/** * \file src/core/impl/graph/var_node.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ #include "megbrain/graph/var_node.h" #include "megbrain/graph/operator_node.h" #include "megbrain/graph/helper.h" #include "./cg_impl.h" using namespace mgb; using namespace cg; /* ===================== MemAllocPlan ===================== */ std::mutex MemAllocPlan::ReadonlyFwdList::list_mutex; void MemAllocPlan::ReadonlyFwdList::reset() { MGB_LOCK_GUARD(list_mutex); m_prev = m_next = nullptr; } void MemAllocPlan::ReadonlyFwdList::insert_after(const MemAllocPlan& prev, MemAllocPlan* self) { MGB_LOCK_GUARD(list_mutex); mgb_assert(!m_prev && !m_next); auto next = prev.m_readonly_fwd_list.m_next; prev.m_readonly_fwd_list.m_next = self; m_prev = const_cast(&prev); m_next = next; if (next) { next->m_readonly_fwd_list.m_prev = self; } } void MemAllocPlan::ReadonlyFwdList::remove_self() { MGB_LOCK_GUARD(list_mutex); if (m_prev) { if (m_next) { m_prev->m_readonly_fwd_list.m_next = m_next; m_next->m_readonly_fwd_list.m_prev = m_prev; } else { m_prev->m_readonly_fwd_list.m_next = nullptr; } m_prev = m_next = nullptr; } } MemAllocPlan::Chunk MemAllocPlan::sm_chunk_invalid_cond_exec_marker{nullptr}; MemAllocPlan::MemAllocPlan(VarNode *owner_var): m_chunk_storage(owner_var) { } MemAllocPlan& MemAllocPlan::assign(const MemAllocPlan &src) { mgb_assert(src.valid()); m_layout = src.m_layout; m_layout.dtype = dtype(); m_offset_byte = src.m_offset_byte; m_chunk = src.m_chunk; ++ m_chunk->m_refcnt; return *this; } MemAllocPlan& MemAllocPlan::assign_for_forward( const MemAllocPlan &src, const SubTensorSpec &sub) { mgb_assert(valid() && src.valid() && m_layout.eq_shape(sub.layout())); ++ (m_chunk = src.m_chunk)->m_refcnt; m_layout = sub.layout(); // make layout strong-contig for (int i = static_cast(m_layout.ndim) - 1; i >= 0; -- i) { if (m_layout.shape[i] == 1) { m_layout.stride[i] = i + 1 < static_cast(m_layout.ndim) ? m_layout.stride[i + 1] * m_layout.shape[i + 1] : 1; } } m_layout.dtype = dtype(); m_offset_byte = src.m_offset_byte + sub.offset_byte(); auto &&span = sub.layout().span(); mgb_assert(m_offset_byte + span.high_byte <= m_chunk->size() && static_cast(m_offset_byte) + span.low_byte >= 0); // Note: Multiple mem plans may be forwarded from the same mem plan. Here we // do not need to find the root mem plan. Instead, we just insert this node // to the linked list headed at the root node, obeying topological order, // but note that new nodes may be inserted into the middle of the list. m_readonly_fwd_list.insert_after(src, this); return *this; } MemAllocPlan& MemAllocPlan::reset_from_owner_var() { auto owner_var = m_chunk_storage.owner_var; m_layout.dtype = dtype(); m_layout.format = format(); m_layout.init_contiguous_stride(owner_var->shape()); m_offset_byte = 0; m_chunk = &m_chunk_storage; auto chk = m_chunk; chk->m_refcnt = 1; chk->m_size = m_layout.span().dist_byte(); chk->mem_alloc_status.set_invalid(); mgb_assert(chk->m_refcnt.is_lock_free()); // check size for not overflow mgb_assert(m_layout.total_nr_elems() <= m_layout.dtype.max_elements(), "var too large: %s", cg::dump_var_info({owner_var}).c_str()); return *this; } MemAllocPlan& MemAllocPlan::release_chunk() { mgb_assert(valid()); auto chk = m_chunk; bool need_consider = chk != &sm_chunk_invalid_cond_exec_marker; m_readonly_fwd_list.remove_self(); if (need_consider && (!--chk->m_refcnt)) { auto&& dv = chk->owner_var->m_dev_tensor; mgb_assert(dv.storage().comp_node_valid()); if (chk->size()) { mgb_assert(chk->mem_alloc_status.is_from_owner_var()); chk->m_size = 0; } chk->mem_alloc_status.set_invalid(); dv.storage({}); } m_chunk = nullptr; return *this; } MemAllocPlan& MemAllocPlan::layout(const TensorLayout& dest, bool allow_shape_change) { mgb_assert(allow_shape_change || m_layout.eq_shape(dest), "disallowed shape change: %s vs %s", m_layout.TensorShape::to_string().c_str(), dest.TensorShape::to_string().c_str()); m_layout = dest; m_layout.dtype = dtype(); return *this; } #if MGB_ENABLE_JSON std::shared_ptr MemAllocPlan::to_json() const { auto cvt_layout = [](const TensorLayout &layout) { auto shape = json::Array::make(), stride = json::Array::make(); for (size_t i = 0; i < layout.ndim; i ++) { shape->add(json::Number::make(layout.shape[i])); stride->add(json::Number::make(layout.stride[i])); } return json::Object::make({ {"shape", shape}, {"stride", stride}, {"dtype", json::String::make(layout.dtype.name())} }); }; return json::Object::make({ {"mem_chunk_id", json::String::make(m_chunk->id_str())}, {"layout", cvt_layout(m_layout)}, {"offset_byte", json::Number::make(m_offset_byte)} }); } #endif std::string MemAllocPlan::Chunk::id_str() const { return "chk" + std::to_string(owner_var->id()); } /* ===================== MemAllocPlan::Chunk ===================== */ #if MGB_ENABLE_JSON std::shared_ptr MemAllocPlan::Chunk::to_json() const { std::shared_ptr dev_ptr; if (owner_var->dev_tensor_valid()) { dev_ptr = json::NumberInt::make( reinterpret_cast(owner_var->dev_tensor().raw_ptr())); } else { dev_ptr = json::Null::make(); } return json::Object::make({ {"node_type", json::String::make("mem_chunk")}, {"id", json::String::make(id_str())}, {"size", json::Number::make(size())}, {"owner_var", json::String::make(owner_var->id_str())}, {"dev_ptr", dev_ptr} }); } #endif /* ===================== VarNode ===================== */ const std::string& VarNode::name() const { return m_name.valid() ? m_name.val() : owner_opr()->name(); } VarNode& VarNode::name(std::string name) { m_name = std::move(name); m_has_name_set = true; return *this; } const DeviceTensorND& VarNode::dev_tensor() const { mgb_assert(dev_tensor_valid()); return m_dev_tensor; } DeviceTensorND& VarNode::mutable_dev_tensor() { mgb_assert(dev_tensor_valid() && contain_flag(Flag::NO_SYS_MEM_ALLOC)); return m_dev_tensor; } VarNode& VarNode::dtype(DType dtype) { mgb_assert(dtype.valid() && !m_dev_tensor.dtype().valid()); m_dev_tensor.dtype(dtype); return *this; } VarNode& VarNode::format(TensorFormat format) { mgb_assert(format == m_dev_tensor.format() || m_dev_tensor.format().is_default()); m_dev_tensor.format(format); return *this; } bool VarNode::set_fwd_in2out_readonly( VarNode *input, const SubTensorSpec &sub) { if (owner_graph()->options().imperative_proxy_graph) { return false; } return ComputingGraphImpl::downcast(owner_graph()) ->var_node_mem_manager().fwd_in2out_readonly(input, sub, this); } VarNode& VarNode::set_fwd_in2out_writable(VarNode *input) { ComputingGraphImpl::downcast(owner_graph()) ->var_node_mem_manager().fwd_in2out_writable(input, this); return *this; } VarNode& VarNode::set_fwd_in2out_writable_force(VarNode *input) { mgb_assert(!owner_graph()->options().imperative_proxy_graph); ComputingGraphImpl::downcast(owner_graph()) ->var_node_mem_manager().fwd_in2out_writable_force(input, this); return *this; } VarNode& VarNode::add_layout_constraint(LayoutConstraintCallback callback) { ComputingGraphImpl::downcast(owner_graph()) ->var_node_mem_manager().add_layout_constraint( this, std::move(callback)); return *this; } VarNode& VarNode::add_layout_constraint_contiguous() { ComputingGraphImpl::downcast(owner_graph()) ->var_node_mem_manager() .add_layout_constraint_level( this, VarNodeMemManager::LayoutConstraintLevel::CONTIG); return *this; } VarNode& VarNode::add_layout_constraint_monotone() { ComputingGraphImpl::downcast(owner_graph()) ->var_node_mem_manager() .add_layout_constraint_level( this, VarNodeMemManager::LayoutConstraintLevel::MONOTONE); return *this; } VarNode& VarNode::shape(const TensorShape &shape) { if (!m_shape.eq_shape(shape)) { mgb_assert(m_allow_shape_change, "invalid var shape change: " "dest=%s var=%s", shape.to_string().c_str(), dump_var_info({this}).c_str()); m_shape = shape; for (auto &&i: m_shape_update_callback) i.second(this); } #if MGB_ENABLE_DEBUG_UTIL static size_t log_limit = MGB_GETENV("MGB_LOG_VAR_SIZE_MB") ? std::stold(MGB_GETENV("MGB_LOG_VAR_SIZE_MB")) * (1024 * 1024) : 0; if (log_limit) { auto size = dtype().size(shape.total_nr_elems()); static size_t max_size = 0; if (size >= log_limit) { bool updated = false; if (size > max_size) { max_size = size; updated = true; } mgb_log("var exceeds log limit: %s; size=%.3fMiB%s", cg::dump_var_info({this}).c_str(), size / (1024.0 * 1024), updated ? " (with maxsize updated)" : ""); } } #endif return *this; } VarNode& VarNode::shape_alloc(const TensorShape &shape) { mgb_assert(shape.ndim, "got empty shape in shape_alloc: " "var=%s owner_opr=%s{%s}", cname(), owner_opr()->cname(), owner_opr()->dyn_typeinfo()->name); mgb_assert(contain_flag(Flag::NO_SYS_MEM_ALLOC), "shape_alloc() could only be used for vars with" " NO_SYS_MEM_ALLOC flag; actual var: %s", cg::dump_var_info({this}).c_str()); ComputingGraphImpl::downcast(owner_graph()) ->var_node_mem_manager().var_alloc_with_shape(this, shape); return *this; } bool VarNode::reset_dev_tensor_from_other_var(VarNode* src_var) { mgb_assert(contain_flag(VarNode::Flag::NO_SYS_MEM_ALLOC)); if (src_var->owner_graph() == owner_graph()) { // this is actually readonly forwarding in the same graph mgb_assert( src_var->contain_flag(VarNode::Flag::PERSISTENT_DEVICE_VALUE) || !is_static_var_storage(src_var), "dynamic storage on src is required for dynamic readonly " "forwarding: vars=%s", dump_var_info({src_var, this}).c_str()); auto&& trait = ComputingGraphImpl::downcast(owner_graph()) ->var_node_mem_manager() .get_var_node_mem_trait_at(src_var); if (trait.seq_force_update_dest || !src_var->dev_tensor().layout().is_contiguous()) { shape_alloc(src_var->shape()) .dev_tensor() .copy_from_fixlayout(src_var->dev_tensor()); return false; } } shape(src_var->shape()); m_mem_plan.assign(src_var->m_mem_plan); assign_dev_tensor_from_tensor(src_var->dev_tensor()); return true; } VarNode& VarNode::reset_dev_tensor_from_tensor(const DeviceTensorND& value) { mgb_assert(contain_flag(VarNode::Flag::NO_SYS_MEM_ALLOC)); mgb_assert(value.comp_node() == comp_node(), "attempt to reset var on %s from a value on %s", comp_node().to_string().c_str(), value.comp_node().to_string().c_str()); shape(value.shape()); auto&& chk = m_mem_plan.reset_from_owner_var().chunk(); assign_dev_tensor_from_tensor(value); chk.mem_alloc_status.set_from_owner_var(); return *this; } void VarNode::assign_dev_tensor_from_tensor(const DeviceTensorND& value) { mgb_assert(value.layout().is_contiguous() && m_dev_tensor.dtype() == value.dtype() && m_dev_tensor.format() == value.format()); if (cg::is_static_var_shape(this)) { mgb_assert(shape().eq_shape(value.shape()), "shape mismatch for static inferrable var when setting dev " "tensor: var=%s new_shape=%s", cg::dump_var_info({this}).c_str(), value.shape().to_string().c_str()); } m_dev_tensor.reset(value.storage(), value.layout()); m_dev_tensor.comp_node(comp_node()); m_prev_dev_ptr = value.raw_ptr(); mgb_assert(dev_tensor_valid()); } VarNode& VarNode::add_rt_force_dynamic_mem_alloc_imply_chain(VarNode *dest) { mgb_assert(dest && dest->owner_graph() == owner_graph() && (!contain_flag(Flag::FLAG_FREEZED) || !dest->contain_flag(Flag::FLAG_FREEZED))); m_rt_force_dynamic_mem_alloc_imply_chain.push_back(dest); return *this; } VarNode& VarNode::comp_node(const CompNode &cn) { mgb_assert(cn.valid() && (!m_comp_node.valid() || m_comp_node.mem_node() == cn.mem_node())); m_comp_node = cn; if (m_cn_sync_manager) { m_cn_sync_manager->comp_node(cn); } return *this; } #if MGB_ENABLE_JSON std::shared_ptr VarNode::dump_static_infer_info_to_json() const { using namespace cg::static_infer; auto&& mgr = static_cast( owner_graph())->static_infer_manager_impl(); auto get_dep_type = [](const DepType& type) -> std::string { switch (type) { #define cb(name) \ case DepType::name: \ return #name; cb(SHAPE) cb(VALUE) #undef cb default: mgb_throw(MegBrainError, "unknown dep type"); } }; auto get_infer_type = [](const InferType::Flag& type) { switch (type) { #define cb(name) \ case InferType::Flag::name: \ return json::String::make(#name); cb(NO_DESC) cb(CONST) cb(RT_STATIC) cb(MISSING_INP) #undef cb default: mgb_throw(MegBrainError, "unknown infer type"); } }; auto make_tag = [&](const DepType& type) { VarNode* self = const_cast(this); auto c_deps = mgr.get_deps({self, type}); auto deps = json::Array::make(); for (auto&& i : c_deps) { mgb_assert(i.dest); deps->add(json::Object::make({ {"var", json::String::make(i.dest->id_str())}, {"dep_type", json::String::make(get_dep_type(i.type))} })); } auto infer_type_handle = mgr.get_infer_type(self); auto inferred_result = json::Null::make(); auto infer_type = type == DepType::SHAPE ? infer_type_handle.shape : infer_type_handle.value; if (infer_type != InferType::Flag::NO_DESC) { if (type == DepType::SHAPE) { if (auto shape = mgr.infer_shape_fallible(self)) { auto inferred_shape = json::Array::make(); for (size_t i = 0; i < shape->ndim; ++ i) { inferred_shape->add(json::Number::make((*shape)[i])); } inferred_result = inferred_shape; } } else { if (auto p = mgr.infer_value_fallible(self)) { auto&& dev = *p; if (dev.shape().ndim == 1 && dev.shape(0) < TensorShape::MAX_NDIM && mgb_likely(dev.comp_node() == CompNode::default_cpu())) { MGB_TRY { size_t nr_elems = dev.shape(0); auto&& dtype = dev.dtype(); void* vptr = dev.raw_ptr(); double data[nr_elems]; HostTensorND contig; if (!dev.layout().is_contiguous()) { // both src and dst are placed on default cpu, // no need for sync contig.copy_from(dev); mgb_assert(contig.layout().is_contiguous()); vptr = contig.raw_ptr(); } static_cast_dtype(data, dtype, vptr, nr_elems); auto inferred_value = json::Array::make(); for (size_t i = 0; i < nr_elems; ++ i) { inferred_value->add(json::Number::make(data[i])); } inferred_result = inferred_value; } MGB_CATCH(ConversionError&, {}); } else { inferred_result = json::String::make("Large Array"); } } } } return json::Object::make({ {"node_type", json::String::make("static_infer_tag")}, {"infer_type", get_infer_type(infer_type)}, {"inferred_result", inferred_result}, {"deps", deps} }); }; return json::Object::make({ #define TAG(type) {get_dep_type(type), make_tag(type)} TAG(DepType::SHAPE), TAG(DepType::VALUE) #undef TAG }); } std::shared_ptr VarNode::to_json() const { auto get_var = [](VarNode *p) -> std::shared_ptr { if(p) return json::String::make(p->id_str()); return json::Null::make(); }; auto &&trait = ComputingGraphImpl::downcast(owner_graph() )->var_node_mem_manager().get_var_node_mem_trait(this); auto flag = json::Array::make(); { // add flags size_t flag_checked = static_cast(Flag::FLAG_FREEZED); #define CHK(v) \ do { \ if (contain_flag(Flag::v)) { \ flag->add(json::String::make(#v)); \ flag_checked |= static_cast(Flag::v); \ } \ } while(0) CHK(NO_SYS_MEM_ALLOC); CHK(NO_ALLOC_IF_UNUSED); CHK(NO_SYS_STATIC_MEM_ALLOC); CHK(NO_MEM_RECLAIM); CHK(RT_FORCE_DYNAMIC_MEM_ALLOC); CHK(VOLATILE_CONTENT); CHK(ALLOW_EMPTY_SHAPE); CHK(PERSISTENT_DEVICE_VALUE); CHK(DISALLOW_RT_FORCE_DYNAMIC_MEM_ALLOC); CHK(DISALLOW_VAR_SANITY_CHECK); #undef CHK mgb_assert(flag_checked == static_cast(m_flag)); } auto rst = json::Object::make({ {"node_type", json::String::make("var")}, {"id", json::String::make(id_str())}, {"name", json::String::make(name())}, {"mem_readonly_fwd_src", get_var(trait.readonly_src)}, {"force_update_src", get_var(trait.force_update_src)}, {"mem_plan", m_mem_plan.valid() ? m_mem_plan.to_json() : json::Null::make()}, {"comp_node", json::String::make(comp_node().to_string())}, {"dev_ptr", json::Null::make()}, {"prev_dev_ptr", json::NumberInt::make(reinterpret_cast( m_prev_dev_ptr))}, {"flag", flag}, {"static_infer_tags", dump_static_infer_info_to_json()} }); if (m_prev_dev_ptr) { (*rst)["prev_dev_ptr_end"] = json::NumberInt::make( reinterpret_cast(m_prev_dev_ptr) + m_mem_plan.layout().span().high_byte); } if (dev_tensor_valid()) { (*rst)["dev_ptr"] = json::NumberInt::make(reinterpret_cast( m_dev_tensor.raw_ptr())); } return rst; } #endif MemAllocPlan& VarNode::init_mem_plan(const DeviceTensorND* fixed_alloc) { ComputingGraphImpl::downcast(owner_graph()) ->var_node_mem_manager() .init_single_var_mem_plan(this, fixed_alloc); return m_mem_plan; } VarNode& VarNode::add_flag(Flag flag) { modify_flag(flag, m_flag | flag); return *this; } void VarNode::modify_flag(Flag delta, Flag new_flag) { if (contain_flag(Flag::FLAG_FREEZED)) { mgb_assert((delta & ( Flag::NO_MEM_RECLAIM | Flag::NO_SYS_STATIC_MEM_ALLOC | Flag::RT_FORCE_DYNAMIC_MEM_ALLOC)) == delta); mgb_assert(!ComputingGraphImpl::downcast(owner_graph())-> var_node_mem_manager().optimize_started(), "could not modify var flags after optimization started"); } mgb_assert(!(new_flag & Flag::RT_FORCE_DYNAMIC_MEM_ALLOC) || !(new_flag & Flag::NO_SYS_MEM_ALLOC), "RT_FORCE_DYNAMIC_MEM_ALLOC conflicts with NO_SYS_MEM_ALLOC"); mgb_assert(!(new_flag & Flag::NO_ALLOC_IF_UNUSED) || !(new_flag & Flag::NO_SYS_MEM_ALLOC), "NO_ALLOC_IF_UNUSED conflicts with NO_SYS_MEM_ALLOC"); mgb_assert(!(new_flag & Flag::DISALLOW_RT_FORCE_DYNAMIC_MEM_ALLOC) || (new_flag & Flag::NO_MEM_RECLAIM), "DISALLOW_RT_FORCE_DYNAMIC_MEM_ALLOC must be added after " "NO_MEM_RECLAIM"); m_flag = new_flag; } // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}