elemwise.cpp 37.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
/**
 * \file src/opr/test/basic_arith/elemwise.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "./erfinv.h"
#include "megbrain/test/autocheck.h"
#include "megbrain/test/helper.h"
#include "megbrain/opr/basic_arith.h"
#include "megbrain/opr/tensor_manip.h"
#include "megbrain/opr/io.h"

#include <cmath>
#include <algorithm>

using namespace mgb;

namespace {
    using Mode = opr::Elemwise::Mode;

    using InputGenerator = Maybe<thin_function<void(HostTensorND&)>>;
    // msvc would check for callable of None, so we use this to replace None
    const InputGenerator NONE_INPUT_GEN;

    std::unordered_set<Mode, enumhash> tested_mode;

    /* ======================= opr special impls ======================= */
    float do_mod(float a, float b) {
        return std::fmod(a, b);
    }

    int do_mod(int a, int b) {
        return a % b;
    }

    float do_erfinv(float x) {
        return erfinvf(x);
    }

    float do_erfcinv(float x) {
        return erfcinvf(x);
    }

    float do_h_swish(float x){
        return x * fmaxf(fminf(x + 3.f, 6.f), 0.f) / 6.f;
    }

    float do_h_swish_grad(float x, float y){
        return  x < -3.f ? 0.f : (x > 3.f ? y : (2.f * x + 3.f) / 6.f * y);
    }

    template<typename T>
    T do_log_sum_exp(T a, T b) {
        return std::log(std::exp(a) + std::exp(b));
    }

    float do_fast_tanh(float x) {
        return x * (27.f + x * x) / (27.f + 9.f * x * x);
    }

    float do_fast_tanh_grad(float x, float y) {
        float x_pow2 = x * x;
        float deno = 3.f + x_pow2;
        return ((-48.f * x_pow2) / deno + 27.f + x_pow2) / (deno * 9.f) * y;
    }

    float do_fuse_add_h_swish(float x, float y) {
        float z = x + y;
        return z * fmaxf(fminf(z + 3.f, 6.f), 0.f) / 6.f;
    }

    template<typename T>
    T do_shl(T, T); // undefined
    template<typename T>
    T do_shr(T, T); // undefined
    int do_shl(int x, int y) {
        return x << y;
    }
    int do_shr(int x, int y) {
        return x >> y;
    }

    template <typename T>
    struct MulType {};
    template <>
    struct MulType<int8_t> {
        typedef int16_t type;
    };
    template <>
    struct MulType<int16_t> {
        typedef int32_t type;
    };
    template <>
    struct MulType<int32_t> {
        typedef int64_t type;
    };
    template <>
    struct MulType<uint8_t> {
        typedef uint16_t type;
    };

    template <typename T>
    T rounding_shift_right_upward(T x, int k) {
        T mask = (T(1) << k) - 1;
        T threshold = mask >> 1;
        return (x >> k) + ((x & mask) > threshold);
    }

    template <typename T>
    T do_round_mulh_saturate(T a, T b) {
        MEGDNN_STATIC_ASSERT(std::numeric_limits<T>::digits <= 32,
                             "Portable RMULH is not supported for integer "
                             "types larger than 32 bits.");
        MEGDNN_STATIC_ASSERT(std::numeric_limits<T>::is_integer,
                             "Input types should be integer for RMULH");
        bool overflow = a == b && a == DTypeTrait<T>::min();
        // TODO: This really should be
        // rounding_shift_right_away_from_zero, but we haven't yet found a fast
        // way to implement it on ARM NEON. For now, we just try to align with
        // NEON's VQRDMULH and hope that it does not harm our NN badly.
        return overflow ? DTypeTrait<T>::max()
                        : static_cast<T>(rounding_shift_right_upward(
                                  typename MulType<T>::type(a) *
                                          typename MulType<T>::type(b),
                                  std::numeric_limits<T>::digits));
    }

    /* ======================= basic framework ======================= */

    template<typename ctype, bool stable_sign = false>
    void gen_nozero(HostTensorND &dest)  {
        static RNGxorshf rng{next_rand_seed()};
        auto ptr = dest.template ptr<ctype>();

        if (DTypeTrait<ctype>::category == DTypeCategory::FLOAT) {
            for (size_t i = 0, it = dest.shape().total_nr_elems();
                    i < it; ++ i) {
                auto v = rng() / (rng.max() + 1.0) * 3 - 1.5;
                bool vsign = v > 0;
                if (stable_sign) {
                    vsign = i % 2;
                }
                v = std::abs(v) + 0.1;
                ptr[i] = vsign ? v : -v;
            }
        } else {
            for (size_t i = 0, it = dest.shape().total_nr_elems();
                    i < it; ++ i) {
                ctype v = rng() / (rng.max() + 1.0) * 65536 - 32767,
                      vsat = i % 2 * 2 - 1;
                ptr[i] = v == 0 ? vsat : v;
            }
        }
    }

    template <class Trait>
    struct CheckerConfig {
        static constexpr bool enable_binary_inp_swap() {
            return true;
        }

        static constexpr bool allow_inp_grad(size_t idx) {
            MGB_MARK_USED_VAR(idx);
            return true;
        }

        template<typename ctype>
        static InputGenerator get_inp_gen(size_t idx) {
            MGB_MARK_USED_VAR(idx);
            return NONE_INPUT_GEN;
        }

        template<class Opt>
        static void update_opt(Opt &opt) {
            opt.numdiff_eps = 1e-2;
        }

        template<class Checker>
        static void update_checker(Checker &checker) {
            MGB_MARK_USED_VAR(checker);
        }
    };

    template<typename ctype>
    InputGenerator get_inp_gen_f32_range(float low, float high) {
        mgb_assert(std::is_same<ctype MGB_COMMA dt_float32>::value &&
                high - low >= 0.1);
        auto gen = [low, high](HostTensorND &dest) {
            HostTensorGenerator<
                dtype::Float32, RandomDistribution::UNIFORM>
                gen{low, high};
            dest = *gen(dest.shape());
        };
        return gen;
    }

#define DEF_TRAIT(_mode, _expr) \
    struct _mode { \
        static constexpr size_t ARITY = _CUR_ARITY; \
        static constexpr Mode MODE = Mode::_mode; \
        static constexpr bool ALLOW_INT = _ALLOW_INT; \
        static constexpr bool ALLOW_FLOAT = _ALLOW_FLOAT; \
M
Megvii Engine Team 已提交
209
        static constexpr bool ALLOW_BOOL = _ALLOW_BOOL; \
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
        static constexpr const char* NAME = #_mode; \
        template<typename ctype> \
        static inline ctype apply( \
                std::array<const ctype*, ARITY> inp, size_t idx) { \
            _EXPAND_PARAMS; \
            return _expr; \
        } \
    };

#include "./elemwise_unary_trait_def.inl"
#include "./elemwise_binary_trait_def.inl"
#include "./elemwise_ternary_trait_def.inl"

#undef DEF_TRAIT

    //! ensure nonzero value on some specific input
    template<size_t nozero_idx, bool large_eps = true>
    struct NoZeroCheckerConfig: public CheckerConfig<void> {
        static constexpr bool enable_binary_inp_swap() {
            return false;
        }

        template<typename ctype>
        static InputGenerator get_inp_gen(size_t idx) {
            if (idx != nozero_idx)
                return NONE_INPUT_GEN;
            return gen_nozero<ctype>;
        }

        template<class Opt>
        static void update_opt(Opt &opt) {
            if (large_eps)
                opt.numdiff_eps_single_inp[nozero_idx] = 0.05;
        }
    };
    struct NoGradCheckerConfig: public CheckerConfig<void> {
        static constexpr bool allow_inp_grad(size_t) {
            return false;
        }
    };

    /* ======================= unary config ======================= */
    template<> struct CheckerConfig<RELU>: public NoZeroCheckerConfig<0> {};
    template<> struct CheckerConfig<ABS>: public NoZeroCheckerConfig<0> {};
    template<> struct CheckerConfig<CEIL>: public NoGradCheckerConfig {};
    template<> struct CheckerConfig<FLOOR>: public NoGradCheckerConfig {};
    template<> struct CheckerConfig<ROUND>: public NoGradCheckerConfig {};
    template<> struct CheckerConfig<LOG>: public CheckerConfig<void> {
        template<typename ctype>
        static InputGenerator get_inp_gen(size_t) {
            return get_inp_gen_f32_range<ctype>(0.1, 4);
        }
        template<class Opt>
        static void update_opt(Opt &opt) {
            opt.numdiff_eps = 1e-2;
            opt.numdiff_max_err = 0.1;
        }
    };
    template<> struct CheckerConfig<LOG1P>: public CheckerConfig<void> {
        template<typename ctype>
        static InputGenerator get_inp_gen(size_t) {
            return get_inp_gen_f32_range<ctype>(-0.2, 0.2);
        }
    };
    template<> struct CheckerConfig<ACOS>: public CheckerConfig<void> {
        template<typename ctype>
        static InputGenerator get_inp_gen(size_t) {
            return get_inp_gen_f32_range<ctype>(-0.95, 0.95);
        }
        template<class Opt>
        static void update_opt(Opt &opt) {
            opt.numdiff_eps = 2e-3;
            opt.numdiff_max_err = 4e-3;
        }
    };
    template<> struct CheckerConfig<ASIN>: public CheckerConfig<ACOS> {};
    template<> struct CheckerConfig<TANH>: public CheckerConfig<void> {
        template<typename ctype>
        static InputGenerator get_inp_gen(size_t) {
            return get_inp_gen_f32_range<ctype>(-5, 5);
        }
        template<class Opt>
        static void update_opt(Opt &opt) {
            opt.numdiff_eps = 2e-2;
        }
    };
    template<> struct CheckerConfig<SIGMOID_GRAD>: public CheckerConfig<void> {
        template<class Opt>
        static void update_opt(Opt &opt) {
            opt.numdiff_eps = 2e-2;
        }
    };
    template<> struct CheckerConfig<ERF>: public CheckerConfig<void> {
        template<class Opt>
        static void update_opt(Opt &opt) {
            opt.numdiff_eps = 2e-2;
        }
    };
    template<> struct CheckerConfig<ERFINV>: public NoGradCheckerConfig {
        template<typename ctype>
        static InputGenerator get_inp_gen(size_t) {
            return get_inp_gen_f32_range<ctype>(-1, 1);
        }
        template<class Opt>
        static void update_opt(Opt &opt) {
            opt.numdiff_eps = 2e-2;
        }
    };
    template<> struct CheckerConfig<ERFC>: public CheckerConfig<void> {
        template<class Opt>
        static void update_opt(Opt &opt) {
            opt.numdiff_eps = 2e-2;
        }
    };
    template<> struct CheckerConfig<ERFCINV>: public NoGradCheckerConfig {
        template<typename ctype>
        static InputGenerator get_inp_gen(size_t) {
            return get_inp_gen_f32_range<ctype>(0, 2);
        }
        template<class Opt>
        static void update_opt(Opt &opt) {
            opt.numdiff_eps = 2e-2;
        }
    };

    template <> struct CheckerConfig<H_SWISH> : public CheckerConfig<void> {};
    template <>
    struct CheckerConfig<H_SWISH_GRAD> : public NoGradCheckerConfig {};

    /* ======================= binary config ======================= */
    template<bool for_mod>
    struct BinaryInputMinGap: public CheckerConfig<void> {
        template<typename ctype, class Checker>
        static void do_update_checker(Checker &checker) {
            auto icoord = [](const typename Checker::NumInpArray &inp) {
                static const ctype GAP{for_mod ? 0.01f : 0.1f};
                if (DTypeTrait<ctype>::category != DTypeCategory::FLOAT)
                    return;
                auto p0 = inp[0]->template ptr<ctype>(),
                     p1 = inp[1]->template ptr<ctype>();
                for (size_t i = 0, it = inp[0]->shape().total_nr_elems();
                        i < it; ++ i) {
                    if (for_mod) {
                        auto p1v = std::abs(p1[i]),
                             mod = std::fmod(p0[i], p1v);
                        mod += mod < 0 ? p1v : 0;
                        if (mod < GAP || mod > p1v - GAP) {
                            mgb_assert(p1v > GAP * 4);
                            ctype m0, m1;
                            do {
                                p0[i] += GAP;
                                m0 = std::fmod(p0[i] - GAP, p1[i]);
                                m1 = std::fmod(p0[i] + GAP, p1[i]);
                            } while (std::abs(m1 - m0) > GAP * 2 + 1e-3);
                        }
                    } else {
                        if (std::abs(p0[i] - p1[i]) < GAP) {
                            p1[i] += p0[i] < p1[i] ? GAP : -GAP;
                        }
                    }
                }
            };
            checker.set_input_coordinator(icoord);
        }


        template<class Checker>
        static void update_checker(Checker &checker) {
            using ctype = typename Checker::ctype;
            if (std::is_integral<ctype>::value)
                return;
            if (std::is_same<ctype, dt_float16>::value)
                return do_update_checker<dt_float16>(checker);
            if (std::is_same<ctype, dt_float32>::value)
                return do_update_checker<dt_float32>(checker);
            mgb_assert(0);
        }
    };

    struct BinaryEQInput: public CheckerConfig<void> {
        static constexpr bool allow_inp_grad(size_t idx) {
            return idx >= 2;
        }

        template<class Checker>
        static void update_checker(Checker &checker) {
            using ctype = typename Checker::ctype;
            auto icoord = [](const typename Checker::NumInpArray &inp) {
                if (DTypeTrait<ctype>::category != DTypeCategory::FLOAT)
                    return;
                auto p0 = inp[0]->template ptr<ctype>(),
                     p1 = inp[1]->template ptr<ctype>();
                RNGxorshf rng{next_rand_seed()};
                for (size_t i = 0, it = inp[0]->shape().total_nr_elems();
                        i < it; ++ i) {
                    p0[i] = rng() % 3 == 0 ? p1[i] : p0[i];
                }
            };
            checker.set_input_coordinator(icoord);
        }
    };

    struct BinaryPlaneNoPiInput : public CheckerConfig<void> {
        template <class Checker>
        static void update_checker(Checker& checker) {
            using ctype = typename Checker::ctype;
            auto icoord = [](const typename Checker::NumInpArray& inp) {
                if (DTypeTrait<ctype>::category != DTypeCategory::FLOAT)
                    return;
                auto p0 = inp[0]->template ptr<ctype>(),
                     p1 = inp[1]->template ptr<ctype>();
                RNGxorshf rng{next_rand_seed()};
                auto maxv = rng.max() + 1.0;
                for (size_t i = 0, it = inp[0]->shape().total_nr_elems();
                     i < it; ++i) {
                    //! To be numerical stable, r cannot be too small
                    auto r = rng() / maxv * 2 + 0.5;  //! radious
                    //! Avoid pi value due to periodicity
                    //! Numerical diff will be wrong there
                    //! Range [-pi+eps, pi-eps]
                    auto t = rng() / maxv * 3.1 * 2 - 3.1;  //! angle
                    //! First input is y in space
                    p0[i] = r * std::sin(t);
                    //! Second input is x in space
                    p1[i] = r * std::cos(t);
                }
            };
            checker.set_input_coordinator(icoord);
        }
        static constexpr bool enable_binary_inp_swap() { return false; }
    };
    template <>
    struct CheckerConfig<ATAN2> : public BinaryPlaneNoPiInput {
        template <class Opt>
        static void update_opt(Opt& opt) {
            opt.numdiff_eps = 1e-3;
            opt.numdiff_max_err = 0.02;
        }
    };

    template<> struct CheckerConfig<ABS_GRAD>: public NoZeroCheckerConfig<0> {};
    template<> struct CheckerConfig<FLOOR_DIV>:
        public NoZeroCheckerConfig<1, false> {
            static constexpr bool allow_inp_grad(size_t) {
                return false;
            }
    };
    template<> struct CheckerConfig<TRUE_DIV>: public
                                               NoZeroCheckerConfig<1, false> {
        template<class Opt>
        static void update_opt(Opt &opt) {
            opt.numdiff_eps = 1e-2;
            opt.numdiff_max_err = 0.1;
        }
    };
    template<> struct CheckerConfig<EQ>: public BinaryEQInput {};
    template<> struct CheckerConfig<LEQ>: public NoGradCheckerConfig {};
    template<> struct CheckerConfig<LT>: public NoGradCheckerConfig {};
    template <>
    struct CheckerConfig<FUSE_ADD_H_SWISH> : public CheckerConfig<void> {};
    template<> struct CheckerConfig<SWITCH_GT0>:
        public NoZeroCheckerConfig<0> { };
    template<> struct CheckerConfig<POW>: public CheckerConfig<void> {
        static constexpr bool enable_binary_inp_swap() {
            return false;
        }
        template<class Opt>
        static void update_opt(Opt &opt) {
            opt.numdiff_eps = 1e-2;
            opt.numdiff_max_err = 0.06;
        }
        template<typename ctype>
        static InputGenerator get_inp_gen(size_t idx) {
            auto func = [](HostTensorND &dest) {
                dest = *HostTensorGenerator<typename DTypeTrait<ctype>::dtype
                    >{}(dest.shape());
                auto ptr = dest.ptr<ctype>();
                for (size_t i = 0, t = dest.shape().total_nr_elems();
                        i < t; ++ i) {
                    ptr[i] = std::abs(ptr[i]) + 0.1;
                }
            };
            if (idx == 0)
                return func;
            return NONE_INPUT_GEN;
        }
    };
    template<> struct CheckerConfig<MAX>: public BinaryInputMinGap<false> {};
    template<> struct CheckerConfig<MIN>: public BinaryInputMinGap<false> {};
    template<> struct CheckerConfig<MOD>:
        public NoZeroCheckerConfig<1, false>,
        public BinaryInputMinGap<true>
    {
        using NoZeroCheckerConfig<1, false>::get_inp_gen;
        using NoZeroCheckerConfig<1, false>::enable_binary_inp_swap;
        using BinaryInputMinGap<true>::update_checker;

        template<class Opt>
        static void update_opt(Opt &opt) {
            opt.numdiff_eps = 0.003;
        }

        static constexpr bool allow_inp_grad(size_t idx) {
            return idx == 0;
        }
    };

    template<> struct CheckerConfig<SHL>: public CheckerConfig<void> {
        static constexpr bool enable_binary_inp_swap() {
            return false;
        }

        static constexpr bool allow_inp_grad(size_t idx) {
            return false;
        }

        template<typename ctype>
        static InputGenerator get_inp_gen(size_t);
    };
    template<> struct CheckerConfig<SHR>: public CheckerConfig<SHL> {};

    template<>
    InputGenerator CheckerConfig<SHL>::get_inp_gen<int>(size_t idx) {
        if (!idx)
            return NONE_INPUT_GEN;
        auto gen = [](HostTensorND &dest) {
            HostTensorGenerator<dtype::Int32, RandomDistribution::UNIFORM>
                gen{0, 32};
            dest = *gen(dest.shape());
        };
        return gen;
    }

    template<> struct CheckerConfig<FUSE_ADD_RELU>: public CheckerConfig<void> {
        template<typename ctype>
        static InputGenerator get_inp_gen(size_t) {
            return gen_nozero<ctype, true>;
        }
    };

    template<>
    struct CheckerConfig<FAST_TANH>: public CheckerConfig<void> {
        template<typename ctype>
        static InputGenerator get_inp_gen(size_t) {
            return get_inp_gen_f32_range<ctype>(0.1, 5);
        }
    };

    template<>
    struct CheckerConfig<FAST_TANH_GRAD>: public CheckerConfig<FAST_TANH> {
        static constexpr bool allow_inp_grad(size_t idx) {
            MGB_MARK_USED_VAR(idx);
            return false;
        }
    };

    /* ======================= ternary config ======================= */
    template<> struct CheckerConfig<COND_LEQ_MOV>:
        public BinaryInputMinGap<false> {};


    /* ======================= test runner ======================= */
    namespace detail {
        template<typename dtype, class Trait>
        struct enable_for_dtype_impl;

        template<class Trait>
        struct enable_for_dtype_impl<dtype::Float32, Trait> {
            static constexpr bool value = Trait::ALLOW_FLOAT;
        };
        template<>
        struct enable_for_dtype_impl<dtype::Float32, void> {
            static constexpr bool value = false;
        };
        template<class Trait>
        struct enable_for_dtype_impl<dtype::Int32, Trait> {
            static constexpr bool value = Trait::ALLOW_INT;
        };
        template<>
        struct enable_for_dtype_impl<dtype::Int32, void> {
            static constexpr bool value = false;
        };
M
Megvii Engine Team 已提交
592 593 594 595 596 597 598 599
        template<class Trait>
        struct enable_for_dtype_impl<dtype::Bool, Trait> {
            static constexpr bool value = Trait::ALLOW_BOOL;
        };
        template<>
        struct enable_for_dtype_impl<dtype::Bool, void> {
            static constexpr bool value = false;
        };
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
    }

    //! whether to enable test for specific dtype and Trait
    template<typename dtype, class Trait>
    constexpr bool enable_for_dtype =
    detail::enable_for_dtype_impl<dtype, Trait>::value;

    template<typename Trait, typename dtype,
        bool enable = enable_for_dtype<dtype, Trait>>
    struct TestRunner;

    template<typename Trait, typename dtype>
    struct TestRunner<Trait, dtype, true> {
        static void run();
    };
    template<typename Trait, typename dtype>
    struct TestRunner<Trait, dtype, false> {
        static void run() {
        }
    };
    template<typename dtype>
    struct TestRunner<void, dtype, false> {
        static void run() {
        }
    };

    template<typename Trait>
    class TestOprBasicArithUnaryElemwise: public ::testing::Test {
    };
    template<typename Trait>
    class TestOprBasicArithBinaryElemwise: public ::testing::Test {
    };
    template<typename Trait>
    class TestOprBasicArithTernaryElemwise: public ::testing::Test {
    };


    typedef ::testing::Types<
#define DEF_TRAIT(_mode, _expr) _mode,
#include "./elemwise_unary_trait_def.inl"
#undef DEF_TRAIT
        void // extra void to consume last comma
        > UnaryTraitTypes;
    TYPED_TEST_CASE(TestOprBasicArithUnaryElemwise, UnaryTraitTypes);

    typedef ::testing::Types<
#define DEF_TRAIT(_mode, _expr) _mode,
#include "./elemwise_binary_trait_def.inl"
#undef DEF_TRAIT
        void // extra void to consume last comma
        > BinaryTraitTypes;
    TYPED_TEST_CASE(TestOprBasicArithBinaryElemwise, BinaryTraitTypes);

    typedef ::testing::Types<
#define DEF_TRAIT(_mode, _expr) _mode,
#include "./elemwise_ternary_trait_def.inl"
#undef DEF_TRAIT
        void // extra void to consume last comma
        > TernaryTraitTypes;
    TYPED_TEST_CASE(TestOprBasicArithTernaryElemwise, TernaryTraitTypes);

} // anonymous namespace

template<typename Trait, typename dtype>
void TestRunner<Trait, dtype, true>::run() {
    {
        Mode mode = Trait::MODE;
        // copy to temporary var to avoid undefined reference when linking
        tested_mode.insert(mode);
    }

    using ctype = typename DTypeTrait<dtype>::ctype;

    HostTensorGenerator<> gen;
    using Config = CheckerConfig<Trait>;

    static constexpr bool TEST_REV_INP = Trait::ARITY == 2 &&
        Config::allow_inp_grad(0) == Config::allow_inp_grad(1) &&
        Config::enable_binary_inp_swap();
    using Checker = AutoOprChecker<Trait::ARITY, TEST_REV_INP + 1, dtype>;
    auto make_graph = [&](const typename Checker::SymInpArray &inputs) {
        typename Checker::SymOutArray out;
        SymbolVarArray vinp(inputs.begin(), inputs.end());
        out[0] = opr::Elemwise::make(vinp, Trait::MODE);
        if (TEST_REV_INP) {
            std::swap(vinp[0], vinp[1]);
            out[1] = opr::Elemwise::make(vinp, Trait::MODE);
        }
        return out;
    };

    auto fwd = [&](typename Checker::NumOutArray &dest,
            typename Checker::NumInpArray inp) {
        dest[0].resize(inp[0]->shape());
        if (TEST_REV_INP)
            dest[1].resize(inp[0]->shape());

        std::array<const ctype*, Trait::ARITY> iptr;
        for (size_t i = 0; i < Trait::ARITY; ++ i)
            iptr[i] = inp[i]->template ptr<ctype>();

        size_t sz = dest[0].shape().total_nr_elems();

        ctype* optr = dest[0].template ptr<ctype>();
        for (size_t i = 0; i < sz; ++ i)
            optr[i] = Trait::apply(iptr, i);

        if (TEST_REV_INP) {
            std::swap(iptr[0], iptr[1]);
            ctype* optr = dest[1].template ptr<ctype>();
            for (size_t i = 0; i < sz; ++ i)
                optr[i] = Trait::apply(iptr, i);
        }
    };

    Checker checker{make_graph, fwd};
    checker.set_extra_err_msg(ssprintf("mode=%s", Trait::NAME));
    for (size_t i = 0; i < Trait::ARITY; ++ i) {
        auto func = Config::template get_inp_gen<ctype>(i);
        if (func.valid())
            checker.set_input_generator(i, func.val());

        checker.set_input_allow_grad(i, Config::allow_inp_grad(i));
    }

    TensorShape shapes[] = {{1}, {23, 3}, {666}};
    typename Checker::RunOptions opt;
    Config::update_opt(opt);
    Config::update_checker(checker);
    for (auto &&ishp: shapes) {
        typename Checker::ShapeInpArray inp;
        std::fill(inp.begin(), inp.end(), ishp);
        checker.run(inp, opt);
    }
}

TYPED_TEST(TestOprBasicArithUnaryElemwise, Int32) {
    TestRunner<TypeParam, dtype::Int32>::run();
}
TYPED_TEST(TestOprBasicArithBinaryElemwise, Int32) {
    TestRunner<TypeParam, dtype::Int32>::run();
}
TYPED_TEST(TestOprBasicArithTernaryElemwise, Int32) {
    TestRunner<TypeParam, dtype::Int32>::run();
}

TYPED_TEST(TestOprBasicArithUnaryElemwise, Float32) {
    set_rand_seed(19931102);
    TestRunner<TypeParam, dtype::Float32>::run();
}
TYPED_TEST(TestOprBasicArithBinaryElemwise, Float32) {
    set_rand_seed(19931150);
    TestRunner<TypeParam, dtype::Float32>::run();
}
TYPED_TEST(TestOprBasicArithTernaryElemwise, Float32) {
    set_rand_seed(19931102);
    TestRunner<TypeParam, dtype::Float32>::run();
}

TEST(TestOprBasicArithElemwise, CheckAllModeTested) {
    size_t nr_member = opr::Elemwise::Param::MODE_NR_MEMBER;
M
Megvii Engine Team 已提交
761 762
    ASSERT_EQ(nr_member, tested_mode.size() + 4);
    // Not using TestRunner: NOT, AND, OR, XOR
763
}
M
Megvii Engine Team 已提交
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
#define TEST_OPR_BASIC_ARITH_UNARY_BOOL(_mode, _op) \
    TEST(TestOprBasicArithElemwise, _mode) { \
        HostTensorGenerator<dtype::Bool> gen; \
        auto host_x = gen({2, 1}); \
        auto ptr = host_x->ptr<dt_bool>(); \
        for (size_t i = 0; i < 2; ++i) { \
            ptr[i] = (i & 1); \
        } \
        auto graph = ComputingGraph::make(); \
        using Mode = opr::Elemwise::Mode; \
        auto x = opr::Host2DeviceCopy::make(*graph, host_x), \
             y = opr::Elemwise::make({x}, Mode::_mode); \
        HostTensorND host_y; \
        auto func = graph->compile({make_callback_copy(y, host_y)}); \
        func->execute(); \
        ASSERT_EQ(TensorShape({2, 1}), host_y.shape()); \
        auto ptry = host_y.ptr<dt_bool>(); \
        for (int i = 0;i < 2;i ++) { \
            ASSERT_EQ(_op ptr[i], ptry[i]); \
        } \
    } \

TEST_OPR_BASIC_ARITH_UNARY_BOOL(NOT, !)

#define TEST_OPR_BASIC_ARITH_BINARY_BOOL(_mode, _op) \
    TEST(TestOprBasicArithElemwise, _mode) { \
        HostTensorGenerator<dtype::Bool> gen; \
        auto host_x1 = gen({2, 2}), host_x2 = gen({2, 2}); \
        auto ptr1 = host_x1->ptr<dt_bool>(), ptr2 = host_x2->ptr<dt_bool>(); \
        for (size_t i = 0; i < 4; ++i) { \
            ptr1[i] = (i < 2); \
            ptr2[i] = (i & 1); \
        } \
        auto graph = ComputingGraph::make(); \
        using Mode = opr::Elemwise::Mode; \
        auto x1 = opr::Host2DeviceCopy::make(*graph, host_x1), \
             x2 = opr::Host2DeviceCopy::make(*graph, host_x2), \
             y = opr::Elemwise::make({x1, x2}, Mode::_mode); \
        HostTensorND host_y; \
        auto func = graph->compile({make_callback_copy(y, host_y)}); \
        func->execute(); \
        ASSERT_EQ(TensorShape({2, 2}), host_y.shape()); \
        auto ptry = host_y.ptr<dt_bool>(); \
        for (int i = 0;i < 4;i ++) { \
            ASSERT_EQ(ptr1[i] _op ptr2[i], ptry[i]); \
        } \
    } \

TEST_OPR_BASIC_ARITH_BINARY_BOOL(AND, &&)
TEST_OPR_BASIC_ARITH_BINARY_BOOL(OR, ||)
TEST_OPR_BASIC_ARITH_BINARY_BOOL(XOR, ^)
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013

TEST(TestOprBasicArithElemwise, FuseMulAdd3Shapes) {
    using Checker = AutoOprChecker<3, 1>;

    opr::Elemwise *opr;
    auto make_graph = [&](const typename Checker::SymInpArray &i) ->
            Checker::SymOutArray {
        i[0].node()->owner_graph()->options().graph_opt_level = 0;
        auto ret = opr::Elemwise::make(i, Mode::FUSE_MUL_ADD3);
        opr = &ret.node()->owner_opr()->cast_final_safe<opr::Elemwise>();
        return {ret};

    };

    auto fwd = [&](typename Checker::NumOutArray &dest,
            typename Checker::NumInpArray inp) {
        auto graph = ComputingGraph::make();
        graph->options().graph_opt_level = false;
        auto i = [&](size_t idx) {
            return opr::Host2DeviceCopy::make(*graph, inp[idx]);
        };
        auto ans = i(0) * i(1) + i(2);
        graph->compile({make_callback_copy(ans, dest[0])})->execute();
    };

    Checker checker{make_graph, fwd};
    checker.
        run({TensorShape{1, 2}, {2, 1}, {1, 2}}).
        run({TensorShape{1, 2}, {2, 1}, {1}});
    ASSERT_FALSE(opr->fuse_badlayout_warn_printed());
    checker.run({TensorShape{1, 1, 4}, {1, 3, 1}, {2, 1, 1}});
    ASSERT_TRUE(opr->fuse_badlayout_warn_printed());
}

TEST(TestOprBasicArithElemwise, FuseMulAdd4Shapes) {
    using Checker = AutoOprChecker<4, 1>;

    opr::Elemwise *opr;
    auto make_graph = [&](const typename Checker::SymInpArray &i) ->
            Checker::SymOutArray {
        i[0].node()->owner_graph()->options().graph_opt_level = 0;
        auto ret = opr::Elemwise::make(i, Mode::FUSE_MUL_ADD4);
        opr = &ret.node()->owner_opr()->cast_final_safe<opr::Elemwise>();
        return {ret};

    };

    auto fwd = [&](typename Checker::NumOutArray &dest,
            typename Checker::NumInpArray inp) {
        auto graph = ComputingGraph::make();
        graph->options().graph_opt_level = false;
        auto i = [&](size_t idx) {
            return opr::Host2DeviceCopy::make(*graph, inp[idx]);
        };
        auto ans = i(0) * i(1) + i(2) * i(3);
        graph->compile({make_callback_copy(ans, dest[0])})->execute();
    };

    Checker checker{make_graph, fwd};
    checker.
        run({TensorShape{1, 2}, {2, 1}, {1, 2}, {2, 1}}).
        run({TensorShape{1, 2, 1, 2, 1, 2}, {2, 1, 2, 1, 2, 1},
                {2, 1, 2, 1, 2, 1}, {1, 2, 1, 2, 1, 2}});
    ASSERT_FALSE(opr->fuse_badlayout_warn_printed());
    checker.run({TensorShape{1, 2}, {2, 1}, {2, 2}, {2, 2}});
    ASSERT_TRUE(opr->fuse_badlayout_warn_printed());
}

TEST(TestOprBasicArithElemwise, WritableFwdForSameStorage) {
    HostTensorGenerator<> gen;

    auto run = [&](int idx_val, bool should_overwrite) {
        auto host_x = gen({100});
        auto make_y = [&](ComputingGraph &graph) {
            using S = opr::Subtensor;
            auto x = opr::Host2DeviceCopy::make_no_fwd(graph, host_x),
                 idx = x.make_scalar(idx_val),
                 sub0 = S::make(x,
                         {S::AxisIndexer::make_interval(0, None, idx, None)}),
                 sub1 = S::make(x,
                         {S::AxisIndexer::make_interval(0, -idx, None, None)}),
                 y = sub0 + sub1;
            auto chk_overwrite = [sub0, sub1, y]() {
                auto py = y.node()->prev_dev_ptr();
                return sub0.node()->prev_dev_ptr() == py ||
                    sub1.node()->prev_dev_ptr() == py;
            };
            return std::make_pair(y, chk_overwrite);
        };
        auto g0 = ComputingGraph::make(), g1 = ComputingGraph::make();
        g1->options().seq_opt.enable_mem_plan_opt = false;
        auto y0 = make_y(*g0), y1 = make_y(*g1);
        HostTensorND host_y0, host_y1;
        auto f0 = g0->compile({make_callback_copy(y0.first, host_y0)}),
             f1 = g1->compile({make_callback_copy(y1.first, host_y1)});

        f0->execute();
        f1->execute();
        ASSERT_EQ(host_y1.shape(), TensorShape{static_cast<size_t>(idx_val)});
        MGB_ASSERT_TENSOR_EQ(host_y1, host_y0);
        ASSERT_EQ(should_overwrite, y0.second());
        ASSERT_FALSE(y1.second());

    };

    run(10, true);
    run(90, false);
}

TEST(TestOprBasicArithElemwise, NonContigInput) {
    HostTensorGenerator<> gen;

    auto graph = ComputingGraph::make();
    constexpr size_t SIZE = 100;
    auto host_x = gen({SIZE});
    using S = opr::Subtensor;
    auto x = opr::Host2DeviceCopy::make(*graph, host_x),
         xsub = S::make(x, {S::AxisIndexer::make_interval(0, None, None,
                     x.make_scalar(2))}),
         y = xsub + x.make_scalar(1.f);
    HostTensorND host_y;
    auto func = graph->compile({make_callback_copy(y, host_y)});
    func->execute();
    ASSERT_FALSE(xsub.node()->dev_tensor().layout().is_contiguous());

    ASSERT_EQ(SIZE / 2, host_y.layout().total_nr_elems());
    auto px = host_x->ptr<float>(), py = host_y.ptr<float>();
    for (size_t i = 0; i < SIZE / 2; ++ i) {
        MGB_ASSERT_FLOAT_EQ(px[i * 2] + 1, py[i]);
    }
}

TEST(TestOprBasicArithElemwise, CommutableDedup) {
    auto cn = CompNode::load("xpux");
    auto graph = ComputingGraph::make();
    auto host_x = std::make_shared<HostTensorND>(cn, TensorShape{100}),
         host_y = std::make_shared<HostTensorND>(cn, TensorShape{100});
    auto x = opr::Host2DeviceCopy::make(*graph, host_x),
         y = opr::Host2DeviceCopy::make(*graph, host_y);
    auto mk = [](Mode mode, SymbolVar x, SymbolVar y) {
        return opr::Elemwise::make({x, y}, mode);
    };
#define CHK(_a, _b) ASSERT_EQ((_a).node(), (_b).node())
    CHK(x + y, y + x);
    CHK(x * y, y * x);
    CHK(mk(Mode::EQ, x, y), mk(Mode::EQ, y, x));
    CHK(mk(Mode::MIN, x, y), mk(Mode::MIN, y, x));
    CHK(mk(Mode::MAX, x, y), mk(Mode::MAX, y, x));
    CHK(mk(Mode::LOG_SUM_EXP, x, y), mk(Mode::LOG_SUM_EXP, y, x));
    CHK(x < y, y > x);
#undef CHK
    ASSERT_NE((x - y).node(), (y - x).node());
}


TEST(TestLayoutUtil, CollectiveCollapse) {
    using namespace opr;
    auto shp2layout = [](const TensorShapeArray& tshps) {
        TensorLayoutArray tlayouts(tshps.size());
        for (size_t i = 0; i < tshps.size(); i++) {
            tlayouts[i] = TensorLayout(tshps[i], dtype::Float32());
        }
        return tlayouts;
    };
    auto check = [](const TensorLayoutArray& res,
                    const TensorLayoutArray& std) {
        for (size_t i = 0; i < res.size(); i++) {
            ASSERT_EQ(std[i], res[i]);
        }
    };
    TensorShapeArray tshps1 = {{3, 3}, {3, 3},  {3, 3}};
    auto cc_res1 = Elemwise::collective_collapse(shp2layout(tshps1));
    TensorShapeArray std_res1 = {{9}, {9}, {9}};
    check(cc_res1, shp2layout(std_res1));

    TensorShapeArray tshps2 = {{3, 3, 3}, {1, 3, 3}};
    auto cc_res2 = Elemwise::collective_collapse(shp2layout(tshps2));
    TensorShapeArray std_res2 {{3, 9}, {1, 9}};
    check(cc_res2, shp2layout(std_res2));

    TensorShapeArray tshp3 = {{3, 3, 3}, {3, 3, 1}};
    auto cc_res3 = Elemwise::collective_collapse(shp2layout(tshp3));
    TensorShapeArray std_res3 {{9, 3}, {9, 1}};
    check(cc_res3, shp2layout(std_res3));

    TensorShapeArray tshp4 = {{3, 3, 3, 3}, {1, 3, 3, 1}};
    auto cc_res4 = Elemwise::collective_collapse(shp2layout(tshp4));
    TensorShapeArray std_res4 {{3, 9, 3}, {1, 9, 1}};
    check(cc_res4, shp2layout(std_res4));

    TensorLayoutArray inp5 = {
        TensorLayout(TensorShape{3, 3}, {1, 3}, dtype::Float32()),
        TensorLayout(TensorShape{3, 3}, {1, 3}, dtype::Float32())
    };
    auto cc_res5 = Elemwise::collective_collapse(inp5);
    auto std_res5 = inp5;
    check(cc_res5, std_res5);
}

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
TEST(TestOprBasicArithElemwise, EmptyInputOutputUnary) {
    HostTensorGenerator<> gen;
    auto graph = ComputingGraph::make();
    auto host_x = gen({3, 0, 1, 3});
    auto x = opr::Host2DeviceCopy::make(*graph, host_x),
         y = opr::Elemwise::make(
                 {x}, opr::Elemwise::Param(opr::Elemwise::Param::Mode::RELU));
    HostTensorND host_y;
    auto func = graph->compile({make_callback_copy(y, host_y)});

    ASSERT_NO_THROW(func->execute().wait());
    ASSERT_TRUE(host_y.empty());
    ASSERT_TRUE(host_y.shape().is_empty());
1027
    MGB_ASSERT_SHAPE_EQ(host_y.shape(), TensorShape({3, 0, 1, 3}));
1028 1029 1030 1031 1032 1033
}

TEST(TestOprBasicArithElemwise, EmptyInputOutputBinary) {
    HostTensorGenerator<> gen;
    auto graph = ComputingGraph::make();
    auto host_x = gen({0, 8, 1, 7}), host_y = gen({0, 8, 1, 7});
1034

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
    auto x = opr::Host2DeviceCopy::make(*graph, host_x),
         y = opr::Host2DeviceCopy::make(*graph, host_y),
         z = x + y;
    HostTensorND host_z;
    auto func = graph->compile({make_callback_copy(z, host_z)});

    // Invalid broadcast
    host_y->resize({0, 9, 1, 7});
    ASSERT_ANY_THROW(func->execute().wait());

    // Broadcast to 0
    host_y->resize({1, 8, 0, 7});
    ASSERT_NO_THROW(func->execute().wait());
    ASSERT_TRUE(host_z.empty());
    ASSERT_TRUE(host_z.shape().is_empty());
1050
    MGB_ASSERT_SHAPE_EQ(host_z.shape(), TensorShape({0, 8, 0, 7}));
1051 1052 1053 1054 1055 1056

    // Broadcast to 0 (2)
    host_y->resize({2, 8, 1, 7});
    ASSERT_NO_THROW(func->execute().wait());
    ASSERT_TRUE(host_z.empty());
    ASSERT_TRUE(host_z.shape().is_empty());
1057
    MGB_ASSERT_SHAPE_EQ(host_z.shape(), TensorShape({0, 8, 1, 7}));
1058 1059 1060 1061 1062 1063 1064

    // Scalar broadcast
    z = x + x.make_scalar(1.f);
    func = graph->compile({make_callback_copy(z, host_z)});
    ASSERT_NO_THROW(func->execute().wait());
    ASSERT_TRUE(host_z.empty());
    ASSERT_TRUE(host_z.shape().is_empty());
1065
    MGB_ASSERT_SHAPE_EQ(host_z.shape(), TensorShape({0, 8, 1, 7}));
1066 1067
}

1068
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}