/** * \file src/tensor.cpp * * This file is part of MegEngine, a deep learning framework developed by * Megvii. * * \copyright Copyright (c) 2020-2021 Megvii Inc. All rights reserved. */ #include "lite/tensor.h" #include "function_base.h" #include "tensor_impl_base.h" #if LITE_BUILD_WITH_MGE #include "megbrain/comp_node.h" #include "megbrain/tensor.h" #include "mge/function_dft.h" #include "mge/tensor_impl.h" #endif #include using namespace lite; size_t Layout::get_elem_size() const { size_t elesize = 1; switch (data_type) { case LiteDataType::LITE_INT64: elesize = 8; break; case LiteDataType::LITE_FLOAT: case LiteDataType::LITE_INT: case LiteDataType::LITE_UINT: elesize = 4; break; case LiteDataType::LITE_HALF: case LiteDataType::LITE_INT16: case LiteDataType::LITE_UINT16: elesize = 2; break; case LiteDataType::LITE_INT8: case LiteDataType::LITE_UINT8: elesize = 1; break; default: LITE_THROW("not support data type."); } return elesize; } bool Layout::operator==(const Layout& other) const { bool equal = true; equal &= (ndim == other.ndim); equal &= (data_type == other.data_type); for (size_t i = 0; i < ndim; i++) { equal &= (shapes[i] == other.shapes[i]); } return equal; } Tensor::~Tensor() = default; Tensor::Tensor() { LITE_ERROR_HANDLER_BEGIN m_tensor_impl = call_func>( "create_tensor"); LITE_ERROR_HANDLER_END } Tensor::Tensor(LiteDeviceType device_type, bool is_pinned_host) : m_is_pinned_host(is_pinned_host), m_device_type(device_type) { LITE_ERROR_HANDLER_BEGIN m_tensor_impl = call_func>( "create_tensor", device_type, is_pinned_host); LITE_ERROR_HANDLER_END } Tensor::Tensor(LiteDeviceType device_type, const Layout& layout, bool is_pinned_host) : m_is_pinned_host(is_pinned_host), m_layout(layout), m_device_type(device_type) { LITE_ERROR_HANDLER_BEGIN m_tensor_impl = call_func>( "create_tensor", device_type, layout, is_pinned_host); LITE_ERROR_HANDLER_END } Tensor::Tensor(int device_id, LiteDeviceType device_type, const Layout& layout, bool is_pinned_host) : m_is_pinned_host(is_pinned_host), m_device_id(device_id), m_layout(layout), m_device_type(device_type) { LITE_ERROR_HANDLER_BEGIN m_tensor_impl = call_func>( "create_tensor", device_id, device_type, layout, is_pinned_host); LITE_ERROR_HANDLER_END } Tensor::Tensor(int device_id, int stream_id, LiteDeviceType device_type, bool is_pinned_host) : m_is_pinned_host(is_pinned_host), m_device_id(device_id), m_device_type(device_type) { LITE_ERROR_HANDLER_BEGIN m_tensor_impl = call_func>( "create_tensor", device_id, stream_id, device_type, is_pinned_host); LITE_ERROR_HANDLER_END } Tensor::Tensor(LiteBackend backend, LiteDeviceType device_type, int device_id, const Layout& layout, bool is_pinned_host) { if (backend == LiteBackend::LITE_DEFAULT) { m_tensor_impl = call_func>( "create_tensor", device_id, device_type, layout, is_pinned_host); } else { LITE_MARK_USED_VAR(device_type); LITE_MARK_USED_VAR(is_pinned_host); LITE_MARK_USED_VAR(layout); LITE_MARK_USED_VAR(device_id); LITE_THROW("unknow backend, enum id is : %d."); } } void Tensor::reshape(const std::vector& shape) { LITE_ASSERT(m_layout.ndim > 0, "The tensor to be reshape is empty."); uint32_t length = shape.size(); LITE_ASSERT(length < Layout::MAXDIM, "The ndim of reshape input is too large."); Layout new_layout = m_layout; new_layout.ndim = length; size_t total_length = get_tensor_total_size_in_byte() / m_layout.get_elem_size(); uint32_t unfixed_number = 0; uint32_t unfixed_index = 0; for (uint32_t i = 0; i < length; i++) { if (shape[i] == -1) { unfixed_number += 1; unfixed_index = i; } else { LITE_ASSERT(shape[i] > 0, "The reshape inputs invalid."); new_layout.shapes[i] = shape[i]; } } LITE_ASSERT(unfixed_number <= 1, "The reshape inputs invalid."); if (unfixed_number) { size_t left = total_length; for (uint32_t i = 0; i < length; i++) { if (i == unfixed_index) { continue; } else { LITE_ASSERT(left > 0 && (left % new_layout.shapes[i] == 0), "The reshape inputs invalid."); left = left / new_layout.shapes[i]; } } LITE_ASSERT(left > 0, "The reshape inputs invalid."); new_layout.shapes[unfixed_index] = left; } size_t new_total = 1; for (uint32_t i = 0; i < length; i++) { new_total *= new_layout.shapes[i]; } LITE_ASSERT(new_total == total_length, "The reshape inputs invalid."); m_layout = new_layout; m_tensor_impl->reshape(m_layout); } size_t Tensor::get_tensor_total_size_in_byte() const { LITE_ERROR_HANDLER_BEGIN size_t elemsize = m_layout.get_elem_size(); size_t total = m_layout.ndim == 0 ? 0 : 1; for (size_t i = 0; i < m_layout.ndim; i++) { total *= m_layout.shapes[i]; } return total * elemsize; LITE_ERROR_HANDLER_END } void* Tensor::get_memory_ptr() const { LITE_ERROR_HANDLER_BEGIN LITE_ASSERT(m_layout.ndim != 0, "Tensor layout is not valid when get memory ptr."); return m_tensor_impl->get_memory_ptr(); LITE_ERROR_HANDLER_END } void* Tensor::get_memory_ptr(const std::vector& idx) const { LITE_ERROR_HANDLER_BEGIN return m_tensor_impl->get_memory_ptr(idx); LITE_ERROR_HANDLER_END } std::shared_ptr Tensor::slice(const std::vector& start, const std::vector& end, const std::vector& step) { LITE_ERROR_HANDLER_BEGIN auto ret = m_tensor_impl->slice(start, end, step); ret->update_from_implement(); return ret; LITE_ERROR_HANDLER_END } void Tensor::fill_zero() { LITE_ERROR_HANDLER_BEGIN LITE_ASSERT(m_layout.ndim > 0, "fill_zero can't apply on a tensor with empty layout."); m_tensor_impl->fill_zero(); LITE_ERROR_HANDLER_END } void Tensor::share_memory_with(const Tensor& src_tensor) { LITE_ERROR_HANDLER_BEGIN LITE_ASSERT(src_tensor.m_layout.ndim > 0, "To be shared tensor with empty layout."); m_tensor_impl->share_memory_with(src_tensor.m_tensor_impl.get()); update_from_implement(); LITE_ERROR_HANDLER_END } void Tensor::set_layout(const Layout& layout) { LITE_ERROR_HANDLER_BEGIN m_layout = layout; m_tensor_impl->set_layout(layout); LITE_ERROR_HANDLER_END } void Tensor::reset(void* prepared_data, size_t data_length_in_byte) { LITE_ERROR_HANDLER_BEGIN LITE_ASSERT(m_layout.ndim, "Tensor layout is empty, please reset with layout"); LITE_ASSERT(data_length_in_byte >= get_tensor_total_size_in_byte(), "the memory reset to the tensor is too small."); m_tensor_impl->reset(prepared_data); LITE_ERROR_HANDLER_END } void Tensor::reset(void* prepared_data, const Layout& layout) { LITE_ERROR_HANDLER_BEGIN m_layout = layout; m_tensor_impl->reset(prepared_data, layout); LITE_ERROR_HANDLER_END } bool Tensor::is_continue_memory() const { LITE_ERROR_HANDLER_BEGIN return m_tensor_impl->is_continue_memory(); LITE_ERROR_HANDLER_END } void Tensor::copy_from(const Tensor& src) { LITE_ERROR_HANDLER_BEGIN LITE_ASSERT(src.get_layout().ndim != 0, "when tensor copy, the src tensor layout is empty."); m_tensor_impl->copy_from(src.m_tensor_impl.get()); update_from_implement(); LITE_ERROR_HANDLER_END } void Tensor::update_from_implement() { LITE_ERROR_HANDLER_BEGIN m_layout = m_tensor_impl->get_layout(); m_device_type = m_tensor_impl->get_device_type(); m_device_id = m_tensor_impl->get_device_id(); m_is_pinned_host = m_tensor_impl->is_pinned_host(); LITE_ERROR_HANDLER_END } void LiteAny::type_missmatch(size_t expect, size_t get) const { LITE_THROW(ssprintf( "The type store in LiteAny is not match the visit type, type of " "storage length is %zu, type of visit length is %zu.", expect, get)); } std::shared_ptr TensorUtils::concat(const std::vector& tensors, int dim, LiteDeviceType dst_device, int dst_device_id) { if (tensors.size() <= 0) { return std::make_shared(); } if (dst_device == LiteDeviceType::LITE_DEVICE_DEFAULT) { dst_device = tensors.front().get_device_type(); } if (dst_device_id == -1) { dst_device_id = tensors.front().get_device_id(); } bool is_pinned_host = tensors.front().is_pinned_host(); auto layout = tensors.front().get_layout(); LITE_ASSERT(static_cast(layout.ndim) > dim, "the dim in concat is error."); size_t sum_in_dim = layout.shapes[dim]; for (size_t i = 1; i < tensors.size(); ++i) { auto other_layout = tensors[i].get_layout(); LITE_ASSERT(other_layout.ndim == layout.ndim, "the dim size of tensors is not same!"); LITE_ASSERT(other_layout.data_type == layout.data_type, "the dtype of tensors is not same!"); for (size_t j = 0; j < other_layout.ndim; ++j) { if (dim == static_cast(j)) { sum_in_dim += other_layout.shapes[j]; continue; } LITE_ASSERT(other_layout.shapes[j] == layout.shapes[j], "the shape of tensors is not same!"); } } layout.shapes[dim] = sum_in_dim; auto result = std::make_shared(dst_device_id, dst_device, layout, is_pinned_host); size_t index = 0; std::vector start(dim + 1, 0); std::vector end(dim + 1, 0); for (int i = 0; i < dim; i++) { end[i] = layout.shapes[i]; } for (size_t i = 0; i < tensors.size(); ++i) { auto&& tensor = tensors[i]; auto layout = tensor.get_layout(); if (layout.shapes[dim] == 0) continue; start[dim] = index; end[dim] = index + layout.shapes[dim]; auto&& sub_dst = result->slice(start, end); sub_dst->copy_from(tensor); index += layout.shapes[dim]; } return result; } // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}