elemwise.cpp 38.1 KB
Newer Older
1 2 3
#include "./erfinv.h"
#include "megbrain/opr/basic_arith.h"
#include "megbrain/opr/io.h"
M
Megvii Engine Team 已提交
4 5 6
#include "megbrain/opr/tensor_manip.h"
#include "megbrain/test/autocheck.h"
#include "megbrain/test/helper.h"
7 8

#include <algorithm>
M
Megvii Engine Team 已提交
9
#include <cmath>
10 11 12 13

using namespace mgb;

namespace {
M
Megvii Engine Team 已提交
14
using Mode = opr::Elemwise::Mode;
15

M
Megvii Engine Team 已提交
16 17 18
using InputGenerator = Maybe<thin_function<void(HostTensorND&)>>;
// msvc would check for callable of None, so we use this to replace None
const InputGenerator NONE_INPUT_GEN;
19

M
Megvii Engine Team 已提交
20
std::unordered_set<Mode, enumhash> tested_mode;
21

M
Megvii Engine Team 已提交
22 23 24 25
/* ======================= opr special impls ======================= */
float do_mod(float a, float b) {
    return std::fmod(a, b);
}
26

M
Megvii Engine Team 已提交
27 28 29
int do_mod(int a, int b) {
    return a % b;
}
30

31 32 33 34 35 36 37 38 39 40 41 42 43
float do_floor_div(float a, float b) {
    return std::floor(a / b);
}

int do_floor_div(int a, int b) {
    if ((a ^ b) < 0) {
        const auto quot = a / b;
        const auto rem = a % b;
        return rem ? quot - 1 : quot;
    }
    return a / b;
}

M
Megvii Engine Team 已提交
44 45 46
float do_erfinv(float x) {
    return erfinvf(x);
}
47

M
Megvii Engine Team 已提交
48 49 50
float do_erfcinv(float x) {
    return erfcinvf(x);
}
51

M
Megvii Engine Team 已提交
52 53 54
float do_h_swish(float x) {
    return x * fmaxf(fminf(x + 3.f, 6.f), 0.f) / 6.f;
}
55

M
Megvii Engine Team 已提交
56 57 58
float do_h_swish_grad(float x, float y) {
    return x < -3.f ? 0.f : (x > 3.f ? y : (2.f * x + 3.f) / 6.f * y);
}
59

M
Megvii Engine Team 已提交
60 61 62 63
template <typename T>
T do_log_sum_exp(T a, T b) {
    return std::log(std::exp(a) + std::exp(b));
}
64

M
Megvii Engine Team 已提交
65 66 67
float do_fast_tanh(float x) {
    return x * (27.f + x * x) / (27.f + 9.f * x * x);
}
68

M
Megvii Engine Team 已提交
69 70 71 72 73
float do_fast_tanh_grad(float x, float y) {
    float x_pow2 = x * x;
    float deno = 3.f + x_pow2;
    return ((-48.f * x_pow2) / deno + 27.f + x_pow2) / (deno * 9.f) * y;
}
74

M
Megvii Engine Team 已提交
75 76 77 78
float do_fuse_add_h_swish(float x, float y) {
    float z = x + y;
    return z * fmaxf(fminf(z + 3.f, 6.f), 0.f) / 6.f;
}
79

M
Megvii Engine Team 已提交
80 81 82 83 84 85 86 87 88 89
template <typename T>
T do_shl(T, T);  // undefined
template <typename T>
T do_shr(T, T);  // undefined
int do_shl(int x, int y) {
    return x << y;
}
int do_shr(int x, int y) {
    return x >> y;
}
90

M
Megvii Engine Team 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
template <typename T>
struct MulType {};
template <>
struct MulType<int8_t> {
    typedef int16_t type;
};
template <>
struct MulType<int16_t> {
    typedef int32_t type;
};
template <>
struct MulType<int32_t> {
    typedef int64_t type;
};
template <>
struct MulType<uint8_t> {
    typedef uint16_t type;
};

template <typename T>
T rounding_shift_right_upward(T x, int k) {
    T mask = (T(1) << k) - 1;
    T threshold = mask >> 1;
    return (x >> k) + ((x & mask) > threshold);
}
116

M
Megvii Engine Team 已提交
117 118 119 120 121
template <typename T>
T do_round_mulh_saturate(T a, T b) {
    MEGDNN_STATIC_ASSERT(
            std::numeric_limits<T>::digits <= 32,
            "Portable RMULH is not supported for integer "
122
            "types larger than 32 bits.")
M
Megvii Engine Team 已提交
123 124
    MEGDNN_STATIC_ASSERT(
            std::numeric_limits<T>::is_integer,
125
            "Input types should be integer for RMULH")
M
Megvii Engine Team 已提交
126 127 128 129 130 131 132 133 134 135 136
    bool overflow = a == b && a == DTypeTrait<T>::min();
    // TODO: This really should be
    // rounding_shift_right_away_from_zero, but we haven't yet found a fast
    // way to implement it on ARM NEON. For now, we just try to align with
    // NEON's VQRDMULH and hope that it does not harm our NN badly.
    return overflow
                 ? DTypeTrait<T>::max()
                 : static_cast<T>(rounding_shift_right_upward(
                           typename MulType<T>::type(a) * typename MulType<T>::type(b),
                           std::numeric_limits<T>::digits));
}
137

M
Megvii Engine Team 已提交
138 139 140 141 142
float do_gelu_grad(float x, float y) {
    float phi = 1.f / sqrtf(2.0 * M_PI) * expf(-0.5f * x * x);
    float normcdf_v = 0.5f * (1.f + erff(x / sqrtf(2.f)));
    return y * (normcdf_v + x * phi);
}
143

M
Megvii Engine Team 已提交
144
/* ======================= basic framework ======================= */
145

M
Megvii Engine Team 已提交
146 147 148 149
template <typename ctype, bool stable_sign = false>
void gen_nozero(HostTensorND& dest) {
    static RNGxorshf rng{next_rand_seed()};
    auto ptr = dest.template ptr<ctype>();
150

M
Megvii Engine Team 已提交
151 152 153 154 155 156
    if (DTypeTrait<ctype>::category == DTypeCategory::FLOAT) {
        for (size_t i = 0, it = dest.shape().total_nr_elems(); i < it; ++i) {
            auto v = rng() / (rng.max() + 1.0) * 3 - 1.5;
            bool vsign = v > 0;
            if (stable_sign) {
                vsign = i % 2;
157
            }
M
Megvii Engine Team 已提交
158 159
            v = std::abs(v) + 0.1;
            ptr[i] = vsign ? v : -v;
160
        }
M
Megvii Engine Team 已提交
161 162 163 164
    } else {
        for (size_t i = 0, it = dest.shape().total_nr_elems(); i < it; ++i) {
            ctype v = rng() / (rng.max() + 1.0) * 65536 - 32767, vsat = i % 2 * 2 - 1;
            ptr[i] = v == 0 ? vsat : v;
165
        }
M
Megvii Engine Team 已提交
166 167
    }
}
168

M
Megvii Engine Team 已提交
169 170 171
template <class Trait>
struct CheckerConfig {
    static constexpr bool enable_binary_inp_swap() { return true; }
172

M
Megvii Engine Team 已提交
173 174 175 176
    static constexpr bool allow_inp_grad(size_t idx) {
        MGB_MARK_USED_VAR(idx);
        return true;
    }
177

M
Megvii Engine Team 已提交
178 179 180 181 182
    template <typename ctype>
    static InputGenerator get_inp_gen(size_t idx) {
        MGB_MARK_USED_VAR(idx);
        return NONE_INPUT_GEN;
    }
183

M
Megvii Engine Team 已提交
184 185 186 187
    template <class Opt>
    static void update_opt(Opt& opt) {
        opt.numdiff_eps = 1e-2;
    }
188

M
Megvii Engine Team 已提交
189 190 191
    template <class Checker>
    static void update_checker(Checker& checker) {
        MGB_MARK_USED_VAR(checker);
192
    }
M
Megvii Engine Team 已提交
193 194 195 196 197 198 199 200 201 202 203
};

template <typename ctype>
InputGenerator get_inp_gen_f32_range(float low, float high) {
    mgb_assert(std::is_same<ctype MGB_COMMA dt_float32>::value && high - low >= 0.1);
    auto gen = [low, high](HostTensorND& dest) {
        HostTensorGenerator<dtype::Float32, RandomDistribution::UNIFORM> gen{low, high};
        dest = *gen(dest.shape());
    };
    return gen;
}
204

M
Megvii Engine Team 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217
#define DEF_TRAIT(_mode, _expr)                                                      \
    struct _mode {                                                                   \
        static constexpr size_t ARITY = _CUR_ARITY;                                  \
        static constexpr Mode MODE = Mode::_mode;                                    \
        static constexpr bool ALLOW_INT = _ALLOW_INT;                                \
        static constexpr bool ALLOW_FLOAT = _ALLOW_FLOAT;                            \
        static constexpr bool ALLOW_BOOL = _ALLOW_BOOL;                              \
        static constexpr const char* NAME = #_mode;                                  \
        template <typename ctype>                                                    \
        static inline ctype apply(std::array<const ctype*, ARITY> inp, size_t idx) { \
            _EXPAND_PARAMS;                                                          \
            return _expr;                                                            \
        }                                                                            \
218 219 220 221
    };

#include "./elemwise_binary_trait_def.inl"
#include "./elemwise_ternary_trait_def.inl"
M
Megvii Engine Team 已提交
222
#include "./elemwise_unary_trait_def.inl"
223 224 225

#undef DEF_TRAIT

M
Megvii Engine Team 已提交
226 227 228 229
//! ensure nonzero value on some specific input
template <size_t nozero_idx, bool large_eps = true>
struct NoZeroCheckerConfig : public CheckerConfig<void> {
    static constexpr bool enable_binary_inp_swap() { return false; }
230

M
Megvii Engine Team 已提交
231 232 233 234 235 236
    template <typename ctype>
    static InputGenerator get_inp_gen(size_t idx) {
        if (idx != nozero_idx)
            return NONE_INPUT_GEN;
        return gen_nozero<ctype>;
    }
237

M
Megvii Engine Team 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
    template <class Opt>
    static void update_opt(Opt& opt) {
        if (large_eps)
            opt.numdiff_eps_single_inp[nozero_idx] = 0.05;
    }
};
struct NoGradCheckerConfig : public CheckerConfig<void> {
    static constexpr bool allow_inp_grad(size_t) { return false; }
};

/* ======================= unary config ======================= */
template <>
struct CheckerConfig<RELU> : public NoZeroCheckerConfig<0> {};
template <>
struct CheckerConfig<ABS> : public NoZeroCheckerConfig<0> {};
template <>
struct CheckerConfig<CEIL> : public NoGradCheckerConfig {};
template <>
struct CheckerConfig<FLOOR> : public NoGradCheckerConfig {};
template <>
struct CheckerConfig<ROUND> : public NoGradCheckerConfig {};
template <>
struct CheckerConfig<LOG> : public CheckerConfig<void> {
    template <typename ctype>
    static InputGenerator get_inp_gen(size_t) {
        return get_inp_gen_f32_range<ctype>(0.1, 4);
    }
    template <class Opt>
    static void update_opt(Opt& opt) {
        opt.numdiff_eps = 1e-2;
        opt.numdiff_max_err = 0.1;
    }
};
template <>
struct CheckerConfig<LOG1P> : public CheckerConfig<void> {
    template <typename ctype>
    static InputGenerator get_inp_gen(size_t) {
        return get_inp_gen_f32_range<ctype>(-0.2, 0.2);
    }
};
template <>
struct CheckerConfig<ACOS> : public CheckerConfig<void> {
    template <typename ctype>
    static InputGenerator get_inp_gen(size_t) {
        return get_inp_gen_f32_range<ctype>(-0.95, 0.95);
    }
    template <class Opt>
    static void update_opt(Opt& opt) {
        opt.numdiff_eps = 2e-3;
        opt.numdiff_max_err = 4e-3;
    }
};
template <>
struct CheckerConfig<ASIN> : public CheckerConfig<ACOS> {};
template <>
struct CheckerConfig<TANH> : public CheckerConfig<void> {
    template <typename ctype>
    static InputGenerator get_inp_gen(size_t) {
        return get_inp_gen_f32_range<ctype>(-5, 5);
    }
    template <class Opt>
    static void update_opt(Opt& opt) {
        opt.numdiff_eps = 2e-2;
    }
};
template <>
struct CheckerConfig<SIGMOID_GRAD> : public CheckerConfig<void> {
    template <class Opt>
    static void update_opt(Opt& opt) {
        opt.numdiff_eps = 2e-2;
    }
};
template <>
struct CheckerConfig<ERF> : public CheckerConfig<void> {
    template <class Opt>
    static void update_opt(Opt& opt) {
        opt.numdiff_eps = 2e-2;
    }
};
template <>
struct CheckerConfig<ERFINV> : public NoGradCheckerConfig {
    template <typename ctype>
    static InputGenerator get_inp_gen(size_t) {
        return get_inp_gen_f32_range<ctype>(-1, 1);
    }
    template <class Opt>
    static void update_opt(Opt& opt) {
        opt.numdiff_eps = 2e-2;
    }
};
template <>
struct CheckerConfig<ERFC> : public CheckerConfig<void> {
    template <class Opt>
    static void update_opt(Opt& opt) {
        opt.numdiff_eps = 2e-2;
    }
};
template <>
struct CheckerConfig<ERFCINV> : public NoGradCheckerConfig {
    template <typename ctype>
    static InputGenerator get_inp_gen(size_t) {
        return get_inp_gen_f32_range<ctype>(0, 2);
    }
    template <class Opt>
    static void update_opt(Opt& opt) {
        opt.numdiff_eps = 2e-2;
    }
};

template <>
struct CheckerConfig<H_SWISH> : public CheckerConfig<void> {};
template <>
struct CheckerConfig<H_SWISH_GRAD> : public NoGradCheckerConfig {};

/* ======================= binary config ======================= */
template <bool for_mod>
struct BinaryInputMinGap : public CheckerConfig<void> {
    template <typename ctype, class Checker>
    static void do_update_checker(Checker& checker) {
        auto icoord = [](const typename Checker::NumInpArray& inp) {
            static const ctype GAP{for_mod ? 0.01f : 0.1f};
            if (DTypeTrait<ctype>::category != DTypeCategory::FLOAT)
360
                return;
M
Megvii Engine Team 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
            auto p0 = inp[0]->template ptr<ctype>(), p1 = inp[1]->template ptr<ctype>();
            for (size_t i = 0, it = inp[0]->shape().total_nr_elems(); i < it; ++i) {
                if (for_mod) {
                    auto p1v = std::abs(p1[i]), mod = std::fmod(p0[i], p1v);
                    mod += mod < 0 ? p1v : 0;
                    if (mod < GAP || mod > p1v - GAP) {
                        mgb_assert(p1v > GAP * 4);
                        ctype m0, m1;
                        do {
                            p0[i] += GAP;
                            m0 = std::fmod(p0[i] - GAP, p1[i]);
                            m1 = std::fmod(p0[i] + GAP, p1[i]);
                        } while (std::abs(m1 - m0) > GAP * 2 + 1e-3);
                    }
                } else {
                    if (std::abs(p0[i] - p1[i]) < GAP) {
                        p1[i] += p0[i] < p1[i] ? GAP : -GAP;
                    }
379 380 381
                }
            }
        };
M
Megvii Engine Team 已提交
382
        checker.set_input_coordinator(icoord);
383 384
    }

M
Megvii Engine Team 已提交
385 386 387 388 389 390 391 392 393 394 395 396
    template <class Checker>
    static void update_checker(Checker& checker) {
        using ctype = typename Checker::ctype;
        if (std::is_integral<ctype>::value)
            return;
        if (std::is_same<ctype, dt_float16>::value)
            return do_update_checker<dt_float16>(checker);
        if (std::is_same<ctype, dt_float32>::value)
            return do_update_checker<dt_float32>(checker);
        mgb_assert(0);
    }
};
397

M
Megvii Engine Team 已提交
398 399
struct BinaryEQInput : public CheckerConfig<void> {
    static constexpr bool allow_inp_grad(size_t idx) { return idx >= 2; }
400

M
Megvii Engine Team 已提交
401 402 403 404 405 406 407 408 409 410 411
    template <class Checker>
    static void update_checker(Checker& checker) {
        using ctype = typename Checker::ctype;
        auto icoord = [](const typename Checker::NumInpArray& inp) {
            if (DTypeTrait<ctype>::category != DTypeCategory::FLOAT)
                return;
            auto p0 = inp[0]->template ptr<ctype>(), p1 = inp[1]->template ptr<ctype>();
            RNGxorshf rng{next_rand_seed()};
            for (size_t i = 0, it = inp[0]->shape().total_nr_elems(); i < it; ++i) {
                p0[i] = rng() % 3 == 0 ? p1[i] : p0[i];
            }
412
        };
M
Megvii Engine Team 已提交
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
        checker.set_input_coordinator(icoord);
    }
};

struct BinaryPlaneNoPiInput : public CheckerConfig<void> {
    template <class Checker>
    static void update_checker(Checker& checker) {
        using ctype = typename Checker::ctype;
        auto icoord = [](const typename Checker::NumInpArray& inp) {
            if (DTypeTrait<ctype>::category != DTypeCategory::FLOAT)
                return;
            auto p0 = inp[0]->template ptr<ctype>(), p1 = inp[1]->template ptr<ctype>();
            RNGxorshf rng{next_rand_seed()};
            auto maxv = rng.max() + 1.0;
            for (size_t i = 0, it = inp[0]->shape().total_nr_elems(); i < it; ++i) {
                //! To be numerical stable, r cannot be too small
                auto r = rng() / maxv * 2 + 0.5;  //! radious
                //! Avoid pi value due to periodicity
                //! Numerical diff will be wrong there
                //! Range [-pi+eps, pi-eps]
                auto t = rng() / maxv * 3.1 * 2 - 3.1;  //! angle
                //! First input is y in space
                p0[i] = r * std::sin(t);
                //! Second input is x in space
                p1[i] = r * std::cos(t);
            }
439
        };
M
Megvii Engine Team 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
        checker.set_input_coordinator(icoord);
    }
    static constexpr bool enable_binary_inp_swap() { return false; }
};
template <>
struct CheckerConfig<ATAN2> : public BinaryPlaneNoPiInput {
    template <class Opt>
    static void update_opt(Opt& opt) {
        opt.numdiff_eps = 1e-3;
        opt.numdiff_max_err = 0.02;
    }
};

template <>
struct CheckerConfig<ABS_GRAD> : public NoZeroCheckerConfig<0> {};
template <>
struct CheckerConfig<FLOOR_DIV> : public NoZeroCheckerConfig<1, false> {
    static constexpr bool allow_inp_grad(size_t) { return false; }
};
template <>
struct CheckerConfig<TRUE_DIV> : public NoZeroCheckerConfig<1, false> {
    template <class Opt>
    static void update_opt(Opt& opt) {
        opt.numdiff_eps = 1e-2;
        opt.numdiff_max_err = 0.1;
    }
};
template <>
struct CheckerConfig<EQ> : public BinaryEQInput {};
template <>
struct CheckerConfig<LEQ> : public NoGradCheckerConfig {};
template <>
struct CheckerConfig<LT> : public NoGradCheckerConfig {};
template <>
struct CheckerConfig<FUSE_ADD_H_SWISH> : public CheckerConfig<void> {};
template <>
struct CheckerConfig<SWITCH_GT0> : public NoZeroCheckerConfig<0> {};
template <>
struct CheckerConfig<POW> : public CheckerConfig<void> {
    static constexpr bool enable_binary_inp_swap() { return false; }
    template <class Opt>
    static void update_opt(Opt& opt) {
        opt.numdiff_eps = 1e-2;
        opt.numdiff_max_err = 0.06;
    }
    template <typename ctype>
    static InputGenerator get_inp_gen(size_t idx) {
        auto func = [](HostTensorND& dest) {
            dest = *HostTensorGenerator<typename DTypeTrait<ctype>::dtype>{}(
                    dest.shape());
            auto ptr = dest.ptr<ctype>();
            for (size_t i = 0, t = dest.shape().total_nr_elems(); i < t; ++i) {
                ptr[i] = std::abs(ptr[i]) + 0.1;
            }
M
Megvii Engine Team 已提交
494
        };
M
Megvii Engine Team 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
        if (idx == 0)
            return func;
        return NONE_INPUT_GEN;
    }
};
template <>
struct CheckerConfig<MAX> : public BinaryInputMinGap<false> {};
template <>
struct CheckerConfig<MIN> : public BinaryInputMinGap<false> {};
template <>
struct CheckerConfig<MOD> : public NoZeroCheckerConfig<1, false>,
                            public BinaryInputMinGap<true> {
    using NoZeroCheckerConfig<1, false>::get_inp_gen;
    using NoZeroCheckerConfig<1, false>::enable_binary_inp_swap;
    using BinaryInputMinGap<true>::update_checker;

    template <class Opt>
    static void update_opt(Opt& opt) {
        opt.numdiff_eps = 0.003;
514 515
    }

M
Megvii Engine Team 已提交
516 517
    static constexpr bool allow_inp_grad(size_t idx) { return idx == 0; }
};
518

M
Megvii Engine Team 已提交
519 520 521
template <>
struct CheckerConfig<SHL> : public CheckerConfig<void> {
    static constexpr bool enable_binary_inp_swap() { return false; }
522

M
Megvii Engine Team 已提交
523
    static constexpr bool allow_inp_grad(size_t idx) { return false; }
524

M
Megvii Engine Team 已提交
525 526 527 528 529 530 531 532 533 534 535 536 537
    template <typename ctype>
    static InputGenerator get_inp_gen(size_t);
};
template <>
struct CheckerConfig<SHR> : public CheckerConfig<SHL> {};

template <>
InputGenerator CheckerConfig<SHL>::get_inp_gen<int>(size_t idx) {
    if (!idx)
        return NONE_INPUT_GEN;
    auto gen = [](HostTensorND& dest) {
        HostTensorGenerator<dtype::Int32, RandomDistribution::UNIFORM> gen{0, 32};
        dest = *gen(dest.shape());
538
    };
M
Megvii Engine Team 已提交
539 540
    return gen;
}
541

M
Megvii Engine Team 已提交
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
template <>
struct CheckerConfig<FUSE_ADD_RELU> : public CheckerConfig<void> {
    template <typename ctype>
    static InputGenerator get_inp_gen(size_t) {
        return gen_nozero<ctype, true>;
    }
};

template <>
struct CheckerConfig<FAST_TANH> : public CheckerConfig<void> {
    template <typename ctype>
    static InputGenerator get_inp_gen(size_t) {
        return get_inp_gen_f32_range<ctype>(0.1, 5);
    }
};
557

M
Megvii Engine Team 已提交
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
template <>
struct CheckerConfig<FAST_TANH_GRAD> : public CheckerConfig<FAST_TANH> {
    static constexpr bool allow_inp_grad(size_t idx) {
        MGB_MARK_USED_VAR(idx);
        return false;
    }
};

template <>
struct CheckerConfig<SILU_GRAD> : public NoGradCheckerConfig {};
template <>
struct CheckerConfig<GELU_GRAD> : public NoGradCheckerConfig {};

/* ======================= ternary config ======================= */
template <>
struct CheckerConfig<COND_LEQ_MOV> : public BinaryInputMinGap<false> {};
574 575
template <>
struct CheckerConfig<COND_LT_MOV> : public BinaryInputMinGap<false> {};
M
Megvii Engine Team 已提交
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631

/* ======================= test runner ======================= */
namespace detail {
template <typename dtype, class Trait>
struct enable_for_dtype_impl;

template <class Trait>
struct enable_for_dtype_impl<dtype::Float32, Trait> {
    static constexpr bool value = Trait::ALLOW_FLOAT;
};
template <>
struct enable_for_dtype_impl<dtype::Float32, void> {
    static constexpr bool value = false;
};
template <class Trait>
struct enable_for_dtype_impl<dtype::Int32, Trait> {
    static constexpr bool value = Trait::ALLOW_INT;
};
template <>
struct enable_for_dtype_impl<dtype::Int32, void> {
    static constexpr bool value = false;
};
template <class Trait>
struct enable_for_dtype_impl<dtype::Bool, Trait> {
    static constexpr bool value = Trait::ALLOW_BOOL;
};
}  // namespace detail

//! whether to enable test for specific dtype and Trait
template <typename dtype, class Trait>
constexpr bool enable_for_dtype = detail::enable_for_dtype_impl<dtype, Trait>::value;

template <typename Trait, typename dtype, bool enable = enable_for_dtype<dtype, Trait>>
struct TestRunner;

template <typename Trait, typename dtype>
struct TestRunner<Trait, dtype, true> {
    static void run();
};
template <typename Trait, typename dtype>
struct TestRunner<Trait, dtype, false> {
    static void run() {}
};
template <typename dtype>
struct TestRunner<void, dtype, false> {
    static void run() {}
};

template <typename Trait>
class TestOprBasicArithUnaryElemwise : public ::testing::Test {};
template <typename Trait>
class TestOprBasicArithBinaryElemwise : public ::testing::Test {};
template <typename Trait>
class TestOprBasicArithTernaryElemwise : public ::testing::Test {};

typedef ::testing::Types<
632 633 634
#define DEF_TRAIT(_mode, _expr) _mode,
#include "./elemwise_unary_trait_def.inl"
#undef DEF_TRAIT
M
Megvii Engine Team 已提交
635 636 637 638
        void  // extra void to consume last comma
        >
        UnaryTraitTypes;
TYPED_TEST_CASE(TestOprBasicArithUnaryElemwise, UnaryTraitTypes);
639

M
Megvii Engine Team 已提交
640
typedef ::testing::Types<
641 642 643
#define DEF_TRAIT(_mode, _expr) _mode,
#include "./elemwise_binary_trait_def.inl"
#undef DEF_TRAIT
M
Megvii Engine Team 已提交
644 645 646 647
        void  // extra void to consume last comma
        >
        BinaryTraitTypes;
TYPED_TEST_CASE(TestOprBasicArithBinaryElemwise, BinaryTraitTypes);
648

M
Megvii Engine Team 已提交
649
typedef ::testing::Types<
650 651 652
#define DEF_TRAIT(_mode, _expr) _mode,
#include "./elemwise_ternary_trait_def.inl"
#undef DEF_TRAIT
M
Megvii Engine Team 已提交
653 654 655 656
        void  // extra void to consume last comma
        >
        TernaryTraitTypes;
TYPED_TEST_CASE(TestOprBasicArithTernaryElemwise, TernaryTraitTypes);
657

M
Megvii Engine Team 已提交
658
}  // anonymous namespace
659

M
Megvii Engine Team 已提交
660
template <typename Trait, typename dtype>
661 662 663 664 665 666 667 668 669 670 671 672
void TestRunner<Trait, dtype, true>::run() {
    {
        Mode mode = Trait::MODE;
        // copy to temporary var to avoid undefined reference when linking
        tested_mode.insert(mode);
    }

    using ctype = typename DTypeTrait<dtype>::ctype;

    HostTensorGenerator<> gen;
    using Config = CheckerConfig<Trait>;

M
Megvii Engine Team 已提交
673 674 675 676
    static constexpr bool TEST_REV_INP =
            Trait::ARITY == 2 &&
            Config::allow_inp_grad(0) == Config::allow_inp_grad(1) &&
            Config::enable_binary_inp_swap();
677
    using Checker = AutoOprChecker<Trait::ARITY, TEST_REV_INP + 1, dtype>;
M
Megvii Engine Team 已提交
678
    auto make_graph = [&](const typename Checker::SymInpArray& inputs) {
679 680 681 682 683 684 685 686 687 688
        typename Checker::SymOutArray out;
        SymbolVarArray vinp(inputs.begin(), inputs.end());
        out[0] = opr::Elemwise::make(vinp, Trait::MODE);
        if (TEST_REV_INP) {
            std::swap(vinp[0], vinp[1]);
            out[1] = opr::Elemwise::make(vinp, Trait::MODE);
        }
        return out;
    };

M
Megvii Engine Team 已提交
689 690
    auto fwd = [&](typename Checker::NumOutArray& dest,
                   typename Checker::NumInpArray inp) {
691 692 693 694 695
        dest[0].resize(inp[0]->shape());
        if (TEST_REV_INP)
            dest[1].resize(inp[0]->shape());

        std::array<const ctype*, Trait::ARITY> iptr;
M
Megvii Engine Team 已提交
696
        for (size_t i = 0; i < Trait::ARITY; ++i)
697 698 699 700 701
            iptr[i] = inp[i]->template ptr<ctype>();

        size_t sz = dest[0].shape().total_nr_elems();

        ctype* optr = dest[0].template ptr<ctype>();
M
Megvii Engine Team 已提交
702
        for (size_t i = 0; i < sz; ++i)
703 704 705 706 707
            optr[i] = Trait::apply(iptr, i);

        if (TEST_REV_INP) {
            std::swap(iptr[0], iptr[1]);
            ctype* optr = dest[1].template ptr<ctype>();
M
Megvii Engine Team 已提交
708
            for (size_t i = 0; i < sz; ++i)
709 710 711 712 713 714
                optr[i] = Trait::apply(iptr, i);
        }
    };

    Checker checker{make_graph, fwd};
    checker.set_extra_err_msg(ssprintf("mode=%s", Trait::NAME));
M
Megvii Engine Team 已提交
715
    for (size_t i = 0; i < Trait::ARITY; ++i) {
716 717 718 719 720 721 722 723 724 725 726
        auto func = Config::template get_inp_gen<ctype>(i);
        if (func.valid())
            checker.set_input_generator(i, func.val());

        checker.set_input_allow_grad(i, Config::allow_inp_grad(i));
    }

    TensorShape shapes[] = {{1}, {23, 3}, {666}};
    typename Checker::RunOptions opt;
    Config::update_opt(opt);
    Config::update_checker(checker);
M
Megvii Engine Team 已提交
727
    for (auto&& ishp : shapes) {
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
        typename Checker::ShapeInpArray inp;
        std::fill(inp.begin(), inp.end(), ishp);
        checker.run(inp, opt);
    }
}

TYPED_TEST(TestOprBasicArithUnaryElemwise, Int32) {
    TestRunner<TypeParam, dtype::Int32>::run();
}
TYPED_TEST(TestOprBasicArithBinaryElemwise, Int32) {
    TestRunner<TypeParam, dtype::Int32>::run();
}
TYPED_TEST(TestOprBasicArithTernaryElemwise, Int32) {
    TestRunner<TypeParam, dtype::Int32>::run();
}

TYPED_TEST(TestOprBasicArithUnaryElemwise, Float32) {
    set_rand_seed(19931102);
    TestRunner<TypeParam, dtype::Float32>::run();
}
TYPED_TEST(TestOprBasicArithBinaryElemwise, Float32) {
    set_rand_seed(19931150);
    TestRunner<TypeParam, dtype::Float32>::run();
}
TYPED_TEST(TestOprBasicArithTernaryElemwise, Float32) {
    set_rand_seed(19931102);
    TestRunner<TypeParam, dtype::Float32>::run();
}

TEST(TestOprBasicArithElemwise, CheckAllModeTested) {
    size_t nr_member = opr::Elemwise::Param::MODE_NR_MEMBER;
759 760
    ASSERT_EQ(nr_member, tested_mode.size() + 7);
    // Not using TestRunner: NOT, AND, OR, XOR, NEQ, ISNAN, ISINF
761
}
M
Megvii Engine Team 已提交
762 763 764 765 766 767 768 769 770 771 772 773 774
#define TEST_OPR_BASIC_ARITH_UNARY_BOOL(_mode, _op)                  \
    TEST(TestOprBasicArithElemwise, _mode) {                         \
        HostTensorGenerator<dtype::Bool> gen;                        \
        auto host_x = gen({2, 1});                                   \
        auto ptr = host_x->ptr<dt_bool>();                           \
        for (size_t i = 0; i < 2; ++i) {                             \
            ptr[i] = (i & 1);                                        \
        }                                                            \
        auto graph = ComputingGraph::make();                         \
        using Mode = opr::Elemwise::Mode;                            \
        auto x = opr::Host2DeviceCopy::make(*graph, host_x),         \
             y = opr::Elemwise::make({x}, Mode::_mode);              \
        HostTensorND host_y;                                         \
M
Megvii Engine Team 已提交
775
        auto func = graph->compile({make_callback_copy(y, host_y)}); \
M
Megvii Engine Team 已提交
776 777 778 779 780 781 782
        func->execute();                                             \
        ASSERT_EQ(TensorShape({2, 1}), host_y.shape());              \
        auto ptry = host_y.ptr<dt_bool>();                           \
        for (int i = 0; i < 2; i++) {                                \
            ASSERT_EQ(_op ptr[i], ptry[i]);                          \
        }                                                            \
    }
M
Megvii Engine Team 已提交
783 784 785

TEST_OPR_BASIC_ARITH_UNARY_BOOL(NOT, !)

M
Megvii Engine Team 已提交
786 787 788 789
#define TEST_OPR_BASIC_ARITH_BINARY_BOOL(_mode, _op)                         \
    TEST(TestOprBasicArithElemwise, _mode) {                                 \
        HostTensorGenerator<dtype::Bool> gen;                                \
        auto host_x1 = gen({2, 2}), host_x2 = gen({2, 2});                   \
M
Megvii Engine Team 已提交
790
        auto ptr1 = host_x1->ptr<dt_bool>(), ptr2 = host_x2->ptr<dt_bool>(); \
M
Megvii Engine Team 已提交
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
        for (size_t i = 0; i < 4; ++i) {                                     \
            ptr1[i] = (i < 2);                                               \
            ptr2[i] = (i & 1);                                               \
        }                                                                    \
        auto graph = ComputingGraph::make();                                 \
        using Mode = opr::Elemwise::Mode;                                    \
        auto x1 = opr::Host2DeviceCopy::make(*graph, host_x1),               \
             x2 = opr::Host2DeviceCopy::make(*graph, host_x2),               \
             y = opr::Elemwise::make({x1, x2}, Mode::_mode);                 \
        HostTensorND host_y;                                                 \
        auto func = graph->compile({make_callback_copy(y, host_y)});         \
        func->execute();                                                     \
        ASSERT_EQ(TensorShape({2, 2}), host_y.shape());                      \
        auto ptry = host_y.ptr<dt_bool>();                                   \
        for (int i = 0; i < 4; i++) {                                        \
            ASSERT_EQ(ptr1[i] _op ptr2[i], ptry[i]);                         \
        }                                                                    \
    }
M
Megvii Engine Team 已提交
809 810 811 812

TEST_OPR_BASIC_ARITH_BINARY_BOOL(AND, &&)
TEST_OPR_BASIC_ARITH_BINARY_BOOL(OR, ||)
TEST_OPR_BASIC_ARITH_BINARY_BOOL(XOR, ^)
813 814 815
TEST_OPR_BASIC_ARITH_BINARY_BOOL(LT, <)
TEST_OPR_BASIC_ARITH_BINARY_BOOL(LEQ, <=)
TEST_OPR_BASIC_ARITH_BINARY_BOOL(EQ, ==)
816 817 818 819

TEST(TestOprBasicArithElemwise, FuseMulAdd3Shapes) {
    using Checker = AutoOprChecker<3, 1>;

M
Megvii Engine Team 已提交
820 821 822
    opr::Elemwise* opr;
    auto make_graph =
            [&](const typename Checker::SymInpArray& i) -> Checker::SymOutArray {
823 824 825 826 827 828
        i[0].node()->owner_graph()->options().graph_opt_level = 0;
        auto ret = opr::Elemwise::make(i, Mode::FUSE_MUL_ADD3);
        opr = &ret.node()->owner_opr()->cast_final_safe<opr::Elemwise>();
        return {ret};
    };

M
Megvii Engine Team 已提交
829 830
    auto fwd = [&](typename Checker::NumOutArray& dest,
                   typename Checker::NumInpArray inp) {
831 832 833 834 835 836 837 838 839 840
        auto graph = ComputingGraph::make();
        graph->options().graph_opt_level = false;
        auto i = [&](size_t idx) {
            return opr::Host2DeviceCopy::make(*graph, inp[idx]);
        };
        auto ans = i(0) * i(1) + i(2);
        graph->compile({make_callback_copy(ans, dest[0])})->execute();
    };

    Checker checker{make_graph, fwd};
M
Megvii Engine Team 已提交
841 842
    checker.run({TensorShape{1, 2}, {2, 1}, {1, 2}})
            .run({TensorShape{1, 2}, {2, 1}, {1}});
843 844 845 846 847 848 849 850
    ASSERT_FALSE(opr->fuse_badlayout_warn_printed());
    checker.run({TensorShape{1, 1, 4}, {1, 3, 1}, {2, 1, 1}});
    ASSERT_TRUE(opr->fuse_badlayout_warn_printed());
}

TEST(TestOprBasicArithElemwise, FuseMulAdd4Shapes) {
    using Checker = AutoOprChecker<4, 1>;

M
Megvii Engine Team 已提交
851 852 853
    opr::Elemwise* opr;
    auto make_graph =
            [&](const typename Checker::SymInpArray& i) -> Checker::SymOutArray {
854 855 856 857 858 859
        i[0].node()->owner_graph()->options().graph_opt_level = 0;
        auto ret = opr::Elemwise::make(i, Mode::FUSE_MUL_ADD4);
        opr = &ret.node()->owner_opr()->cast_final_safe<opr::Elemwise>();
        return {ret};
    };

M
Megvii Engine Team 已提交
860 861
    auto fwd = [&](typename Checker::NumOutArray& dest,
                   typename Checker::NumInpArray inp) {
862 863 864 865 866 867 868 869 870 871
        auto graph = ComputingGraph::make();
        graph->options().graph_opt_level = false;
        auto i = [&](size_t idx) {
            return opr::Host2DeviceCopy::make(*graph, inp[idx]);
        };
        auto ans = i(0) * i(1) + i(2) * i(3);
        graph->compile({make_callback_copy(ans, dest[0])})->execute();
    };

    Checker checker{make_graph, fwd};
872 873 874 875 876
    checker.run({TensorShape{1, 2}, {2, 1}, {1, 2}, {2, 1}})
            .run({TensorShape{1, 2, 1, 2, 1, 2},
                  {2, 1, 2, 1, 2, 1},
                  {2, 1, 2, 1, 2, 1},
                  {1, 2, 1, 2, 1, 2}});
877
    ASSERT_FALSE(opr->fuse_badlayout_warn_printed());
878
    checker.run({TensorShape{1, 2}, {2, 1}, {2, 2}, {2, 2}});
879 880 881 882 883 884 885 886
    ASSERT_TRUE(opr->fuse_badlayout_warn_printed());
}

TEST(TestOprBasicArithElemwise, WritableFwdForSameStorage) {
    HostTensorGenerator<> gen;

    auto run = [&](int idx_val, bool should_overwrite) {
        auto host_x = gen({100});
M
Megvii Engine Team 已提交
887
        auto make_y = [&](ComputingGraph& graph) {
888 889 890
            using S = opr::Subtensor;
            auto x = opr::Host2DeviceCopy::make_no_fwd(graph, host_x),
                 idx = x.make_scalar(idx_val),
M
Megvii Engine Team 已提交
891 892 893
                 sub0 = S::make(x, {S::AxisIndexer::make_interval(0, None, idx, None)}),
                 sub1 = S::make(
                         x, {S::AxisIndexer::make_interval(0, -idx, None, None)}),
894 895 896 897
                 y = sub0 + sub1;
            auto chk_overwrite = [sub0, sub1, y]() {
                auto py = y.node()->prev_dev_ptr();
                return sub0.node()->prev_dev_ptr() == py ||
M
Megvii Engine Team 已提交
898
                       sub1.node()->prev_dev_ptr() == py;
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
            };
            return std::make_pair(y, chk_overwrite);
        };
        auto g0 = ComputingGraph::make(), g1 = ComputingGraph::make();
        g1->options().seq_opt.enable_mem_plan_opt = false;
        auto y0 = make_y(*g0), y1 = make_y(*g1);
        HostTensorND host_y0, host_y1;
        auto f0 = g0->compile({make_callback_copy(y0.first, host_y0)}),
             f1 = g1->compile({make_callback_copy(y1.first, host_y1)});

        f0->execute();
        f1->execute();
        ASSERT_EQ(host_y1.shape(), TensorShape{static_cast<size_t>(idx_val)});
        MGB_ASSERT_TENSOR_EQ(host_y1, host_y0);
        ASSERT_EQ(should_overwrite, y0.second());
        ASSERT_FALSE(y1.second());
    };

    run(10, true);
    run(90, false);
}

TEST(TestOprBasicArithElemwise, NonContigInput) {
    HostTensorGenerator<> gen;

    auto graph = ComputingGraph::make();
    constexpr size_t SIZE = 100;
    auto host_x = gen({SIZE});
    using S = opr::Subtensor;
    auto x = opr::Host2DeviceCopy::make(*graph, host_x),
M
Megvii Engine Team 已提交
929 930
         xsub = S::make(
                 x, {S::AxisIndexer::make_interval(0, None, None, x.make_scalar(2))}),
931 932 933 934 935 936 937 938
         y = xsub + x.make_scalar(1.f);
    HostTensorND host_y;
    auto func = graph->compile({make_callback_copy(y, host_y)});
    func->execute();
    ASSERT_FALSE(xsub.node()->dev_tensor().layout().is_contiguous());

    ASSERT_EQ(SIZE / 2, host_y.layout().total_nr_elems());
    auto px = host_x->ptr<float>(), py = host_y.ptr<float>();
M
Megvii Engine Team 已提交
939
    for (size_t i = 0; i < SIZE / 2; ++i) {
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
        MGB_ASSERT_FLOAT_EQ(px[i * 2] + 1, py[i]);
    }
}

TEST(TestOprBasicArithElemwise, CommutableDedup) {
    auto cn = CompNode::load("xpux");
    auto graph = ComputingGraph::make();
    auto host_x = std::make_shared<HostTensorND>(cn, TensorShape{100}),
         host_y = std::make_shared<HostTensorND>(cn, TensorShape{100});
    auto x = opr::Host2DeviceCopy::make(*graph, host_x),
         y = opr::Host2DeviceCopy::make(*graph, host_y);
    auto mk = [](Mode mode, SymbolVar x, SymbolVar y) {
        return opr::Elemwise::make({x, y}, mode);
    };
#define CHK(_a, _b) ASSERT_EQ((_a).node(), (_b).node())
    CHK(x + y, y + x);
    CHK(x * y, y * x);
    CHK(mk(Mode::EQ, x, y), mk(Mode::EQ, y, x));
    CHK(mk(Mode::MIN, x, y), mk(Mode::MIN, y, x));
    CHK(mk(Mode::MAX, x, y), mk(Mode::MAX, y, x));
    CHK(mk(Mode::LOG_SUM_EXP, x, y), mk(Mode::LOG_SUM_EXP, y, x));
M
Megvii Engine Team 已提交
961
    CHK(x<y, y> x);
962 963 964 965 966 967 968 969 970 971 972 973 974
#undef CHK
    ASSERT_NE((x - y).node(), (y - x).node());
}

TEST(TestLayoutUtil, CollectiveCollapse) {
    using namespace opr;
    auto shp2layout = [](const TensorShapeArray& tshps) {
        TensorLayoutArray tlayouts(tshps.size());
        for (size_t i = 0; i < tshps.size(); i++) {
            tlayouts[i] = TensorLayout(tshps[i], dtype::Float32());
        }
        return tlayouts;
    };
M
Megvii Engine Team 已提交
975
    auto check = [](const TensorLayoutArray& res, const TensorLayoutArray& std) {
976 977 978 979
        for (size_t i = 0; i < res.size(); i++) {
            ASSERT_EQ(std[i], res[i]);
        }
    };
M
Megvii Engine Team 已提交
980
    TensorShapeArray tshps1 = {{3, 3}, {3, 3}, {3, 3}};
981 982 983 984 985 986
    auto cc_res1 = Elemwise::collective_collapse(shp2layout(tshps1));
    TensorShapeArray std_res1 = {{9}, {9}, {9}};
    check(cc_res1, shp2layout(std_res1));

    TensorShapeArray tshps2 = {{3, 3, 3}, {1, 3, 3}};
    auto cc_res2 = Elemwise::collective_collapse(shp2layout(tshps2));
M
Megvii Engine Team 已提交
987
    TensorShapeArray std_res2{{3, 9}, {1, 9}};
988 989 990 991
    check(cc_res2, shp2layout(std_res2));

    TensorShapeArray tshp3 = {{3, 3, 3}, {3, 3, 1}};
    auto cc_res3 = Elemwise::collective_collapse(shp2layout(tshp3));
M
Megvii Engine Team 已提交
992
    TensorShapeArray std_res3{{9, 3}, {9, 1}};
993 994 995 996
    check(cc_res3, shp2layout(std_res3));

    TensorShapeArray tshp4 = {{3, 3, 3, 3}, {1, 3, 3, 1}};
    auto cc_res4 = Elemwise::collective_collapse(shp2layout(tshp4));
M
Megvii Engine Team 已提交
997
    TensorShapeArray std_res4{{3, 9, 3}, {1, 9, 1}};
998 999 1000
    check(cc_res4, shp2layout(std_res4));

    TensorLayoutArray inp5 = {
M
Megvii Engine Team 已提交
1001 1002
            TensorLayout(TensorShape{3, 3}, {1, 3}, dtype::Float32()),
            TensorLayout(TensorShape{3, 3}, {1, 3}, dtype::Float32())};
1003 1004 1005 1006 1007
    auto cc_res5 = Elemwise::collective_collapse(inp5);
    auto std_res5 = inp5;
    check(cc_res5, std_res5);
}

1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
TEST(TestOprBasicArithElemwise, EmptyInputOutputUnary) {
    HostTensorGenerator<> gen;
    auto graph = ComputingGraph::make();
    auto host_x = gen({3, 0, 1, 3});
    auto x = opr::Host2DeviceCopy::make(*graph, host_x),
         y = opr::Elemwise::make(
                 {x}, opr::Elemwise::Param(opr::Elemwise::Param::Mode::RELU));
    HostTensorND host_y;
    auto func = graph->compile({make_callback_copy(y, host_y)});

    ASSERT_NO_THROW(func->execute().wait());
    ASSERT_TRUE(host_y.empty());
    ASSERT_TRUE(host_y.shape().is_empty());
1021
    MGB_ASSERT_SHAPE_EQ(host_y.shape(), TensorShape({3, 0, 1, 3}));
1022 1023 1024 1025 1026 1027
}

TEST(TestOprBasicArithElemwise, EmptyInputOutputBinary) {
    HostTensorGenerator<> gen;
    auto graph = ComputingGraph::make();
    auto host_x = gen({0, 8, 1, 7}), host_y = gen({0, 8, 1, 7});
1028

1029
    auto x = opr::Host2DeviceCopy::make(*graph, host_x),
M
Megvii Engine Team 已提交
1030
         y = opr::Host2DeviceCopy::make(*graph, host_y), z = x + y;
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
    HostTensorND host_z;
    auto func = graph->compile({make_callback_copy(z, host_z)});

    // Invalid broadcast
    host_y->resize({0, 9, 1, 7});
    ASSERT_ANY_THROW(func->execute().wait());

    // Broadcast to 0
    host_y->resize({1, 8, 0, 7});
    ASSERT_NO_THROW(func->execute().wait());
    ASSERT_TRUE(host_z.empty());
    ASSERT_TRUE(host_z.shape().is_empty());
1043
    MGB_ASSERT_SHAPE_EQ(host_z.shape(), TensorShape({0, 8, 0, 7}));
1044 1045 1046 1047 1048 1049

    // Broadcast to 0 (2)
    host_y->resize({2, 8, 1, 7});
    ASSERT_NO_THROW(func->execute().wait());
    ASSERT_TRUE(host_z.empty());
    ASSERT_TRUE(host_z.shape().is_empty());
1050
    MGB_ASSERT_SHAPE_EQ(host_z.shape(), TensorShape({0, 8, 1, 7}));
1051 1052 1053 1054 1055 1056 1057

    // Scalar broadcast
    z = x + x.make_scalar(1.f);
    func = graph->compile({make_callback_copy(z, host_z)});
    ASSERT_NO_THROW(func->execute().wait());
    ASSERT_TRUE(host_z.empty());
    ASSERT_TRUE(host_z.shape().is_empty());
1058
    MGB_ASSERT_SHAPE_EQ(host_z.shape(), TensorShape({0, 8, 1, 7}));
1059 1060
}

1061 1062 1063
TEST(TestOprBasicArithElemwise, PerformEmptyIO) {
    auto cn = CompNode::load("xpu0");
    HostTensorGenerator<> gen;
M
Megvii Engine Team 已提交
1064
    auto host_x1 = gen({2, 0, 3, 4}), host_x2 = gen({1});
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
    auto dev_x1 = std::make_shared<DeviceTensorND>(cn),
         dev_x2 = std::make_shared<DeviceTensorND>(cn);
    dev_x1->copy_from(*host_x1);
    dev_x2->copy_from(*host_x2);

    auto dev_y = std::make_shared<DeviceTensorND>(cn, dev_x1->dtype());
    dev_y->resize(dev_x1->shape());
    auto&& dnn_opr = opr::intl::create_megdnn_opr<megdnn::Elemwise>(cn);

    // test unary mode
M
Megvii Engine Team 已提交
1075
    for (auto mode : {Mode::NEGATE, Mode::EXP, Mode::LOG}) {
1076 1077 1078 1079 1080 1081 1082 1083
        SmallVector<DeviceTensorND> inputs = {*dev_x1};
        ASSERT_NO_THROW(opr::Elemwise::perform(mode, *dev_y, inputs, dnn_opr));
        ASSERT_TRUE(dev_y->empty());
        ASSERT_TRUE(dev_y->shape().is_empty());
        MGB_ASSERT_SHAPE_EQ(dev_y->shape(), dev_x1->shape());
    }

    // test binary mode
M
Megvii Engine Team 已提交
1084
    for (auto mode : {Mode::ADD, Mode::MUL, Mode::LT}) {
1085 1086 1087 1088 1089 1090 1091 1092
        SmallVector<DeviceTensorND> inputs = {*dev_x1, *dev_x2};
        ASSERT_NO_THROW(opr::Elemwise::perform(mode, *dev_y, inputs, dnn_opr));
        ASSERT_TRUE(dev_y->empty());
        ASSERT_TRUE(dev_y->shape().is_empty());
        MGB_ASSERT_SHAPE_EQ(dev_y->shape(), dev_x1->shape());
    }
}

1093
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}