var_node.cpp 21.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
/**
 * \file src/core/impl/graph/var_node.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "megbrain/graph/var_node.h"
#include "megbrain/graph/operator_node.h"
#include "megbrain/graph/helper.h"
#include "./cg_impl.h"

using namespace mgb;
using namespace cg;


/* ===================== MemAllocPlan =====================  */

std::mutex MemAllocPlan::ReadonlyFwdList::list_mutex;

void MemAllocPlan::ReadonlyFwdList::reset() {
    MGB_LOCK_GUARD(list_mutex);
    m_prev = m_next = nullptr;
}


void MemAllocPlan::ReadonlyFwdList::insert_after(const MemAllocPlan& prev,
                                                 MemAllocPlan* self) {
    MGB_LOCK_GUARD(list_mutex);
    mgb_assert(!m_prev && !m_next);
    auto next = prev.m_readonly_fwd_list.m_next;
    prev.m_readonly_fwd_list.m_next = self;
    m_prev = const_cast<MemAllocPlan*>(&prev);
    m_next = next;
    if (next) {
        next->m_readonly_fwd_list.m_prev = self;
    }
}

void MemAllocPlan::ReadonlyFwdList::remove_self() {
    MGB_LOCK_GUARD(list_mutex);
    if (m_prev) {
        if (m_next) {
            m_prev->m_readonly_fwd_list.m_next = m_next;
            m_next->m_readonly_fwd_list.m_prev = m_prev;
        } else {
            m_prev->m_readonly_fwd_list.m_next = nullptr;
        }
        m_prev = m_next = nullptr;
    }
}

MemAllocPlan::Chunk MemAllocPlan::sm_chunk_invalid_cond_exec_marker{nullptr};

MemAllocPlan::MemAllocPlan(VarNode *owner_var):
    m_chunk_storage(owner_var)
{
}

MemAllocPlan& MemAllocPlan::assign(const MemAllocPlan &src) {
    mgb_assert(src.valid());
    m_layout = src.m_layout;
    m_layout.dtype = dtype();
    m_offset_byte = src.m_offset_byte;
    m_chunk = src.m_chunk;
    ++ m_chunk->m_refcnt;
    return *this;
}

MemAllocPlan& MemAllocPlan::assign_for_forward(
        const MemAllocPlan &src, const SubTensorSpec &sub) {
    mgb_assert(valid() && src.valid() && m_layout.eq_shape(sub.layout()));
    ++ (m_chunk = src.m_chunk)->m_refcnt;
    m_layout = sub.layout();
    // make layout strong-contig
    for (int i = static_cast<int>(m_layout.ndim) - 1; i >= 0; -- i) {
        if (m_layout.shape[i] == 1) {
            m_layout.stride[i] = i + 1 < static_cast<int>(m_layout.ndim) ?
                m_layout.stride[i + 1] * m_layout.shape[i + 1] : 1;
        }
    }
    m_layout.dtype = dtype();
    m_offset_byte = src.m_offset_byte + sub.offset_byte();
    auto &&span = sub.layout().span();
    mgb_assert(m_offset_byte + span.high_byte <= m_chunk->size() &&
            static_cast<ptrdiff_t>(m_offset_byte) + span.low_byte >= 0);
    // Note: Multiple mem plans may be forwarded from the same mem plan. Here we
    // do not need to find the root mem plan. Instead, we just insert this node
    // to the linked list headed at the root node, obeying topological order,
    // but note that new nodes may be inserted into the middle of the list.
    m_readonly_fwd_list.insert_after(src, this);
    return *this;
}

MemAllocPlan& MemAllocPlan::reset_from_owner_var() {
    auto owner_var = m_chunk_storage.owner_var;
    m_layout.dtype = dtype();
    m_layout.format = format();
    m_layout.init_contiguous_stride(owner_var->shape());
    m_offset_byte = 0;
    m_chunk = &m_chunk_storage;
    auto chk = m_chunk;
    chk->m_refcnt = 1;
    chk->m_size = m_layout.span().dist_byte();
    chk->mem_alloc_status.set_invalid();
    mgb_assert(chk->m_refcnt.is_lock_free());

    // check size for not overflow
    mgb_assert(m_layout.total_nr_elems() <= m_layout.dtype.max_elements(),
            "var too large: %s", cg::dump_var_info({owner_var}).c_str());
    return *this;
}

MemAllocPlan& MemAllocPlan::release_chunk() {
    mgb_assert(valid());
    auto chk = m_chunk;
    bool need_consider = chk != &sm_chunk_invalid_cond_exec_marker;
    m_readonly_fwd_list.remove_self();
    if (need_consider && (!--chk->m_refcnt)) {
        auto&& dv = chk->owner_var->m_dev_tensor;
        mgb_assert(dv.storage().comp_node_valid());
        if (chk->size()) {
            mgb_assert(chk->mem_alloc_status.is_from_owner_var());
            chk->m_size = 0;
        }
        chk->mem_alloc_status.set_invalid();
        dv.storage({});
    }
    m_chunk = nullptr;
    return *this;
}

MemAllocPlan& MemAllocPlan::layout(const TensorLayout& dest,
                                   bool allow_shape_change) {
    mgb_assert(allow_shape_change || m_layout.eq_shape(dest),
               "disallowed shape change: %s vs %s",
               m_layout.TensorShape::to_string().c_str(),
               dest.TensorShape::to_string().c_str());
    m_layout = dest;
    m_layout.dtype = dtype();
    return *this;
}

#if MGB_ENABLE_JSON
std::shared_ptr<json::Value> MemAllocPlan::to_json() const {
    auto cvt_layout = [](const TensorLayout &layout) {
        auto shape = json::Array::make(),
             stride = json::Array::make();
        for (size_t i = 0; i < layout.ndim; i ++) {
            shape->add(json::Number::make(layout.shape[i]));
            stride->add(json::Number::make(layout.stride[i]));
        }
        return json::Object::make({
            {"shape", shape},
            {"stride", stride},
            {"dtype", json::String::make(layout.dtype.name())}
        });
    };

    return json::Object::make({
        {"mem_chunk_id", json::String::make(m_chunk->id_str())},
        {"layout", cvt_layout(m_layout)},
        {"offset_byte", json::Number::make(m_offset_byte)}
    });
}
#endif

std::string MemAllocPlan::Chunk::id_str() const {
    return "chk" + std::to_string(owner_var->id());
}

/* ===================== MemAllocPlan::Chunk =====================  */
#if MGB_ENABLE_JSON
std::shared_ptr<json::Value> MemAllocPlan::Chunk::to_json() const {
    std::shared_ptr<json::Value> dev_ptr;
    if (owner_var->dev_tensor_valid()) {
        dev_ptr = json::NumberInt::make(
                reinterpret_cast<size_t>(owner_var->dev_tensor().raw_ptr()));
    } else {
        dev_ptr = json::Null::make();
    }
    return json::Object::make({
        {"node_type", json::String::make("mem_chunk")},
        {"id", json::String::make(id_str())},
        {"size", json::Number::make(size())},
        {"owner_var", json::String::make(owner_var->id_str())},
        {"dev_ptr", dev_ptr}
    });
}
#endif

/* ===================== VarNode =====================  */

const std::string& VarNode::name() const {
    return m_name.valid() ? m_name.val() : owner_opr()->name();
}

VarNode& VarNode::name(std::string name) {
    m_name = std::move(name);
    m_has_name_set = true;
    return *this;
}

const DeviceTensorND& VarNode::dev_tensor() const {
    mgb_assert(dev_tensor_valid());
    return m_dev_tensor;
}

DeviceTensorND& VarNode::mutable_dev_tensor() {
    mgb_assert(dev_tensor_valid() && contain_flag(Flag::NO_SYS_MEM_ALLOC));
    return m_dev_tensor;
}

VarNode& VarNode::dtype(DType dtype) {
    mgb_assert(dtype.valid() && !m_dev_tensor.dtype().valid());
    m_dev_tensor.dtype(dtype);
    return *this;
}

VarNode& VarNode::format(TensorFormat format) {
    mgb_assert(format == m_dev_tensor.format() ||
               m_dev_tensor.format().is_default());
    m_dev_tensor.format(format);
    return *this;
}

bool VarNode::set_fwd_in2out_readonly(
        VarNode *input, const SubTensorSpec &sub) {
233 234 235
    if (owner_graph()->options().imperative_proxy_graph) {
        return false;
    }
236
    return ComputingGraphImpl::downcast(owner_graph())
237 238 239 240
        ->var_node_mem_manager().fwd_in2out_readonly(input, sub, this);
}

VarNode& VarNode::set_fwd_in2out_writable(VarNode *input) {
241
    ComputingGraphImpl::downcast(owner_graph())
242 243 244 245 246 247
        ->var_node_mem_manager().fwd_in2out_writable(input, this);
    return *this;
}


VarNode& VarNode::set_fwd_in2out_writable_force(VarNode *input) {
248
    mgb_assert(!owner_graph()->options().imperative_proxy_graph);
249
    ComputingGraphImpl::downcast(owner_graph())
250 251 252 253 254
        ->var_node_mem_manager().fwd_in2out_writable_force(input, this);
    return *this;
}

VarNode& VarNode::add_layout_constraint(LayoutConstraintCallback callback) {
255
    ComputingGraphImpl::downcast(owner_graph())
256 257 258 259 260 261
        ->var_node_mem_manager().add_layout_constraint(
                this, std::move(callback));
    return *this;
}

VarNode& VarNode::add_layout_constraint_contiguous() {
262
    ComputingGraphImpl::downcast(owner_graph())
263 264 265 266 267 268 269
            ->var_node_mem_manager()
            .add_layout_constraint_level(
                    this, VarNodeMemManager::LayoutConstraintLevel::CONTIG);
    return *this;
}

VarNode& VarNode::add_layout_constraint_monotone() {
270
    ComputingGraphImpl::downcast(owner_graph())
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
            ->var_node_mem_manager()
            .add_layout_constraint_level(
                    this, VarNodeMemManager::LayoutConstraintLevel::MONOTONE);
    return *this;
}

VarNode& VarNode::shape(const TensorShape &shape) {
    if (!m_shape.eq_shape(shape)) {
        mgb_assert(m_allow_shape_change, "invalid var shape change: "
                "dest=%s var=%s", shape.to_string().c_str(),
                dump_var_info({this}).c_str());
        m_shape = shape;
        for (auto &&i: m_shape_update_callback)
            i.second(this);
    }

#if MGB_ENABLE_DEBUG_UTIL
    static size_t log_limit = MGB_GETENV("MGB_LOG_VAR_SIZE_MB") ?
        std::stold(MGB_GETENV("MGB_LOG_VAR_SIZE_MB")) * (1024 * 1024) : 0;
    if (log_limit) {
        auto size = dtype().size(shape.total_nr_elems());
        static size_t max_size = 0;
        if (size >= log_limit) {
            bool updated = false;
            if (size > max_size) {
                max_size = size;
                updated = true;
            }
            mgb_log("var exceeds log limit: %s; size=%.3fMiB%s",
                    cg::dump_var_info({this}).c_str(),
                    size / (1024.0 * 1024),
                    updated ? " (with maxsize updated)" : "");
        }
    }
#endif

    return *this;
}

VarNode& VarNode::shape_alloc(const TensorShape &shape) {
    mgb_assert(shape.ndim, "got empty shape in shape_alloc: "
            "var=%s owner_opr=%s{%s}", cname(), owner_opr()->cname(),
            owner_opr()->dyn_typeinfo()->name);
    mgb_assert(contain_flag(Flag::NO_SYS_MEM_ALLOC),
                "shape_alloc() could only be used for vars with"
                " NO_SYS_MEM_ALLOC flag; actual var: %s",
                cg::dump_var_info({this}).c_str());
318
    ComputingGraphImpl::downcast(owner_graph())
319 320 321 322 323 324 325 326 327 328 329 330 331 332
        ->var_node_mem_manager().var_alloc_with_shape(this, shape);
    return *this;
}

bool VarNode::reset_dev_tensor_from_other_var(VarNode* src_var) {
    mgb_assert(contain_flag(VarNode::Flag::NO_SYS_MEM_ALLOC));
    if (src_var->owner_graph() == owner_graph()) {
        // this is actually readonly forwarding in the same graph
        mgb_assert(
                src_var->contain_flag(VarNode::Flag::PERSISTENT_DEVICE_VALUE) ||
                        !is_static_var_storage(src_var),
                "dynamic storage on src is required for dynamic readonly "
                "forwarding: vars=%s",
                dump_var_info({src_var, this}).c_str());
333
        auto&& trait = ComputingGraphImpl::downcast(owner_graph())
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
                               ->var_node_mem_manager()
                               .get_var_node_mem_trait_at(src_var);
        if (trait.seq_force_update_dest ||
            !src_var->dev_tensor().layout().is_contiguous()) {
            shape_alloc(src_var->shape())
                    .dev_tensor()
                    .copy_from_fixlayout(src_var->dev_tensor());
            return false;
        }
    }
    shape(src_var->shape());
    m_mem_plan.assign(src_var->m_mem_plan);
    assign_dev_tensor_from_tensor(src_var->dev_tensor());
    return true;
}

VarNode& VarNode::reset_dev_tensor_from_tensor(const DeviceTensorND& value) {
    mgb_assert(contain_flag(VarNode::Flag::NO_SYS_MEM_ALLOC));
    mgb_assert(value.comp_node() == comp_node(),
               "attempt to reset var on %s from a value on %s",
               comp_node().to_string().c_str(),
               value.comp_node().to_string().c_str());
    shape(value.shape());
    auto&& chk = m_mem_plan.reset_from_owner_var().chunk();
    assign_dev_tensor_from_tensor(value);
    chk.mem_alloc_status.set_from_owner_var();
    return *this;
}

void VarNode::assign_dev_tensor_from_tensor(const DeviceTensorND& value) {
    mgb_assert(value.layout().is_contiguous() &&
               m_dev_tensor.dtype() == value.dtype() &&
               m_dev_tensor.format() == value.format());
    if (cg::is_static_var_shape(this)) {
        mgb_assert(shape().eq_shape(value.shape()),
                   "shape mismatch for static inferrable var when setting dev "
                   "tensor: var=%s new_shape=%s",
                   cg::dump_var_info({this}).c_str(),
                   value.shape().to_string().c_str());
    }
    m_dev_tensor.reset(value.storage(), value.layout());
    m_dev_tensor.comp_node(comp_node());
    m_prev_dev_ptr = value.raw_ptr();
    mgb_assert(dev_tensor_valid());
}

VarNode& VarNode::add_rt_force_dynamic_mem_alloc_imply_chain(VarNode *dest) {
    mgb_assert(dest && dest->owner_graph() == owner_graph() &&
            (!contain_flag(Flag::FLAG_FREEZED) ||
             !dest->contain_flag(Flag::FLAG_FREEZED)));
    m_rt_force_dynamic_mem_alloc_imply_chain.push_back(dest);
    return *this;
}

VarNode& VarNode::comp_node(const CompNode &cn) {
    mgb_assert(cn.valid() && (!m_comp_node.valid() ||
                m_comp_node.mem_node() == cn.mem_node()));
    m_comp_node = cn;
    if (m_cn_sync_manager) {
        m_cn_sync_manager->comp_node(cn);
    }
    return *this;
}

#if MGB_ENABLE_JSON
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
std::shared_ptr<json::Value>
VarNode::dump_static_infer_info_to_json() const {
    using namespace cg::static_infer;
    auto&& mgr = static_cast<cg::ComputingGraphImpl*>(
            owner_graph())->static_infer_manager_impl();
    auto get_dep_type = [](const DepType& type) -> std::string {
        switch (type) {
#define cb(name) \
case DepType::name: \
    return #name;
            cb(SHAPE)
            cb(VALUE)
#undef cb
            default:
                mgb_throw(MegBrainError, "unknown dep type");
        }
    };
    auto get_infer_type = [](const InferType::Flag& type) {
        switch (type) {
#define cb(name) \
case InferType::Flag::name: \
    return json::String::make(#name);
            cb(NO_DESC)
            cb(CONST)
            cb(RT_STATIC)
            cb(MISSING_INP)
#undef cb
            default:
                mgb_throw(MegBrainError, "unknown infer type");
        }
    };
    auto make_tag = [&](const DepType& type) {
        VarNode* self = const_cast<VarNode*>(this);
        auto c_deps = mgr.get_deps({self, type});
        auto deps = json::Array::make();
        for (auto&& i : c_deps) {
            mgb_assert(i.dest);
            deps->add(json::Object::make({
                {"var", json::String::make(i.dest->id_str())},
                {"dep_type", json::String::make(get_dep_type(i.type))}
            }));
        }
        auto infer_type_handle = mgr.get_infer_type(self);
        auto inferred_result = json::Null::make();
        auto infer_type = type == DepType::SHAPE ? infer_type_handle.shape
                                                 : infer_type_handle.value;
        if (infer_type != InferType::Flag::NO_DESC) {
            if (type == DepType::SHAPE) {
                if (auto shape = mgr.infer_shape_fallible(self)) {
                    auto inferred_shape = json::Array::make();
                    for (size_t i = 0; i < shape->ndim; ++ i) {
                        inferred_shape->add(json::Number::make((*shape)[i]));
                    }
                    inferred_result = inferred_shape;
                }
            } else {
                if (auto p = mgr.infer_value_fallible(self)) {
                    auto&& dev = *p;
                    if (dev.shape().ndim == 1 &&
                        dev.shape(0) < TensorShape::MAX_NDIM &&
                        mgb_likely(dev.comp_node() == CompNode::default_cpu())) {
                        MGB_TRY {
                            size_t nr_elems = dev.shape(0);
                            auto&& dtype = dev.dtype();
                            void* vptr = dev.raw_ptr();
                            double data[nr_elems];
                            HostTensorND contig;
                            if (!dev.layout().is_contiguous()) {
                                // both src and dst are placed on default cpu,
                                // no need for sync
                                contig.copy_from(dev);
                                mgb_assert(contig.layout().is_contiguous());
                                vptr = contig.raw_ptr();
                            } 
                            static_cast_dtype(data, dtype, vptr, nr_elems);
                            auto inferred_value = json::Array::make();
                            for (size_t i = 0; i < nr_elems; ++ i) {
                                inferred_value->add(json::Number::make(data[i]));
                            }
                            inferred_result = inferred_value;
                        }
                        MGB_CATCH(ConversionError&, {});
                    } else {
                        inferred_result = json::String::make("Large Array");
                    }
                }
            }
        }
        return json::Object::make({
            {"node_type", json::String::make("static_infer_tag")},
            {"infer_type", get_infer_type(infer_type)},
            {"inferred_result", inferred_result},
            {"deps", deps}
        });
    };
    return json::Object::make({
#define TAG(type) {get_dep_type(type), make_tag(type)}
        TAG(DepType::SHAPE), TAG(DepType::VALUE)
#undef TAG
    });
}

501 502 503 504 505 506 507
std::shared_ptr<json::Value> VarNode::to_json() const {
    auto get_var = [](VarNode *p) -> std::shared_ptr<json::Value> {
        if(p)
            return json::String::make(p->id_str());
        return json::Null::make();
    };

508
    auto &&trait = ComputingGraphImpl::downcast(owner_graph()
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
            )->var_node_mem_manager().get_var_node_mem_trait(this);
    auto flag = json::Array::make();
    {
        // add flags
        size_t flag_checked = static_cast<size_t>(Flag::FLAG_FREEZED);
#define CHK(v) \
        do { \
            if (contain_flag(Flag::v))  { \
                flag->add(json::String::make(#v)); \
                flag_checked |= static_cast<size_t>(Flag::v); \
            } \
        } while(0)
        CHK(NO_SYS_MEM_ALLOC);
        CHK(NO_ALLOC_IF_UNUSED);
        CHK(NO_SYS_STATIC_MEM_ALLOC);
        CHK(NO_MEM_RECLAIM);
        CHK(RT_FORCE_DYNAMIC_MEM_ALLOC);
        CHK(VOLATILE_CONTENT);
        CHK(ALLOW_EMPTY_SHAPE);
        CHK(PERSISTENT_DEVICE_VALUE);
        CHK(DISALLOW_RT_FORCE_DYNAMIC_MEM_ALLOC);
        CHK(DISALLOW_VAR_SANITY_CHECK);
#undef CHK

        mgb_assert(flag_checked == static_cast<size_t>(m_flag));
    }

    auto rst = json::Object::make({
        {"node_type", json::String::make("var")},
        {"id", json::String::make(id_str())},
        {"name", json::String::make(name())},
        {"mem_readonly_fwd_src", get_var(trait.readonly_src)},
        {"force_update_src", get_var(trait.force_update_src)},
        {"mem_plan", m_mem_plan.valid() ?
            m_mem_plan.to_json() : json::Null::make()},
        {"comp_node", json::String::make(comp_node().to_string())},
        {"dev_ptr", json::Null::make()},
        {"prev_dev_ptr", json::NumberInt::make(reinterpret_cast<size_t>(
                    m_prev_dev_ptr))},
548 549
        {"flag", flag},
        {"static_infer_tags", dump_static_infer_info_to_json()}
550
    });
551

552 553 554 555 556 557 558 559 560 561 562 563 564 565
    if (m_prev_dev_ptr) {
        (*rst)["prev_dev_ptr_end"] = json::NumberInt::make(
                reinterpret_cast<size_t>(m_prev_dev_ptr) +
                m_mem_plan.layout().span().high_byte);
    }
    if (dev_tensor_valid()) {
        (*rst)["dev_ptr"] = json::NumberInt::make(reinterpret_cast<size_t>(
                    m_dev_tensor.raw_ptr()));
    }
    return rst;
}
#endif

MemAllocPlan& VarNode::init_mem_plan(const DeviceTensorND* fixed_alloc) {
566
    ComputingGraphImpl::downcast(owner_graph())
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
            ->var_node_mem_manager()
            .init_single_var_mem_plan(this, fixed_alloc);
    return m_mem_plan;
}

VarNode& VarNode::add_flag(Flag flag) {
    modify_flag(flag, m_flag | flag);
    return *this;
}

void VarNode::modify_flag(Flag delta, Flag new_flag) {
    if (contain_flag(Flag::FLAG_FREEZED)) {
        mgb_assert((delta & (
                    Flag::NO_MEM_RECLAIM |
                    Flag::NO_SYS_STATIC_MEM_ALLOC |
                    Flag::RT_FORCE_DYNAMIC_MEM_ALLOC)) == delta);

584
        mgb_assert(!ComputingGraphImpl::downcast(owner_graph())->
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
                var_node_mem_manager().optimize_started(),
                "could not modify var flags after optimization started");
    }
    mgb_assert(!(new_flag & Flag::RT_FORCE_DYNAMIC_MEM_ALLOC) ||
            !(new_flag & Flag::NO_SYS_MEM_ALLOC),
            "RT_FORCE_DYNAMIC_MEM_ALLOC conflicts with NO_SYS_MEM_ALLOC");
    mgb_assert(!(new_flag & Flag::NO_ALLOC_IF_UNUSED) ||
            !(new_flag & Flag::NO_SYS_MEM_ALLOC),
            "NO_ALLOC_IF_UNUSED conflicts with NO_SYS_MEM_ALLOC");
    mgb_assert(!(new_flag & Flag::DISALLOW_RT_FORCE_DYNAMIC_MEM_ALLOC) ||
            (new_flag & Flag::NO_MEM_RECLAIM),
            "DISALLOW_RT_FORCE_DYNAMIC_MEM_ALLOC must be added after "
            "NO_MEM_RECLAIM");
    m_flag = new_flag;
}

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}