tensor.cpp 11.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
/**
 * \file src/tensor.cpp
 *
 * This file is part of MegEngine, a deep learning framework developed by
 * Megvii.
 *
 * \copyright Copyright (c) 2020-2021 Megvii Inc. All rights reserved.
 */

#include "lite/tensor.h"
#include "function_base.h"
#include "tensor_impl_base.h"
#if LITE_BUILD_WITH_MGE
#include "megbrain/comp_node.h"
#include "megbrain/tensor.h"
#include "mge/function_dft.h"
#include "mge/tensor_impl.h"
#endif

#include <memory>

using namespace lite;

size_t Layout::get_elem_size() const {
    size_t elesize = 1;
    switch (data_type) {
        case LiteDataType::LITE_INT64:
            elesize = 8;
            break;
        case LiteDataType::LITE_FLOAT:
        case LiteDataType::LITE_INT:
        case LiteDataType::LITE_UINT:
            elesize = 4;
            break;
        case LiteDataType::LITE_HALF:
        case LiteDataType::LITE_INT16:
        case LiteDataType::LITE_UINT16:
            elesize = 2;
            break;
        case LiteDataType::LITE_INT8:
        case LiteDataType::LITE_UINT8:
            elesize = 1;
            break;
        default:
            LITE_THROW("not support data type.");
    }
    return elesize;
}

bool Layout::operator==(const Layout& other) const {
    bool equal = true;
    equal &= (ndim == other.ndim);
    equal &= (data_type == other.data_type);
    for (size_t i = 0; i < ndim; i++) {
        equal &= (shapes[i] == other.shapes[i]);
    }
    return equal;
}

Tensor::~Tensor() = default;

Tensor::Tensor() {
    LITE_ERROR_HANDLER_BEGIN
    m_tensor_impl = call_func<TensorImplDft,
                              std::shared_ptr<lite::Tensor::TensorImplBase>>(
            "create_tensor");
    LITE_ERROR_HANDLER_END
}

Tensor::Tensor(LiteDeviceType device_type, bool is_pinned_host)
        : m_is_pinned_host(is_pinned_host), m_device_type(device_type) {
    LITE_ERROR_HANDLER_BEGIN
    m_tensor_impl = call_func<TensorImplDft,
                              std::shared_ptr<lite::Tensor::TensorImplBase>>(
            "create_tensor", device_type, is_pinned_host);
    LITE_ERROR_HANDLER_END
}

Tensor::Tensor(LiteDeviceType device_type, const Layout& layout,
               bool is_pinned_host)
        : m_is_pinned_host(is_pinned_host),
          m_layout(layout),
          m_device_type(device_type) {
    LITE_ERROR_HANDLER_BEGIN
    m_tensor_impl = call_func<TensorImplDft,
                              std::shared_ptr<lite::Tensor::TensorImplBase>>(
            "create_tensor", device_type, layout, is_pinned_host);
    LITE_ERROR_HANDLER_END
}

Tensor::Tensor(int device_id, LiteDeviceType device_type, const Layout& layout,
               bool is_pinned_host)
        : m_is_pinned_host(is_pinned_host),
          m_device_id(device_id),
          m_layout(layout),
          m_device_type(device_type) {
    LITE_ERROR_HANDLER_BEGIN
    m_tensor_impl = call_func<TensorImplDft,
                              std::shared_ptr<lite::Tensor::TensorImplBase>>(
            "create_tensor", device_id, device_type, layout, is_pinned_host);
    LITE_ERROR_HANDLER_END
}

Tensor::Tensor(int device_id, int stream_id, LiteDeviceType device_type,
               bool is_pinned_host)
        : m_is_pinned_host(is_pinned_host),
          m_device_id(device_id),
          m_device_type(device_type) {
    LITE_ERROR_HANDLER_BEGIN
    m_tensor_impl = call_func<TensorImplDft,
                              std::shared_ptr<lite::Tensor::TensorImplBase>>(
            "create_tensor", device_id, stream_id, device_type, is_pinned_host);
    LITE_ERROR_HANDLER_END
}

Tensor::Tensor(LiteBackend backend, LiteDeviceType device_type, int device_id,
               const Layout& layout, bool is_pinned_host) {
    if (backend == LiteBackend::LITE_DEFAULT) {
        m_tensor_impl =
                call_func<TensorImplDft,
                          std::shared_ptr<lite::Tensor::TensorImplBase>>(
                        "create_tensor", device_id, device_type, layout,
                        is_pinned_host);
    } else {
        LITE_MARK_USED_VAR(device_type);
        LITE_MARK_USED_VAR(is_pinned_host);
        LITE_MARK_USED_VAR(layout);
        LITE_MARK_USED_VAR(device_id);
        LITE_THROW("unknow backend, enum id is : %d.");
    }
}

void Tensor::reshape(const std::vector<int>& shape) {
    LITE_ASSERT(m_layout.ndim > 0, "The tensor to be reshape is empty.");
    uint32_t length = shape.size();
    LITE_ASSERT(length < Layout::MAXDIM,
                "The ndim of reshape input is too large.");
    Layout new_layout = m_layout;
    new_layout.ndim = length;
    size_t total_length =
            get_tensor_total_size_in_byte() / m_layout.get_elem_size();
    uint32_t unfixed_number = 0;
    uint32_t unfixed_index = 0;
    for (uint32_t i = 0; i < length; i++) {
        if (shape[i] == -1) {
            unfixed_number += 1;
            unfixed_index = i;
        } else {
            LITE_ASSERT(shape[i] > 0, "The reshape inputs invalid.");
            new_layout.shapes[i] = shape[i];
        }
    }
    LITE_ASSERT(unfixed_number <= 1, "The reshape inputs invalid.");
    if (unfixed_number) {
        size_t left = total_length;
        for (uint32_t i = 0; i < length; i++) {
            if (i == unfixed_index) {
                continue;
            } else {
                LITE_ASSERT(left > 0 && (left % new_layout.shapes[i] == 0),
                            "The reshape inputs invalid.");
                left = left / new_layout.shapes[i];
            }
        }
        LITE_ASSERT(left > 0, "The reshape inputs invalid.");
        new_layout.shapes[unfixed_index] = left;
    }
    size_t new_total = 1;
    for (uint32_t i = 0; i < length; i++) {
        new_total *= new_layout.shapes[i];
    }
    LITE_ASSERT(new_total == total_length, "The reshape inputs invalid.");
    m_layout = new_layout;
    m_tensor_impl->reshape(m_layout);
}

size_t Tensor::get_tensor_total_size_in_byte() const {
    LITE_ERROR_HANDLER_BEGIN
    size_t elemsize = m_layout.get_elem_size();
    size_t total = m_layout.ndim == 0 ? 0 : 1;
    for (size_t i = 0; i < m_layout.ndim; i++) {
        total *= m_layout.shapes[i];
    }
    return total * elemsize;
    LITE_ERROR_HANDLER_END
}

void* Tensor::get_memory_ptr() const {
    LITE_ERROR_HANDLER_BEGIN
    LITE_ASSERT(m_layout.ndim != 0,
                "Tensor layout is not valid when get memory ptr.");
    return m_tensor_impl->get_memory_ptr();
    LITE_ERROR_HANDLER_END
}

void* Tensor::get_memory_ptr(const std::vector<size_t>& idx) const {
    LITE_ERROR_HANDLER_BEGIN
    return m_tensor_impl->get_memory_ptr(idx);
    LITE_ERROR_HANDLER_END
}

std::shared_ptr<Tensor> Tensor::slice(const std::vector<size_t>& start,
                                      const std::vector<size_t>& end,
                                      const std::vector<size_t>& step) {
    LITE_ERROR_HANDLER_BEGIN
    auto ret = m_tensor_impl->slice(start, end, step);
    ret->update_from_implement();
    return ret;
    LITE_ERROR_HANDLER_END
}

void Tensor::fill_zero() {
    LITE_ERROR_HANDLER_BEGIN
    LITE_ASSERT(m_layout.ndim > 0,
                "fill_zero can't apply on a tensor with empty layout.");
    m_tensor_impl->fill_zero();
    LITE_ERROR_HANDLER_END
}

void Tensor::share_memory_with(const Tensor& src_tensor) {
    LITE_ERROR_HANDLER_BEGIN
    LITE_ASSERT(src_tensor.m_layout.ndim > 0,
                "To be shared tensor with empty layout.");
    m_tensor_impl->share_memory_with(src_tensor.m_tensor_impl.get());
    update_from_implement();
    LITE_ERROR_HANDLER_END
}

void Tensor::set_layout(const Layout& layout) {
    LITE_ERROR_HANDLER_BEGIN
    m_layout = layout;
    m_tensor_impl->set_layout(layout);
    LITE_ERROR_HANDLER_END
}

void Tensor::reset(void* prepared_data, size_t data_length_in_byte) {
    LITE_ERROR_HANDLER_BEGIN
    LITE_ASSERT(m_layout.ndim,
                "Tensor layout is empty, please reset with layout");
    LITE_ASSERT(data_length_in_byte >= get_tensor_total_size_in_byte(),
                "the memory reset to the tensor is too small.");
    m_tensor_impl->reset(prepared_data);
    LITE_ERROR_HANDLER_END
}

void Tensor::reset(void* prepared_data, const Layout& layout) {
    LITE_ERROR_HANDLER_BEGIN
    m_layout = layout;
    m_tensor_impl->reset(prepared_data, layout);
    LITE_ERROR_HANDLER_END
}

bool Tensor::is_continue_memory() const {
    LITE_ERROR_HANDLER_BEGIN
    return m_tensor_impl->is_continue_memory();
    LITE_ERROR_HANDLER_END
}

void Tensor::copy_from(const Tensor& src) {
    LITE_ERROR_HANDLER_BEGIN
    LITE_ASSERT(src.get_layout().ndim != 0,
                "when tensor copy, the src tensor layout is empty.");
    m_tensor_impl->copy_from(src.m_tensor_impl.get());
    update_from_implement();
    LITE_ERROR_HANDLER_END
}

void Tensor::update_from_implement() {
    LITE_ERROR_HANDLER_BEGIN
    m_layout = m_tensor_impl->get_layout();
    m_device_type = m_tensor_impl->get_device_type();
    m_device_id = m_tensor_impl->get_device_id();
    m_is_pinned_host = m_tensor_impl->is_pinned_host();
    LITE_ERROR_HANDLER_END
}

void LiteAny::type_missmatch(size_t expect, size_t get) const {
    LITE_THROW(ssprintf(
            "The type store in LiteAny is not match the visit type, type of "
            "storage length is %zu, type of visit length is %zu.",
            expect, get));
}

std::shared_ptr<Tensor> TensorUtils::concat(const std::vector<Tensor>& tensors,
                                            int dim, LiteDeviceType dst_device,
                                            int dst_device_id) {
    if (tensors.size() <= 0) {
        return std::make_shared<Tensor>();
    }
    if (dst_device == LiteDeviceType::LITE_DEVICE_DEFAULT) {
        dst_device = tensors.front().get_device_type();
    }
    if (dst_device_id == -1) {
        dst_device_id = tensors.front().get_device_id();
    }
    bool is_pinned_host = tensors.front().is_pinned_host();
    auto layout = tensors.front().get_layout();
    LITE_ASSERT(static_cast<int>(layout.ndim) > dim,
                "the dim in concat is error.");
    size_t sum_in_dim = layout.shapes[dim];
    for (size_t i = 1; i < tensors.size(); ++i) {
        auto other_layout = tensors[i].get_layout();
        LITE_ASSERT(other_layout.ndim == layout.ndim,
                    "the dim size of tensors is not same!");
        LITE_ASSERT(other_layout.data_type == layout.data_type,
                    "the dtype of tensors is not same!");
        for (size_t j = 0; j < other_layout.ndim; ++j) {
            if (dim == static_cast<int>(j)) {
                sum_in_dim += other_layout.shapes[j];
                continue;
            }
            LITE_ASSERT(other_layout.shapes[j] == layout.shapes[j],
                        "the shape of tensors is not same!");
        }
    }
    layout.shapes[dim] = sum_in_dim;
    auto result = std::make_shared<Tensor>(dst_device_id, dst_device, layout,
                                           is_pinned_host);
    size_t index = 0;
    std::vector<size_t> start(dim + 1, 0);
    std::vector<size_t> end(dim + 1, 0);
    for (int i = 0; i < dim; i++) {
        end[i] = layout.shapes[i];
    }
    for (size_t i = 0; i < tensors.size(); ++i) {
        auto&& tensor = tensors[i];
        auto layout = tensor.get_layout();
        if (layout.shapes[dim] == 0)
            continue;
        start[dim] = index;
        end[dim] = index + layout.shapes[dim];
        auto&& sub_dst = result->slice(start, end);
        sub_dst->copy_from(tensor);
        index += layout.shapes[dim];
    }
    return result;
}

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}