case Type::LOWBITS_ALIGNED_TO_BYTE: {
            auto size_bite = format.as_impl<megdnn::LowbitsAlignedToBytesTensorFormat>()
                                     .size_nbits();
            auto align_size_in_bits =
                    format.as_impl<megdnn::LowbitsAlignedToBytesTensorFormat>()
                            .align_size_in_bits();
            return fbs::v2::CreateLowbitsAlignedTensorFormat(
                           m_builder, size_bite, align_size_in_bits)
                    .Union();
        }
        default:
            mgb_throw(
                    SerializationError, "invalid tensor format type in serialization.");
    }
}

flatbuffers::Offset<fbs::v2::MiddleTensor> GraphDumperOSSV2::build_middle_tensor(
        const SymbolVar var) {
    mgb_assert(var.node());
    auto fbname = m_builder.CreateSharedString(var.node()->name());
    flatbuffers::Offset<fbs::v2::MiddleTensor> serialized_middle_tensor;
    if (var.node()->dev_tensor_valid()) {
        auto layout = var.node()->layout();
        auto fshape =
                m_builder.CreateVectorScalarCast<uint32_t>(layout.shape, layout.ndim);

        auto fcomp_node = fbs::v2::CreateCompNode(
                m_builder, m_builder.CreateSharedString(
                                   var.node()->comp_node().to_string_logical()));

        auto fdtype = build_dtype(layout.dtype);
        auto fformat_type = get_flatbuffer_tensor_format_type(layout.format);
        auto fformat = build_tensor_format(layout.format);
        serialized_middle_tensor = fbs::v2::CreateMiddleTensor(
                m_builder, fbname, fshape, fcomp_node, fdtype, fformat_type, fformat);
    }
    serialized_middle_tensor = fbs::v2::CreateMiddleTensor(m_builder, fbname);
    return serialized_middle_tensor;
}

flatbuffers::Offset<fbs::v2::OutputVar> GraphDumperOSSV2::build_output_var(
        const SymbolVar var) {
    auto out_node = var.node();
    if (m_var2midtensor_id.find(var.node()) == m_var2midtensor_id.end()) {
        mgb_assert(m_var_remove_in_dump.find(var.node()) != m_var_remove_in_dump.end());
        out_node = m_var_remove_in_dump[var.node()];
    }
    return fbs::v2::CreateOutputVar(
            m_builder, m_var2midtensor_id.at(out_node), var.node()->id());
}

void GraphDumperOSSV2::init_oprs_to_dump(const SymbolVarArray& endpoints) {
    m_oprs_to_dump.clear();

    // iterate oprs to init
    auto on_opr = [&](cg::OperatorNodeBase* opr) {
        if (should_remove_in_dump(opr)) {
            mgb_assert(opr->input().size() == 1);
            // Copy input ID to output
            for (auto i : opr->output()) {
                if (m_var_remove_in_dump.find(opr->input(0)) !=
                    m_var_remove_in_dump.end()) {
                    m_var_remove_in_dump[i] = m_var_remove_in_dump[opr->input(0)];
                } else {
                    m_var_remove_in_dump[i] = opr->input(0);
                }
            }
        } else {
            auto registry = OprRegistryV2::versioned_find_by_typeinfo(
198
                    opr->dyn_typeinfo(), m_version);
199 200 201 202 203 204 205
            if (!registry || !registry->dumper) {
                mgb_throw(
                        cg::OperatorNodeExcExtraInfo::ExcMaker{opr}.make<MegBrainError>,
                        "serialization as FlatBuffers is not supported for "
                        "operator %s",
                        opr->dyn_typeinfo()->name);
            }
206 207 208
            mgb_assert(
                    registry->version <= m_version,
                    "The Operator version should less than model version");
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
            m_oprs_to_dump.emplace_back(opr, registry);
        }
    };
    cg::DepOprIter dep_opr_iter{on_opr};
    for (auto i : endpoints) {
        dep_opr_iter.add(i.node()->owner_opr());
    }
}

flatbuffers::Offset<fbs::v2::Metadata> GraphDumperOSSV2::build_metadata(
        const Metadata& metadata) {
    auto user_info = m_builder.CreateSharedString(metadata.user_info);
    fbs::v2::MetadataBuilder builder(m_builder);
    builder.add_is_valid(metadata.is_valid);
    builder.add_graph_modified(metadata.graph_modified);
    builder.add_optimize_options(metadata.optimize_options);
    builder.add_user_info(user_info);
    return builder.Finish();
}

flatbuffers::Offset<fbs::v2::Operator> GraphDumperOSSV2::build_single_opr(
        cg::OperatorNodeBase* opr, const OprRegistryV2* registry) {
    m_cur_opr = opr;
    ++m_cur_rst.nr_opr;

    using namespace flatbuffers;
    Offset<Vector<uint32_t>> inputs;
    if (m_cur_opr->input().size()) {
        std::vector<uint32_t> v;
        v.reserve(m_cur_opr->input().size());
        for (auto inp : m_cur_opr->input()) {
            if (m_var2midtensor_id.find(inp) != m_var2midtensor_id.end()) {
                v.emplace_back(m_var2midtensor_id.at(inp));
            } else {
                mgb_assert(
                        m_var_remove_in_dump.find(inp) != m_var_remove_in_dump.end(),
                        "when dump the model, the dependence of var is wrong.");
                v.emplace_back(m_var2midtensor_id.at(m_var_remove_in_dump[inp]));
            }
        }
        inputs = m_builder.CreateVector(v);
    }

    m_cur_opr_tensor.clear();
    m_blobs.clear();
    m_cur_opr_param.clear();
    m_cur_opr_param_type.clear();
    registry->dumper(*this, *m_cur_opr);

    Offset<Vector<Offset<fbs::v2::CompNode>>> comp_node;
    auto& config = m_cur_opr->config();
    if (config.has_comp_node_set()) {
        std::vector<flatbuffers::Offset<fbs::v2::CompNode>> cns;
        for (const auto& cn : config.comp_node()) {
            cns.emplace_back(fbs::v2::CreateCompNode(
                    m_builder, m_builder.CreateSharedString(cn.to_string_logical())));
        }
        comp_node = m_builder.CreateVector(cns);
    }
    Offset<String> operator_name;
    if (m_config.keep_op_name) {
        operator_name = m_builder.CreateSharedString(m_cur_opr->name());
    }

    auto output_dtype = build_dtype(config.output_dtype());

    Offset<Vector<uint32_t>> outputs;
    if (m_cur_opr->output().size()) {
        std::vector<uint32_t> v;
        v.reserve(m_cur_opr->output().size());
        for (auto out : m_cur_opr->output()) {
            if (!out->contain_flag(VarNode::Flag::VOLATILE_CONTENT)) {
                auto fbs_out = build_middle_tensor(out);
                m_model_middle_tensors.push_back(fbs_out);
                m_var2midtensor_id[out] = m_model_middle_tensors.size() - 1;
                v.emplace_back(m_var2midtensor_id.at(out));
            }
        }
        outputs = m_builder.CreateVector(v);
    }

    Offset<Vector<Offset<fbs::v2::Tensor>>> tensors;
    if (m_cur_opr_tensor.size())
        tensors = m_builder.CreateVector(m_cur_opr_tensor);

    //! the blobs data is used by custom data
    //! m_blobs will be filled by the Operator dumper function
    Offset<Vector<Offset<fbs::v2::Blob>>> blobs;
    if (m_blobs.size())
        blobs = m_builder.CreateVector(m_blobs);

    Offset<Vector<uint8_t>> additional_params_type;
    Offset<Vector<Offset<void>>> additional_params;
    auto param_cnt = m_cur_opr_param_type.size();
    if (param_cnt > 1) {
        additional_params_type = m_builder.CreateVectorScalarCast<uint8_t>(
                m_cur_opr_param_type.data() + 1, param_cnt - 1);
        additional_params =
                m_builder.CreateVector(m_cur_opr_param.data() + 1, param_cnt - 1);
    }
    auto opr_type = m_builder.CreateSharedString(registry->name);

    fbs::v2::OperatorBuilder builder(m_builder);
    builder.add_type(opr_type);
    builder.add_type_id(registry->type_id);
    builder.add_inputs(inputs);
    builder.add_outputs(outputs);
    if (m_config.keep_opr_priority) {
        builder.add_priority(opr->node_prop().attribute().priority);
    }
    builder.add_comp_node(comp_node);
    builder.add_opr_version(registry->get_version());
    builder.add_name(operator_name);
    builder.add_output_dtype(output_dtype);
    if (param_cnt > 0) {
        builder.add_param_type(m_cur_opr_param_type[0]);
        builder.add_param(m_cur_opr_param[0]);
    }
    if (param_cnt > 1) {
        builder.add_additional_params_type(additional_params_type);
        builder.add_additional_params(additional_params);
    }
    builder.add_tensors(tensors);
    builder.add_custom_data(blobs);
    m_cur_opr = nullptr;
    return builder.Finish();
}

SymbolVarArray GraphDumperOSSV2::converter_all_opr_to_compatiable(
        const SymbolVarArray& output_vars) {
    gopt::GraphOptimizer optimizer;
    VarNodeArray rets_var;
    for (auto& symbolvar : output_vars) {
        rets_var.push_back(symbolvar.node());
    }
    optimizer.add_pass(PassConvertToCompatible::make(output_vars));
    optimizer.apply_inplace(rets_var);

    SymbolVarArray dst_vars;
    for (auto& var : rets_var) {
        dst_vars.push_back({var});
    }
    return dst_vars;
}

GraphDumper::DumpResult GraphDumperOSSV2::dump(
        const SymbolVarArray& output_vars, const DumpConfig& config,
        const Metadata& metadata) {
    mgb_throw_if(output_vars.empty(), SerializationError, "Can't dump empty graph");

359 360 361
    auto new_output_vars = output_vars;
    if (!config.no_change_graph) {
        new_output_vars = converter_all_opr_to_compatiable(output_vars);
362 363 364 365 366
        mgb_assert(output_vars.size() == new_output_vars.size());
        for (size_t id = 0; id < output_vars.size(); id++) {
            auto& new_var = new_output_vars[id];
            new_var.rename(output_vars[id].node()->name());
        }
367
    }
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402

    auto begin_pos = m_file->tell();
    m_config = config;
    m_builder.Reset();

    m_output_vars.clear();
    m_cur_rst = {};
    m_used_input_names.clear();
    m_used_param_names.clear();
    m_var_remove_in_dump.clear();
    m_model_middle_tensors.clear();
    m_var2midtensor_id.clear();
    m_nr_shared_tensor = 0;

    // process output vars
    bool keep_output_var_name = m_config.keep_var_name >= 1;
    std::unordered_set<std::string> output_var_names;
    for (auto i : new_output_vars) {
        mgb_assert(
                !i.node()->contain_flag(VarNode::Flag::VOLATILE_CONTENT),
                "can not dump var with VOLATILE_CONTENT flag: %s",
                cg::dump_var_info({i.node()}).c_str());
        if (m_output_vars.insert(i.node()).second && keep_output_var_name) {
            auto name_ins = output_var_names.insert(i.node()->name()).second;
            mgb_assert(name_ins, "duplicated output var name: %s", i.node()->cname());
        }
    }

    // Dump metadata
    auto fbmeta = build_metadata(metadata);

    // Dump operators
    init_oprs_to_dump(new_output_vars);
    std::vector<flatbuffers::Offset<fbs::v2::Operator>> oprs;
    for (auto&& i : m_oprs_to_dump) {
403
        record_opr_dumped(i.second->type_id, i.second->name, i.second->version);
404 405 406 407 408 409 410 411 412 413 414 415
        oprs.emplace_back(build_single_opr(i.first, i.second));
    }
    auto fb_oprs = m_builder.CreateVector(oprs);

    // Dump output vars
    std::vector<flatbuffers::Offset<fbs::v2::OutputVar>> output_vars_idx;
    output_vars_idx.reserve(new_output_vars.size());
    for (auto i : new_output_vars) {
        auto foutput_vars_idx = build_output_var(i);
        output_vars_idx.push_back(foutput_vars_idx);
    }
    auto fb_output_vars = m_builder.CreateVector(output_vars_idx);
M
Megvii Engine Team 已提交
416 417 418 419 420 421 422 423 424 425 426 427
    std::vector<flatbuffers::Offset<fbs::v2::OutputAlias>> output_vars_alias;
    if (m_config.alias_name_map.size() > 0) {
        for (auto&& pair : m_config.alias_name_map) {
            std::string name;
            SymbolVar var;
            std::tie(name, var) = pair;
            auto fbs_name = m_builder.CreateSharedString(name);
            output_vars_alias.push_back(
                    fbs::v2::CreateOutputAlias(m_builder, var.node()->id(), fbs_name));
        }
    }
    auto fbs_output_alias = m_builder.CreateVector(output_vars_alias);
428 429 430 431
    auto fb_mid_tensor = m_builder.CreateVector(m_model_middle_tensors);

    fbs::v2::ModelBuilder model(m_builder);
    model.add_mge_version(MGB_VERSION);
432
    model.add_model_version(m_version);
433 434 435
    model.add_oprs(fb_oprs);
    model.add_middle_tensors(fb_mid_tensor);
    model.add_output_vars_idx(fb_output_vars);
M
Megvii Engine Team 已提交
436
    model.add_output_alias(fbs_output_alias);
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
    model.add_nr_shared_tensor(m_nr_shared_tensor);
    model.add_metadata(fbmeta);
    m_builder.FinishSizePrefixed(model.Finish(), fbs::v2::ModelIdentifier());

    // Write serialized fbs::Graph
    m_file->write(m_builder.GetBufferPointer(), m_builder.GetSize());

    // Finalize DumpResult
    auto&& ret = m_cur_rst;
    for (size_t i = 0; i < new_output_vars.size(); i++) {
        ret.outputs.emplace_back(
                keep_output_var_name ? new_output_vars[i].node()->cname()
                                     : ssprintf("unnamed%zu", i));
    }
    std::sort(ret.inputs.begin(), ret.inputs.end());
    mgb_assert(ret.nr_opr == m_oprs_to_dump.size());
    ret.tot_bytes = m_file->tell() - begin_pos;
    return ret;
}

void GraphDumperOSSV2::dump_tensor(
458 459
        const std::string& name, const HostTensorND& tensor, TensorWriteMethod method,
        TensorFormat format) {
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
    using namespace flatbuffers;
    using Meth = TensorWriteMethod;
    mgb_assert(
            (method == Meth::VALUE_ANONYMOUS) ^ (!name.empty()),
            "name must be non-empty for non Meth::VALUE_ANONYMOUS tensors");

    bool has_value = method != Meth::META_INPUT;
    bool should_keep_name = true;
    switch (method) {
        case Meth::VALUE_ANONYMOUS:
            should_keep_name = false;
            break;
        case Meth::VALUE_SHARED:
            should_keep_name = m_config.keep_param_name;
            ++m_nr_shared_tensor;
            if (m_config.keep_param_name) {
                mgb_assert(
                        m_used_param_names.insert(name).second,
                        "duplicated VALUE_SHARED tensor name: %s", name.c_str());
                m_cur_rst.params.emplace_back(name);
            }
            break;
        case Meth::META_INPUT:
        case Meth::VALUE_INPUT:
            mgb_assert(!name.empty(), "empty input tensor name");
            mgb_assert(
                    m_used_input_names.insert(name).second,
                    "duplicated input tensor name: %s", name.c_str());
            m_cur_rst.inputs.emplace_back(name);
            break;
    }

    auto& layout = tensor.layout();
    flatbuffers::Offset<flatbuffers::Vector<uint8_t>> data;
    if (has_value) {
        check_tensor_value_valid(name, tensor);
        auto&& dumper = m_config.tensor_value_dumper;
        if (dumper) {
            mgb_log_warn(
                    "serialization v2 format is pure flatbuffer format, not support "
M
Megvii Engine Team 已提交
500
                    "user tensor value dumper callback.");
501 502 503 504 505 506 507 508 509 510 511 512 513
        }
        data = m_builder.CreateVector(
                reinterpret_cast<uint8_t*>(tensor.raw_ptr()), layout.span().high_byte);
        m_cur_rst.tensor_value_bytes += layout.span().high_byte;
    }

    auto fbname = should_keep_name ? m_builder.CreateSharedString(name) : 0;
    auto fshape = m_builder.CreateVectorScalarCast<uint32_t>(layout.shape, layout.ndim);
    auto fcomp_node = fbs::v2::CreateCompNode(
            m_builder,
            m_builder.CreateSharedString(tensor.comp_node().to_string_logical()));
    auto fdtype = build_dtype(layout.dtype);

514 515
    auto fformat_type = get_flatbuffer_tensor_format_type(format);
    auto fformat = build_tensor_format(format);
516 517 518 519 520 521 522 523 524 525 526 527
    auto serialized_tensor = fbs::v2::CreateTensor(
            m_builder, fbname, fshape, fcomp_node, fdtype, fformat_type, fformat, data);
    m_cur_opr_tensor.emplace_back(serialized_tensor);
}

void GraphDumperOSSV2::dump_buf_with_len(const void* data, uint32_t size) {
    auto blob = fbs::v2::CreateBlob(
            m_builder, m_builder.CreateVector(static_cast<const uint8_t*>(data), size));
    m_blobs.emplace_back(blob);
}

// ----------------------------- Loader --------------------------------------
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598

/**
 * SharedTensorAlignMent will record all shared device tensors, at beginning, the
 * tensor is not aligned, after all shared device tensor loaded, and the user
 * provide memory will be wrote, and reorder all the tensor to aligned address
 * ptr.
 */
class GraphLoaderOSSV2::SharedTensorAlignMent {
public:
    SharedTensorAlignMent(SharedBuffer buffer, InputFile* file, bool is_enabled)
            : m_enabled(is_enabled), m_file(file), m_model_buffer(buffer){};

    bool add_device_tensor(std::shared_ptr<DeviceTensorND> tensor) {
        if (!m_enabled)
            return false;
        if (tensor) {
            m_device_tensors[reinterpret_cast<intptr_t>(tensor->raw_ptr())] = tensor;
            return true;
        }
        return false;
    }

    /**
     * record the tensor shared from the m_model_buffer, copy every tensor to
     * the aligned address, then the model file will be modilfied, so it can't
     * use again.
     */
    bool reorder_and_align_tensor() {
        if (!m_enabled)
            return false;
        bool modilfied = false;
        intptr_t buffer_start = reinterpret_cast<intptr_t>(m_model_buffer.data());
        intptr_t write_end = buffer_start;
        for (auto& iter : m_device_tensors) {
            auto& tensor = iter.second;
            size_t tensor_size = tensor->layout().span().dist_byte();
            size_t alignment = tensor->comp_node().get_mem_addr_alignment();
            intptr_t tensor_start = reinterpret_cast<intptr_t>(tensor->raw_ptr());
            intptr_t align_start = static_cast<intptr_t>(
                    reinterpret_cast<uintptr_t>(tensor->raw_ptr()) & ~(alignment - 1));
            if (align_start > write_end) {
                if (tensor_start != align_start) {
                    memmove(reinterpret_cast<void*>(align_start),
                            reinterpret_cast<void*>(tensor_start), tensor_size);
                    modilfied = true;
                }
                write_end = align_start + tensor_size;
                DeviceTensorStorage storage;
                auto raw_storage = std::shared_ptr<mgb::dt_byte>(
                        reinterpret_cast<mgb::dt_byte*>(align_start), [](void*) {});
                storage.reset(tensor->comp_node(), tensor_size, raw_storage);
                tensor->reset(storage, tensor->layout());
            } else {
                DeviceTensorND new_tensor(tensor->comp_node());
                new_tensor.copy_from(*tensor).sync();
                *tensor = new_tensor;
            }
            if (modilfied) {
                m_file->have_modified();
            }
        }
        return true;
    }

private:
    bool m_enabled = false;
    InputFile* m_file;
    SharedBuffer m_model_buffer;
    std::map<intptr_t, std::shared_ptr<DeviceTensorND>> m_device_tensors;
};

599 600 601 602 603 604 605 606 607 608
CompNode GraphLoaderOSSV2::OprLoadContextImpl::load_comp_node(
        const fbs::v2::CompNode* comp_node) {
    mgb_assert(comp_node);
    if (!comp_node->logical_locator())
        return {};
    auto loc = CompNode::Locator::parse(comp_node->logical_locator()->str());
    m_loader->m_cur_load_config->comp_node_mapper(loc);
    return CompNode::load(loc);
}

609
TensorFormat get_tensor_format(
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
        const fbs::v2::TensorFormat fformat_type, const void* fformat,
        const CompNode& comp_node) {
    switch (fformat_type) {
        case fbs::v2::TensorFormat_DefaultTensorFormat:
            return megdnn::DefaultTensorFormat::make();
        case fbs::v2::TensorFormat_Image2DPackedTensorFormat: {
            auto image_format =
                    static_cast<const fbs::v2::Image2DPackedTensorFormat*>(fformat);
            auto handle =
                    MegDNNHandle::get(CompNodeEnv::from_comp_node(comp_node)).handle();
            return megdnn::Image2DPack4TensorFormat::make(
                    image_format->align_axis(), handle);
        }
        case fbs::v2::TensorFormat_LowbitsAlignedTensorFormat: {
            auto lowbit_format =
                    static_cast<const fbs::v2::LowbitsAlignedTensorFormat*>(fformat);
            return megdnn::LowbitsAlignedToBytesTensorFormat::make(
                    lowbit_format->size_nbits());
        }
        default:
            mgb_throw(
                    SerializationError, "invalid tensor format type in serialization.");
    }
}

635
TensorLayout load_tensor_layout_without_format(const fbs::v2::Tensor* tensor) {
636 637 638 639 640 641 642 643 644 645 646 647 648
    TensorLayout layout;
    if (tensor->shape()) {
        layout.ndim = tensor->shape()->size();
        std::copy(tensor->shape()->begin(), tensor->shape()->end(), layout.shape);
    }
    if (tensor->dtype()) {
        // modify data type inplace for TensorLayout
        layout.modify_dtype_inplace(fbs::intl::load_dtype(tensor->dtype()));
    }
    layout.init_contiguous_stride();
    return layout;
}

649 650 651 652 653 654 655 656 657 658 659
TensorFormat GraphLoaderOSSV2::OprLoadContextImpl::load_tensor_format(size_t id) {
    mgb_assert(m_current_opr->tensors() && id < m_current_opr->tensors()->size());
    auto tensor = m_current_opr->tensors()->Get(id);
    auto comp_node = load_comp_node(tensor->comp_node());
    TensorFormat format;
    if (tensor->format() && tensor->format_type()) {
        format = get_tensor_format(tensor->format_type(), tensor->format(), comp_node);
    }
    return format;
}

660 661 662 663 664 665 666 667
//! the opr loader should make sure the exist of tensors and the number of
//! tensor, here just assert it.
std::shared_ptr<HostTensorND> GraphLoaderOSSV2::OprLoadContextImpl::load_tensor() {
    mgb_assert(
            m_current_opr->tensors() &&
            m_cur_opr_tensor_cnt < m_current_opr->tensors()->size());
    auto tensor = m_current_opr->tensors()->Get(m_cur_opr_tensor_cnt++);
    auto comp_node = load_comp_node(tensor->comp_node());
668
    auto layout = load_tensor_layout_without_format(tensor);
669 670 671 672 673 674 675
    auto ret = std::make_shared<HostTensorND>(comp_node, layout);

    auto&& loader = m_loader->m_cur_load_config->tensor_value_loader;
    if (tensor->data() && tensor->data()->size() > 0) {
        if (loader) {
            mgb_log_warn(
                    "serialization v2 format is pure flatbuffer format, not support "
M
Megvii Engine Team 已提交
676
                    "user tensor value loader callback.");
677
        }
678 679 680
        fill_tensor_memory(
                *ret, tensor->data()->data(), tensor->data()->size(),
                m_loader->m_file->is_shared_memory());
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
    }
    if (tensor->name()) {
        m_tensor_map[tensor->name()->str()] = ret;
    }
    if (auto&& mod = m_loader->m_cur_load_config->tensor_modifier) {
        bool has_value = false;
        if (tensor && tensor->data()) {
            has_value = tensor->data()->size() != 0;
        }
        mod(tensor->name() ? tensor->name()->str() : "", has_value, *ret);
    }
    return ret;
}

std::shared_ptr<DeviceTensorND> GraphLoaderOSSV2::OprLoadContextImpl::
696
        load_tensor_shared(bool copy_immediatly) {
697 698 699 700 701
    mgb_assert(
            m_current_opr->tensors() &&
            m_cur_opr_tensor_cnt < m_current_opr->tensors()->size());
    auto tensor = m_current_opr->tensors()->Get(m_cur_opr_tensor_cnt++);
    auto comp_node = load_comp_node(tensor->comp_node());
702
    auto layout = load_tensor_layout_without_format(tensor);
703
    mgb_assert(tensor->data());
704 705 706
    if (m_loader->m_shared_tensor_map.size() <= m_cur_shared_tensor_idx) {
        m_loader->m_shared_tensor_map.resize(m_cur_shared_tensor_idx + 5);
    }
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
    auto&& shared_pair = m_loader->m_shared_tensor_map.at(m_cur_shared_tensor_idx++);
    auto&& shared_tensor_ref = shared_pair.second[comp_node.mem_node()];
    if (shared_tensor_ref) {
        if (shared_tensor_ref->comp_node() == comp_node)
            return shared_tensor_ref;
        // same mem node but different comp node, change comp node and share
        // value
        auto ret = std::make_shared<DeviceTensorND>(*shared_tensor_ref);
        ret->comp_node(comp_node);
        return ret;
    }
    if (tensor->name()) {
        shared_pair.first = tensor->name()->str();
    }

722
    if (comp_node.mem_node() == CompNode::default_cpu().mem_node() || copy_immediatly) {
723
        // directly forward CPU memory
724
        shared_tensor_ref = std::make_shared<DeviceTensorND>();
725 726 727
        HostTensorND hv{comp_node};
        if (tensor->data() && tensor->data()->size() > 0) {
            hv.dtype(layout.dtype).resize(layout);
728 729 730
            fill_tensor_memory(
                    hv, tensor->data()->data(), tensor->data()->size(),
                    m_loader->m_file->is_shared_memory());
731
        }
732 733 734 735 736 737
        if (comp_node.mem_node() == CompNode::default_cpu().mem_node()) {
            *shared_tensor_ref = DeviceTensorND::make_proxy(hv);
            m_tensor_alignment->add_device_tensor(shared_tensor_ref);
        } else {
            mgb_assert(copy_immediatly);
            shared_tensor_ref->comp_node(comp_node).copy_from(hv).sync();
738
        }
739 740 741 742 743
    } else {
        // use lazy load for non-CPU devices
        HostTensorND hv{CompNode::default_cpu()};
        if (tensor->data() && tensor->data()->size() > 0) {
            hv.dtype(layout.dtype).resize(layout);
744 745 746
            fill_tensor_memory(
                    hv, tensor->data()->data(), tensor->data()->size(),
                    m_loader->m_file->is_shared_memory());
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
        }
        shared_tensor_ref = m_device_value_loader.make(comp_node, std::move(hv));
    }
    return shared_tensor_ref;
}

Metadata GraphLoaderOSSV2::OprLoadContextImpl::load_metadata() {
    const auto* fbmeta = m_loader->m_model->metadata();
    Metadata ret;
    if (fbmeta) {
        ret.is_valid = fbmeta->is_valid();
        ret.graph_modified = fbmeta->graph_modified();
        if (fbmeta->user_info()) {
            ret.user_info = fbmeta->user_info()->str();
            ret.has_user_info = true;
        }
        if (fbmeta->optimize_options()) {
            ret.optimize_options = fbmeta->optimize_options();
            ret.optimized_for_inference = true;
        }
    }
    return ret;
}

void GraphLoaderOSSV2::OprLoadContextImpl::load_single_opr(
        const fbs::v2::Operator* fbopr) {
    m_cur_opr_tensor_cnt = 0;
    m_cur_opr_blob_cnt = 0;
    m_cur_opr_param_cnt = 0;

    OperatorNodeConfig config;
    if (fbopr->output_dtype()) {
        config.output_dtype(fbs::intl::load_dtype(fbopr->output_dtype()));
    }
    if (fbopr->name()) {
        config.name(fbopr->name()->str());
    }
    if (fbopr->comp_node()) {
        auto cnt = fbopr->comp_node()->size();
        cg::OperatorNodeConfig::CompNodeArray comp_node_arr(cnt);
        for (size_t i = 0; i < cnt; i++) {
            CompNode cn{};
            auto node = fbopr->comp_node()->Get(i);
            if (node) {
                cn = load_comp_node(node);
            }
            comp_node_arr[i] = cn;
        }
        config.comp_node_arr(comp_node_arr);
    }
    //! opr version must be exist
    uint8_t opr_version = fbopr->opr_version();
    auto type_id = fbopr->type_id();
    const OprRegistryV2* registry =
            OprRegistryV2::versioned_find_by_id(type_id, opr_version);
    mgb_throw_if(
            !registry, SerializationError,
804 805
            "failed to find opr with type %s and version %d.",
            fbopr->type()->str().c_str(), opr_version);
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880

    // load inputs
    VarNodeArray inputs;
    if (fbopr->inputs()) {
        inputs.resize(fbopr->inputs()->size());
        for (size_t i = 0; i < inputs.size(); ++i) {
            inputs[i] = m_id2varnode.at(fbopr->inputs()->Get(i));
        }
    }

    // call loader
    auto accessor = registry->loader(*this, inputs, config);
    auto opr = accessor.opr();

    // check opr type; note that:
    // 1. registry->type may be empty for dynamic opr loaders or legacy oprs
    // 2. due to some optimization, an opr may be replaced by ImmutableTensor
    mgb_assert(
            opr && (opr->dyn_typeinfo() == registry->type || !registry->type ||
                    opr->same_type<opr::ImmutableTensor>()),
            "got_type=%s expected_type=%s", opr ? opr->dyn_typeinfo()->name : nullptr,
            registry->type->name);
    // record output vars; read output names
    size_t i = 0;
    for (auto ovar : accessor.output()) {
        if (!ovar->contain_flag(VarNode::Flag::VOLATILE_CONTENT)) {
            m_id2varnode.push_back(ovar);
            if (fbopr->outputs()) {
                auto id = fbopr->outputs()->Get(i);
                mgb_assert(
                        m_id2varnode.size() - 1 == fbopr->outputs()->Get(i),
                        "id2var is %zu, fbs get id is %d\n", m_id2varnode.size() - 1,
                        fbopr->outputs()->Get(i));
                if (m_middle_tensors.size() > i) {
                    auto name = m_middle_tensors[id]->name()->str();
                    ovar->name(name);
                }
            }
            i++;
        }
    }

    opr->node_prop().attribute().priority = fbopr->priority();
}

GraphLoader::LoadResult GraphLoaderOSSV2::OprLoadContextImpl::load_oprs() {
    // load oprs
    const auto* oprs = m_loader->m_model->oprs();
    {
        // inplace arith graph optimization is disabled during opr load
        // it tries to restore the same graph as it was dumped
        // see test TestSerializer2.LOGEXP for example
        GraphLoader::ScopedGraphOptDisabler _(m_graph);
        for (flatbuffers::uoffset_t i = 0; i < oprs->size(); ++i) {
            m_current_opr = oprs->Get(i);
            load_single_opr(m_current_opr);
        }
    }

    // batched loading device values
    m_device_value_loader.apply();

    LoadResult ret;
    ret.graph = m_graph;
    ret.tensor_map = m_tensor_map;

    const auto* outputs = m_loader->m_model->output_vars_idx();
    ret.output_var_list.resize(outputs->size());
    for (flatbuffers::uoffset_t i = 0; i < outputs->size(); i++) {
        auto out = outputs->Get(i);
        auto var = m_id2varnode.at(out->compact_id());
        ret.output_var_map[var->name()] = var;
        ret.output_var_map_id[out->original_id()] = var;
        ret.output_var_list[i] = var;
    }
881
    mgb_assert(m_cur_shared_tensor_idx <= m_loader->m_shared_tensor_map.size());
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
    return ret;
}

void GraphLoaderOSSV2::OprLoadContextImpl::load_middle_tensor() {
    auto model = m_loader->m_model;
    if (model->middle_tensors()) {
        for (unsigned int i = 0; i < m_loader->m_model->middle_tensors()->size(); i++) {
            m_middle_tensors.push_back(model->middle_tensors()->Get(i));
        }
    }
}

GraphLoader::LoadResult GraphLoaderOSSV2::load(const LoadConfig& config, bool rewind) {
    mgb_assert(m_file);
    m_cur_load_config = &config;
    if (rewind) {
        m_file->rewind();
    }
    // Read fbs::Graph
    uint32_t size;
    m_file->read(&size, sizeof(size));
903 904
    m_file->skip(-sizeof(size));
    m_model_buf = m_file->read_shared(size + sizeof(size));
905 906 907 908
    {
        flatbuffers::Verifier verifier(
                static_cast<const uint8_t*>(m_model_buf.data()), m_model_buf.size());
        mgb_throw_if(
909
                !fbs::v2::VerifySizePrefixedModelBuffer(verifier), SerializationError,
910 911 912
                "model verification failed (invalid or corrupted model?)");
    }

913
    m_model = fbs::v2::GetSizePrefixedModel(m_model_buf.data());
914
    m_mgb_version = m_model->mge_version();
915
    m_model_version = m_model->model_version();
916 917 918 919 920 921
    if (m_model->mge_version() > MGB_VERSION) {
        mgb_log_warn(
                "loading model from future runtime: version=%u "
                "model_version=%u",
                MGB_VERSION, m_model->mge_version());
    }
922 923 924 925 926 927
    if (m_model_version > CURRENT_VERSION) {
        mgb_log_warn(
                "The model dump in the future version %d, try to load it, maybe case "
                "load error in %d version.",
                m_model_version, CURRENT_VERSION);
    }
928 929 930 931 932 933

    if (m_shared_tensor_map.empty()) {
        m_shared_tensor_map.resize(m_model->nr_shared_tensor());
    } else {
        mgb_assert(m_shared_tensor_map.size() == m_model->nr_shared_tensor());
    }
934 935 936 937
    SharedTensorAlignMent tensor_alignment(
            m_model_buf, m_file.get(),
            m_file->writable() && m_file->is_shared_memory());
    OprLoadContextImpl ctx{this, &tensor_alignment, m_model->mge_version()};
938 939 940 941
    ctx.load_middle_tensor();
    auto metadata = ctx.load_metadata();
    auto result = ctx.load_oprs();
    result.metadata = metadata;
M
Megvii Engine Team 已提交
942 943 944 945 946 947 948 949 950 951 952
    if (m_model->output_alias() && m_model->output_alias()->size() > 0) {
        auto nr_alias = m_model->output_alias()->size();
        result.output_var_list.resize(nr_alias);
        for (size_t i = 0; i < nr_alias; i++) {
            auto output_alias = m_model->output_alias()->Get(i);
            std::string name = output_alias->name()->str();
            size_t id = output_alias->id();
            result.output_var_map[name] = result.output_var_map_id[id];
            result.output_var_list[i] = result.output_var_map_id[id];
        }
    }
953
    m_model_loaded = true;
954
    tensor_alignment.reorder_and_align_tensor();
955 956 957 958
    result.graph_compile_ahead();
    return result;
}

959 960 961
std::unique_ptr<GraphDumper> make_fbs_v2_dumper(
        std::unique_ptr<OutputFile> file, int version) {
    return std::make_unique<GraphDumperOSSV2>(std::move(file), version);
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
}

std::unique_ptr<GraphLoader> make_fbs_v2_loader(std::unique_ptr<InputFile> file) {
    return std::make_unique<GraphLoaderOSSV2>(std::move(file));
}

bool is_fbs_v2_file(InputFile& file) {
    constexpr size_t identifier_length = 25;
    char identifier[identifier_length];
    file.read(identifier, identifier_length);
    file.skip(-identifier_length);
    //! skip the size in prefix of the file
    return fbs::v2::ModelBufferHasIdentifier(identifier + sizeof(uint32_t));
}

}  // namespace serialization
}  // namespace mgb

#endif

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}