cudnn_conv_bias_activation.cpp 10.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/**
 * \file dnn/src/cuda/conv_bias/cudnn_conv_bias_activation.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "megdnn/oprs/general.h"

#include "./algo.h"

#include "src/cuda/conv_bias/helper.h"
#include "src/cuda/cudnn_wrapper.h"
#include "src/cuda/utils.h"

using namespace megdnn;
using namespace cuda;
using namespace conv_bias;

bool ConvBiasForwardImpl::AlgoCUDNNConvBiasActivation::is_available(
        const SizeArgs& args) const {
26 27 28 29
    if (args.src_layout->dtype == args.filter_layout->dtype &&
        args.src_layout->dtype == dtype::BFloat16()) {
        return false;
    }
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
    if (args.bias_layout->ndim == 0 ||
        args.bias_layout->eq_shape(*args.dst_layout))
        return false;
    auto&& param = args.opr->param();
    if (param.format == param::ConvBias::Format::NCHW &&
        (param.dilate_h != 1 || param.dilate_w != 1) &&
        m_cudnn_enum == CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM) {
        auto&& device_prop = current_device_prop();
        // Dilated convbias in NCHW format produces wrong result on Pascal
        // Architecture, so we disable the algo here.
        if (device_prop.major == 6) {
            return false;
        }
    }

    if (param.format == param::ConvBias::Format::NCHW8 ||
        param.format == param::ConvBias::Format::CHWN4)
        return false;
    if (param.format == param::ConvBias::Format::NCHW32) {
        auto&& filter_meta = args.filter_meta;
        // NCHW32 layout only support group = 1
        if (filter_meta.group != 1)
            return false;
        // The data type (CUDNN_DATA_INT8x32) can only be used with algo
        // "CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM", for details, see
        // https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html
        if (m_cudnn_enum != CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM)
            return false;
        // check cudnn version
        if (CUDNN_VERSION < 7500)
            return false;
        // sm version
        auto&& device_prop = current_device_prop();
        if (device_prop.major < 7 ||
            (device_prop.major == 7 && device_prop.minor < 5))
            return false;
    }

    CUDNNForwardDescs D;

    if (CUDNN_VERSION < 7401)
        return false;

    args.init_conv_bias_desc(D);
    switch (args.nonlinear_mode) {
        case param::ConvBias::NonlineMode::RELU:
            break;
        case param::ConvBias::NonlineMode::SIGMOID:
            // forbits sigmoid for quantized
            if (args.src_layout->dtype.category() == DTypeCategory::QUANTIZED)
                return false;
            MEGDNN_FALLTHRU  // XXX: why?
82 83 84 85 86
        case param::ConvBias::NonlineMode::IDENTITY:
            if (args.src_layout->dtype.category() == DTypeCategory::QUANTIZED)
                break;
            if (m_cudnn_enum !=
                    CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM) {
87 88 89 90 91 92 93
                // cudnn require algo to
                // CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM
                // when activation if IDENTITY
                return false;
            }
            break;
        case param::ConvBias::NonlineMode::H_SWISH:
94 95
            if (args.src_layout->dtype.category() == DTypeCategory::QUANTIZED)
                break;
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
            return false;
        default:
            megdnn_throw(megdnn_mangle("unsupported NonlineMode"));
    }
    size_t workspace_size;
    auto status = cudnnGetConvolutionForwardWorkspaceSize(
            args.handle->cudnn_handle(), D.src_desc.desc, D.filter_desc.desc,
            D.conv_desc.conv_desc, D.dst_desc.desc, m_cudnn_enum,
            &workspace_size);
    return status == CUDNN_STATUS_SUCCESS;
}

size_t ConvBiasForwardImpl::AlgoCUDNNConvBiasActivation::get_workspace_in_bytes(
        const SizeArgs& args) const {
    CUDNNForwardDescs D;

    args.init_conv_bias_desc(D);
    size_t workspace_size;
    auto status = cudnnGetConvolutionForwardWorkspaceSize(
            args.handle->cudnn_handle(), D.src_desc.desc, D.filter_desc.desc,
            D.conv_desc.conv_desc, D.dst_desc.desc, m_cudnn_enum,
            &workspace_size);
    megdnn_assert(status == CUDNN_STATUS_SUCCESS,
                  "conv fwd get workspace failed: %s; info: %s",
                  cudnnGetErrorString(status), args.to_string().c_str());
    if (args.bias_layout && args.bias_layout->dtype != dtype::Float32() &&
        args.src_layout->dtype.category() != DTypeCategory::FLOAT) {
        // cudnn require bias to be float when executing CONFIG_INT
        // convert bias to float if bias is not float at first
        workspace_size += sizeof(float) * args.bias_layout->span().dist_elem();
    }
    return workspace_size;
}

void ConvBiasForwardImpl::AlgoCUDNNConvBiasActivation::exec(
        const ExecArgs& args) const {
#if CUDNN_MAJOR < 7
    megdnn_throw(megdnn_mangle("ConvBias require cudnn 7.0 or higher"));
#else
    megdnn_assert(cudnnGetVersion() >= 7401);
    CUDNNForwardDescs D;
    args.init_conv_bias_desc(D);
    float alpha = 1.0f, beta = 0.0f;
    if (args.z_layout->ndim > 0)
        beta = 1.0f;

    auto get_scale = [](const DType& dtype) -> float {
        megdnn_assert(dtype.category() == DTypeCategory::QUANTIZED);
        switch (dtype.enumv()) {
#define cb(_dt)                  \
    case DTypeTrait<_dt>::enumv: \
        return dtype.param<_dt>().scale;
            MEGDNN_FOREACH_QUANTIZED_DTYPE(cb)
#undef cb
            default:
                megdnn_assert_internal(0);
        }
    };

    megdnn_assert(args.src_layout->dtype.category() ==
                          args.dst_layout->dtype.category() &&
                  args.src_tensor->layout.dtype.category() ==
                          args.filter_layout->dtype.category());

    if (args.src_layout->dtype.category() == DTypeCategory::QUANTIZED) {
        auto expected_bias_scale = get_scale(args.src_layout->dtype) *
                                   get_scale(args.filter_layout->dtype);
        alpha = expected_bias_scale / get_scale(args.dst_layout->dtype);
        if (args.z_layout->ndim > 0) {
            beta = get_scale(args.z_layout->dtype) /
                   get_scale(args.dst_layout->dtype);
        }
        if (args.bias_layout->dtype.category() == DTypeCategory::QUANTIZED) {
            megdnn_assert(fabs(expected_bias_scale -
                               get_scale(args.bias_layout->dtype)) < 1e-4);
        }
    }

    auto workspace_ptr = args.workspace.raw_ptr;
    auto workspace_size = args.workspace.size;
    auto bias_ptr = args.bias_tensor->raw_ptr;
    if (args.bias_layout && args.bias_layout->dtype != dtype::Float32() &&
        args.src_layout->dtype.category() != DTypeCategory::FLOAT) {
        auto cvt = args.handle->create_operator<TypeCvt>();
        auto float_bias_layout = *args.bias_layout;
        auto converted_bias_layout = *args.bias_layout;
        converted_bias_layout.dtype = dtype::QuantizedS32(alpha);
        float_bias_layout.dtype = dtype::Float32();
        auto bias_size_in_bytes = float_bias_layout.span().dist_byte();
        megdnn_assert(args.workspace.size >= bias_size_in_bytes);
        cvt->exec({args.bias_tensor->raw_ptr, converted_bias_layout},
                  TensorND{workspace_ptr, float_bias_layout});

        bias_ptr = workspace_ptr;
        workspace_ptr += bias_size_in_bytes;
        workspace_size -= bias_size_in_bytes;
    }

    cudnnStatus_t status;
    if (args.z_layout->ndim == 0) {
        status = cudnnConvolutionBiasActivationForward(
                args.handle->cudnn_handle(), &alpha, D.src_desc.desc,
                args.src_tensor->raw_ptr, D.filter_desc.desc,
                args.filter_tensor->raw_ptr, D.conv_desc.conv_desc,
                m_cudnn_enum, workspace_ptr, workspace_size, &beta,
                D.dst_desc.desc, args.dst_tensor->raw_ptr, D.bias_desc.desc,
                bias_ptr, D.conv_desc.act_desc, D.dst_desc.desc,
                args.dst_tensor->raw_ptr);
    } else {
        status = cudnnConvolutionBiasActivationForward(
                args.handle->cudnn_handle(), &alpha, D.src_desc.desc,
                args.src_tensor->raw_ptr, D.filter_desc.desc,
                args.filter_tensor->raw_ptr, D.conv_desc.conv_desc,
                m_cudnn_enum, workspace_ptr, workspace_size, &beta,
                D.z_desc.desc, args.z_tensor->raw_ptr, D.bias_desc.desc,
                bias_ptr, D.conv_desc.act_desc, D.dst_desc.desc,
                args.dst_tensor->raw_ptr);
    }

    megdnn_assert(status == CUDNN_STATUS_SUCCESS,
                  "conv fwd failed: %s; info: %s, algo %s",
                  cudnnGetErrorString(status), args.to_string().c_str(),
                  name());
    // Noline
    switch (args.nonlinear_mode) {
        case param::ConvBias::NonlineMode::RELU:
            break;
        case param::ConvBias::NonlineMode::SIGMOID: {
            megdnn_assert(args.dst_layout->dtype.category() !=
                          DTypeCategory::QUANTIZED);
            auto&& elem_opr = args.handle->create_operator<ElemwiseForward>();
            elem_opr->param().mode = Elemwise::Param::Mode::SIGMOID;
            elem_opr->exec({*(args.dst_tensor)}, *(args.dst_tensor));
            break;
        }
        case param::ConvBias::NonlineMode::IDENTITY:
            break;
233 234 235 236 237 238 239 240
        case param::ConvBias::NonlineMode::H_SWISH: {
            megdnn_assert(args.dst_layout->dtype.category() ==
                          DTypeCategory::QUANTIZED);
            auto&& elem_opr = args.handle->create_operator<ElemwiseMultiType>();
            elem_opr->param().mode = ElemwiseMultiType::Param::Mode::QH_SWISH;
            elem_opr->exec({*(args.dst_tensor)}, *(args.dst_tensor));
            break;
        }
241 242 243 244 245 246 247
        default:
            megdnn_throw(megdnn_mangle("unsupported NonlineMode"));
    }
#endif
}

// vim: syntax=cpp.doxygen