cudnn_conv_bias_activation.cpp 12.8 KB
Newer Older
1 2 3 4
/**
 * \file dnn/src/cuda/conv_bias/cudnn_conv_bias_activation.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "megdnn/oprs/general.h"

#include "./algo.h"

#include "src/cuda/conv_bias/helper.h"
#include "src/cuda/cudnn_wrapper.h"
#include "src/cuda/utils.h"
19
#include "src/common/conv_bias.h"
20 21 22 23 24 25 26

using namespace megdnn;
using namespace cuda;
using namespace conv_bias;

bool ConvBiasForwardImpl::AlgoCUDNNConvBiasActivation::is_available(
        const SizeArgs& args) const {
27 28 29 30 31 32
    if (args.filter_meta.format != Param::Format::NCHW &&
        args.filter_meta.format != Param::Format::NHWC) {
        if (!args.src_layout->is_contiguous() ||
            !args.dst_layout->is_contiguous()) {
            return false;
        }
33
    }
34 35
    if ((args.src_layout->dtype.enumv() == DTypeEnum::QuantizedS4 ||
         args.src_layout->dtype.enumv() == DTypeEnum::Quantized4Asymm) &&
36 37
        args.filter_layout->dtype.enumv() == DTypeEnum::QuantizedS4)
        return false;
38 39 40 41
    if (args.src_layout->dtype == args.filter_layout->dtype &&
        args.src_layout->dtype == dtype::BFloat16()) {
        return false;
    }
42

43
    if (args.bias_layout->ndim == 0 ||
44
        !check_bias_share_in_channel(*(args.bias_layout),
45
                                                args.opr->param().format)) {
46
        return false;
47
    }
48
    auto&& param = args.opr->param();
49 50 51 52 53 54 55 56 57 58 59

#if (CUDNN_MAJOR == 8 && CUDNN_MINOR < 2)
    if (m_cudnn_enum == CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM &&
        param.format == param::ConvBias::Format::NCHW4 &&
        args.filter_meta.group * args.filter_meta.ocpg > 256 &&
        args.src_layout->dtype.enumv() == DTypeEnum::QuantizedS8 &&
        args.filter_layout->dtype.enumv() == DTypeEnum::QuantizedS8) {
        return false;
    }
#endif

60 61 62 63 64 65 66 67 68
    // FIXME: cudnn cannot handle the case when the initial value of dst tensor
    // contains nan and beta is zero, because the result of 0.f * nan is still
    // nan
    if (args.src_layout->dtype.enumv() == DTypeEnum::QuantizedS8 &&
        args.dst_layout->dtype.enumv() == DTypeEnum::Float32 &&
        param.format == param::ConvBias::Format::NCHW) {
        return false;
    }

69 70 71 72
    //! FIXME: conv kernel of cudnn for NCHW4_NCHW tensor format causes illegal
    //! memory access errors, so we have to disable this kernel here.
    if (param.format == param::ConvBias::Format::NCHW4_NCHW ||
        param.format == param::ConvBias::Format::NCHW4_NCHW32 ||
73 74
        param.format == param::ConvBias::Format::NCHW32_NCHW4)
        return false;
75 76 77 78 79 80 81 82 83 84 85 86
    if (param.format == param::ConvBias::Format::NCHW &&
        (param.dilate_h != 1 || param.dilate_w != 1) &&
        m_cudnn_enum == CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM) {
        auto&& device_prop = current_device_prop();
        // Dilated convbias in NCHW format produces wrong result on Pascal
        // Architecture, so we disable the algo here.
        if (device_prop.major == 6) {
            return false;
        }
    }

    if (param.format == param::ConvBias::Format::NCHW8 ||
87
        param.format == param::ConvBias::Format::NCHW64 ||
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
        param.format == param::ConvBias::Format::CHWN4)
        return false;
    if (param.format == param::ConvBias::Format::NCHW32) {
        auto&& filter_meta = args.filter_meta;
        // NCHW32 layout only support group = 1
        if (filter_meta.group != 1)
            return false;
        // The data type (CUDNN_DATA_INT8x32) can only be used with algo
        // "CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM", for details, see
        // https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html
        if (m_cudnn_enum != CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM)
            return false;
        // check cudnn version
        if (CUDNN_VERSION < 7500)
            return false;
        // sm version
        auto&& device_prop = current_device_prop();
        if (device_prop.major < 7 ||
            (device_prop.major == 7 && device_prop.minor < 5))
            return false;
    }

    CUDNNForwardDescs D;

    if (CUDNN_VERSION < 7401)
        return false;

    args.init_conv_bias_desc(D);
    switch (args.nonlinear_mode) {
        case param::ConvBias::NonlineMode::RELU:
            break;
        case param::ConvBias::NonlineMode::SIGMOID:
            // forbits sigmoid for quantized
            if (args.src_layout->dtype.category() == DTypeCategory::QUANTIZED)
                return false;
            MEGDNN_FALLTHRU  // XXX: why?
124 125 126 127 128
        case param::ConvBias::NonlineMode::IDENTITY:
            if (args.src_layout->dtype.category() == DTypeCategory::QUANTIZED)
                break;
            if (m_cudnn_enum !=
                    CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM) {
129 130 131 132 133 134 135
                // cudnn require algo to
                // CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM
                // when activation if IDENTITY
                return false;
            }
            break;
        case param::ConvBias::NonlineMode::H_SWISH:
136 137
            if (args.src_layout->dtype.category() == DTypeCategory::QUANTIZED)
                break;
138 139
            return false;
        default:
M
Megvii Engine Team 已提交
140
            megdnn_throw("unsupported NonlineMode");
141 142
    }
    size_t workspace_size;
143 144
    auto& cudnn = args.handle->cudnn();
    auto status = cudnn.GetConvolutionForwardWorkspaceSize(
145 146 147 148 149 150 151 152 153 154 155 156
            args.handle->cudnn_handle(), D.src_desc.desc, D.filter_desc.desc,
            D.conv_desc.conv_desc, D.dst_desc.desc, m_cudnn_enum,
            &workspace_size);
    return status == CUDNN_STATUS_SUCCESS;
}

size_t ConvBiasForwardImpl::AlgoCUDNNConvBiasActivation::get_workspace_in_bytes(
        const SizeArgs& args) const {
    CUDNNForwardDescs D;

    args.init_conv_bias_desc(D);
    size_t workspace_size;
157 158
    auto& cudnn = args.handle->cudnn();
    auto status = cudnn.GetConvolutionForwardWorkspaceSize(
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
            args.handle->cudnn_handle(), D.src_desc.desc, D.filter_desc.desc,
            D.conv_desc.conv_desc, D.dst_desc.desc, m_cudnn_enum,
            &workspace_size);
    megdnn_assert(status == CUDNN_STATUS_SUCCESS,
                  "conv fwd get workspace failed: %s; info: %s",
                  cudnnGetErrorString(status), args.to_string().c_str());
    if (args.bias_layout && args.bias_layout->dtype != dtype::Float32() &&
        args.src_layout->dtype.category() != DTypeCategory::FLOAT) {
        // cudnn require bias to be float when executing CONFIG_INT
        // convert bias to float if bias is not float at first
        workspace_size += sizeof(float) * args.bias_layout->span().dist_elem();
    }
    return workspace_size;
}

void ConvBiasForwardImpl::AlgoCUDNNConvBiasActivation::exec(
        const ExecArgs& args) const {
#if CUDNN_MAJOR < 7
M
Megvii Engine Team 已提交
177
    megdnn_throw("ConvBias require cudnn 7.0 or higher");
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
#else
    megdnn_assert(cudnnGetVersion() >= 7401);
    CUDNNForwardDescs D;
    args.init_conv_bias_desc(D);
    float alpha = 1.0f, beta = 0.0f;
    if (args.z_layout->ndim > 0)
        beta = 1.0f;

    auto get_scale = [](const DType& dtype) -> float {
        megdnn_assert(dtype.category() == DTypeCategory::QUANTIZED);
        switch (dtype.enumv()) {
#define cb(_dt)                  \
    case DTypeTrait<_dt>::enumv: \
        return dtype.param<_dt>().scale;
            MEGDNN_FOREACH_QUANTIZED_DTYPE(cb)
#undef cb
            default:
                megdnn_assert_internal(0);
        }
    };

199 200 201 202 203
    auto src_dtype = args.src_layout->dtype,
         filter_dtype = args.filter_layout->dtype,
         dst_dtype = args.dst_layout->dtype;
    megdnn_assert(
            (src_dtype.category() == dst_dtype.category()) ||
204
            (src_dtype.enumv() == DTypeEnum::QuantizedS8 &&
205 206
             dst_dtype.enumv() == DTypeEnum::Float32));
    megdnn_assert(src_dtype.category() == filter_dtype.category());
207 208 209 210

    if (args.src_layout->dtype.category() == DTypeCategory::QUANTIZED) {
        auto expected_bias_scale = get_scale(args.src_layout->dtype) *
                                   get_scale(args.filter_layout->dtype);
211 212 213 214 215
        alpha = expected_bias_scale;
        if (args.dst_layout->dtype.category() == DTypeCategory::QUANTIZED)
            alpha /= get_scale(args.dst_layout->dtype);
        if (args.z_layout->ndim > 0 &&
            args.z_layout->dtype.category() == DTypeCategory::QUANTIZED) {
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
            beta = get_scale(args.z_layout->dtype) /
                   get_scale(args.dst_layout->dtype);
        }
        if (args.bias_layout->dtype.category() == DTypeCategory::QUANTIZED) {
            megdnn_assert(fabs(expected_bias_scale -
                               get_scale(args.bias_layout->dtype)) < 1e-4);
        }
    }

    auto workspace_ptr = args.workspace.raw_ptr;
    auto workspace_size = args.workspace.size;
    auto bias_ptr = args.bias_tensor->raw_ptr;
    if (args.bias_layout && args.bias_layout->dtype != dtype::Float32() &&
        args.src_layout->dtype.category() != DTypeCategory::FLOAT) {
        auto cvt = args.handle->create_operator<TypeCvt>();
        auto float_bias_layout = *args.bias_layout;
        auto converted_bias_layout = *args.bias_layout;
        converted_bias_layout.dtype = dtype::QuantizedS32(alpha);
        float_bias_layout.dtype = dtype::Float32();
        auto bias_size_in_bytes = float_bias_layout.span().dist_byte();
        megdnn_assert(args.workspace.size >= bias_size_in_bytes);
        cvt->exec({args.bias_tensor->raw_ptr, converted_bias_layout},
                  TensorND{workspace_ptr, float_bias_layout});

        bias_ptr = workspace_ptr;
        workspace_ptr += bias_size_in_bytes;
        workspace_size -= bias_size_in_bytes;
    }

    cudnnStatus_t status;
    if (args.z_layout->ndim == 0) {
        status = cudnnConvolutionBiasActivationForward(
                args.handle->cudnn_handle(), &alpha, D.src_desc.desc,
                args.src_tensor->raw_ptr, D.filter_desc.desc,
                args.filter_tensor->raw_ptr, D.conv_desc.conv_desc,
                m_cudnn_enum, workspace_ptr, workspace_size, &beta,
                D.dst_desc.desc, args.dst_tensor->raw_ptr, D.bias_desc.desc,
                bias_ptr, D.conv_desc.act_desc, D.dst_desc.desc,
                args.dst_tensor->raw_ptr);
    } else {
        status = cudnnConvolutionBiasActivationForward(
                args.handle->cudnn_handle(), &alpha, D.src_desc.desc,
                args.src_tensor->raw_ptr, D.filter_desc.desc,
                args.filter_tensor->raw_ptr, D.conv_desc.conv_desc,
                m_cudnn_enum, workspace_ptr, workspace_size, &beta,
                D.z_desc.desc, args.z_tensor->raw_ptr, D.bias_desc.desc,
                bias_ptr, D.conv_desc.act_desc, D.dst_desc.desc,
                args.dst_tensor->raw_ptr);
    }

    megdnn_assert(status == CUDNN_STATUS_SUCCESS,
                  "conv fwd failed: %s; info: %s, algo %s",
                  cudnnGetErrorString(status), args.to_string().c_str(),
                  name());
    // Noline
    switch (args.nonlinear_mode) {
        case param::ConvBias::NonlineMode::RELU:
            break;
        case param::ConvBias::NonlineMode::SIGMOID: {
            megdnn_assert(args.dst_layout->dtype.category() !=
                          DTypeCategory::QUANTIZED);
            auto&& elem_opr = args.handle->create_operator<ElemwiseForward>();
            elem_opr->param().mode = Elemwise::Param::Mode::SIGMOID;
            elem_opr->exec({*(args.dst_tensor)}, *(args.dst_tensor));
            break;
        }
        case param::ConvBias::NonlineMode::IDENTITY:
            break;
284 285
        case param::ConvBias::NonlineMode::H_SWISH: {
            megdnn_assert(args.dst_layout->dtype.category() ==
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
                                  DTypeCategory::QUANTIZED ||
                          (args.dst_layout->dtype.category() ==
                                   DTypeCategory::FLOAT &&
                           args.opr->param().format ==
                                   param::ConvBias::Format::NCHW4_NCHW));
            if (args.dst_layout->dtype.category() == DTypeCategory::QUANTIZED) {
                auto&& elem_opr =
                        args.handle->create_operator<ElemwiseMultiType>();
                elem_opr->param().mode =
                        ElemwiseMultiType::Param::Mode::QH_SWISH;
                elem_opr->exec({*(args.dst_tensor)}, *(args.dst_tensor));
            } else {
                auto&& elem_opr =
                        args.handle->create_operator<ElemwiseForward>();
                elem_opr->param().mode = ElemwiseForward::Param::Mode::H_SWISH;
                elem_opr->exec({*(args.dst_tensor)}, *(args.dst_tensor));
            }
303 304
            break;
        }
305
        default:
M
Megvii Engine Team 已提交
306
            megdnn_throw("unsupported NonlineMode");
307 308 309 310 311
    }
#endif
}

// vim: syntax=cpp.doxygen