rand.cpp 43.5 KB
Newer Older
1 2
#include "megbrain/opr/rand.h"
#include "megbrain/graph/grad_impl.h"
M
Megvii Engine Team 已提交
3
#include "megbrain/opr/utility.h"
4 5 6 7 8 9 10

#include "./internal/megdnn_opr_wrapper.inl"

using namespace mgb;
using namespace opr;
using namespace intl;

M
Megvii Engine Team 已提交
11 12 13 14
template <typename MegDNNOpr>
RNGOprBase<MegDNNOpr>::RNGOprBase(
        const OperatorNodeBaseCtorParam& opr, const Param& param)
        : Super(opr), m_param(param) {}
15

M
Megvii Engine Team 已提交
16
template <class MegDNNOpr>
17 18 19 20
UniqPtrWithCN<MegDNNOpr> RNGOprBase<MegDNNOpr>::create_megdnn_opr() {
    auto opr = intl::create_megdnn_opr<MegDNNOpr>(comp_node());
    opr->param() = param();
    return opr;
21 22
}

M
Megvii Engine Team 已提交
23
template <typename MegDNNOpr>
24
void RNGOprBase<MegDNNOpr>::ensure_megdnn_opr() {
25
    if (!m_dnn_opr || m_dnn_opr.comp_node() != comp_node()) {
26 27
        // activate comp_node for curandCreateGenerator in create_megdnn_opr
        comp_node().activate();
28
        m_dnn_opr = create_megdnn_opr();
29 30 31
    }
}

32
/* ================= RNG with shape =================  */
M
Megvii Engine Team 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
#define _INST_RNG_OPR_WITH_SHAPE(RNGOpr, name)                                        \
    MGB_DYN_TYPE_OBJ_FINAL_IMPL(RNGOpr);                                              \
    cg::OperatorNodeBase::NodeProp* RNGOpr::do_make_node_prop() const {               \
        auto prop = Super::do_make_node_prop();                                       \
        prop->add_flag(NodeProp::Flag::IMPURE_FUNC);                                  \
        prop->reset_dep_type(input(), {NodeProp::DepType::HOST_VALUE});               \
        for (auto i : input()) {                                                      \
            prop->add_dep_type_existing_var(i, NodeProp::DepType::VALUE_ALLOW_EMPTY); \
        }                                                                             \
        return prop;                                                                  \
    }                                                                                 \
    RNGOpr::RNGOpr(                                                                   \
            VarNode* shape, const Param& param, const OperatorNodeConfig& config)     \
            : Super({shape->owner_graph(), config, (name), {shape}}, param) {         \
        DType dtype = DType::from_enum(param.dtype);                                  \
        add_input({shape});                                                           \
        add_output(None)->dtype(dtype).add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);    \
        cg::add_workspace_output(this);                                               \
        add_equivalence_component<ScalarHash<void*>>(this);                           \
    }                                                                                 \
    SymbolVar RNGOpr::make(                                                           \
            SymbolVar shape, const Param& param, const OperatorNodeConfig& config) {  \
        return shape.insert_single_output_opr<RNGOpr>(shape.node(), param, config);   \
    }                                                                                 \
    void RNGOpr::init_output_static_infer_desc() {                                    \
        using namespace cg::static_infer;                                             \
        auto&& mgr = owner_graph()->static_infer_manager();                           \
        auto infer_out = [](TensorShape& dest, const InpVal& inp) {                   \
            cg::copy_tensor_value_to_shape(dest, inp.val.at(0).value());              \
            return true;                                                              \
        };                                                                            \
        auto infer_wk = [this](TensorShape& dest, const InpVal& inp) {                \
            ensure_megdnn_opr();                                                      \
            dest.ndim = 1;                                                            \
            dest.shape[0] = m_dnn_opr->get_workspace_in_bytes(                        \
                    {inp.val.at(0).shape(), output(0)->dtype()});                     \
            return true;                                                              \
        };                                                                            \
        mgr.register_shape_infer(                                                     \
                output(0),                                                            \
                {SourceType::DEP, {{input(0), DepType::VALUE}}, infer_out});          \
        mgr.register_shape_infer(                                                     \
                output(1),                                                            \
                {SourceType::DEP, {{output(0), DepType::SHAPE}}, infer_wk});          \
    }                                                                                 \
    void RNGOpr::scn_do_execute() {                                                   \
        auto&& ret = output(0);                                                       \
        if (ret->layout().is_empty()) {                                               \
            mgb_assert(ret->dev_tensor().empty());                                    \
            return;                                                                   \
        }                                                                             \
        m_dnn_opr->exec(                                                              \
                ret->dev_tensor().as_megdnn(),                                        \
                get_megdnn_workspace_from_var(output(1)));                            \
    }
88

M
Megvii Engine Team 已提交
89 90 91
_INST_RNG_OPR_WITH_SHAPE(UniformRNG, "uniform_rng")
_INST_RNG_OPR_WITH_SHAPE(GaussianRNG, "gaussian_rng")
_INST_RNG_OPR_WITH_SHAPE(PermutationRNG, "permutation_rng")
92 93 94 95
#undef _INST_RNG_OPR_WITH_SHAPE

/* ================= RNG with input =================  */
#define _AS_MEGDNN(idx) input((idx))->dev_tensor().as_megdnn()
M
Megvii Engine Team 已提交
96 97 98 99
#define _INFER_WK_DEPS(idx) \
    { input((idx)), DepType::SHAPE }
#define _INFER_WK_ARGS(idx) \
    { inp.val.at((idx)).shape(), input((idx))->dtype() }
100

M
Megvii Engine Team 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
#define _INST_RNG_OPR_WITH_INPUT(RNGOpr, name)                                         \
    MGB_DYN_TYPE_OBJ_FINAL_IMPL(RNGOpr);                                               \
    RNGOpr::RNGOpr(                                                                    \
            _INPUTS(VarNode*, ), const Param& param, const OperatorNodeConfig& config) \
            : Super({i0->owner_graph(), config, (name), {_INPUTS(, )}}, param) {       \
        add_input({_INPUTS(, )});                                                      \
        add_output(None)                                                               \
                ->dtype(i0->dtype())                                                   \
                .add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);                           \
        cg::add_workspace_output(this);                                                \
        add_equivalence_component<ScalarHash<void*>>(this);                            \
    }                                                                                  \
    SymbolVar RNGOpr::make(                                                            \
            _INPUTS(SymbolVar, ), const Param& param,                                  \
            const OperatorNodeConfig& config) {                                        \
        return i0.insert_single_output_opr<RNGOpr>(_INPUTS(, .node()), param, config); \
    }                                                                                  \
    void RNGOpr::init_output_static_infer_desc() {                                     \
        using namespace cg::static_infer;                                              \
        auto&& mgr = owner_graph()->static_infer_manager();                            \
        auto infer_wk = [this](TensorShape& dest, const InpVal& inp) {                 \
            ensure_megdnn_opr();                                                       \
            dest.ndim = 1;                                                             \
            dest.shape[0] = m_dnn_opr->get_workspace_in_bytes(                         \
                    _FOR_EACH(_INFER_WK_ARGS),                                         \
                    {output(0)->shape(), output(0)->dtype()});                         \
            return true;                                                               \
        };                                                                             \
        mgr.register_shape_infer(output(0), ShapeInferDesc::make_identity(input(0)));  \
        mgr.register_shape_infer(                                                      \
                output(1), {SourceType::DEP, {_FOR_EACH(_INFER_WK_DEPS)}, infer_wk});  \
    }                                                                                  \
    void RNGOpr::add_input_layout_constraint() {                                       \
        for (auto i : input())                                                         \
            i->add_layout_constraint_contiguous();                                     \
    };                                                                                 \
    void RNGOpr::scn_do_execute() {                                                    \
        auto&& ret = output(0);                                                        \
        if (ret->layout().is_empty()) {                                                \
            mgb_assert(ret->dev_tensor().empty());                                     \
            return;                                                                    \
        }                                                                              \
        m_dnn_opr->exec(                                                               \
                _FOR_EACH(_AS_MEGDNN), output(0)->dev_tensor().as_megdnn(),            \
                get_megdnn_workspace_from_var(output(1)));                             \
    }                                                                                  \
    cg::OperatorNodeBase::NodeProp* RNGOpr::do_make_node_prop() const {                \
        auto prop = Super::do_make_node_prop();                                        \
        prop->add_flag(NodeProp::Flag::IMPURE_FUNC);                                   \
        for (auto i : input()) {                                                       \
            prop->add_dep_type_existing_var(i, NodeProp::DepType::VALUE_ALLOW_EMPTY);  \
        }                                                                              \
        return prop;                                                                   \
    }
155 156 157

/* ================= 1 input =================  */
#define _INPUTS(prefix, subfix) prefix i0 subfix
M
Megvii Engine Team 已提交
158 159
#define _FOR_EACH(cb)           cb(0)
_INST_RNG_OPR_WITH_INPUT(PoissonRNG, "poisson_rng")
160 161 162 163
#undef _INPUTS
#undef _FOR_EACH

/* ================= 2 input =================  */
M
Megvii Engine Team 已提交
164 165 166 167
#define _INPUTS(prefix, subfix) prefix i0 subfix, prefix i1 subfix
#define _FOR_EACH(cb)           cb(0), cb(1)
_INST_RNG_OPR_WITH_INPUT(BetaRNG, "beta_rng")
_INST_RNG_OPR_WITH_INPUT(GammaRNG, "gamma_rng")
168 169 170 171 172 173 174
#undef _INPUTS
#undef _FOR_EACH

#undef _AS_MEGDNN
#undef _INFER_WK_DEPS
#undef _INFER_WK_ARGS
#undef _INST_RNG_OPR_WITH_INPUT
175

M
Megvii Engine Team 已提交
176 177 178 179
#define IMPL(_cls)                              \
    MGB_IMPL_OPR_GRAD(_cls) {                   \
        MGB_MARK_USED_VAR(out_grad);            \
        return InvalidGrad::make(opr, wrt_idx); \
180
    }
181 182 183 184

namespace mgb {
namespace opr {
namespace intl {
185 186 187 188 189 190
template class RNGOprBase<::megdnn::GaussianRNG>;
template class RNGOprBase<::megdnn::UniformRNG>;
template class RNGOprBase<::megdnn::GammaRNG>;
template class RNGOprBase<::megdnn::PermutationRNG>;
template class RNGOprBase<::megdnn::BetaRNG>;
template class RNGOprBase<::megdnn::PoissonRNG>;
191 192
template class RNGOprBase<::megdnn::ShuffleRNGForward>;
template class RNGOprBase<::megdnn::ShuffleRNGBackward>;
193 194
template class RNGOprBase<::megdnn::DropoutForward>;
template class RNGOprBase<::megdnn::DropoutBackward>;
195 196
template class RNGOprBase<::megdnn::MultiHeadAttnForward>;
template class RNGOprBase<::megdnn::MultiHeadAttnBackward>;
197
#if MGB_ENABLE_GRAD
198 199
IMPL(GaussianRNG);
IMPL(UniformRNG);
200 201 202 203
IMPL(GammaRNG);
IMPL(PoissonRNG);
IMPL(PermutationRNG);
IMPL(BetaRNG);
204
#endif
205 206 207 208 209 210 211 212
}  // namespace intl
}  // namespace opr
}  // namespace mgb

/* ================= ShuffleRNGForward =================  */

MGB_DYN_TYPE_OBJ_FINAL_IMPL(ShuffleRNGForward);

M
Megvii Engine Team 已提交
213 214
ShuffleRNGForward::ShuffleRNGForward(
        VarNode* data, const Param& param, const OperatorNodeConfig& config)
215 216
        : Super({data->owner_graph(), config, "shuffle_rng", {data}}, param) {
    add_input({data});
M
Megvii Engine Team 已提交
217 218
    add_output(None)->dtype(data->dtype()).add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
    add_output(None)->dtype(dtype::Int32{}).add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
219 220 221 222
    cg::add_workspace_output(this);
    add_equivalence_component<ScalarHash<void*>>(this);
}

M
Megvii Engine Team 已提交
223 224
SymbolVarArray ShuffleRNGForward::make(
        SymbolVar in_tensor, const Param& param, const OperatorNodeConfig& config) {
225
    auto node = in_tensor.node()->owner_graph()->insert_opr(
M
Megvii Engine Team 已提交
226
            std::make_unique<ShuffleRNGForward>(in_tensor.node(), param, config));
227 228
    mgb_assert(node->output().size() == 3);
    return {node->output(0), node->output(1)};
229
}
230 231 232 233 234

void ShuffleRNGForward::init_output_static_infer_desc() {
    using namespace cg::static_infer;
    auto&& mgr = owner_graph()->static_infer_manager();

M
Megvii Engine Team 已提交
235
    mgr.register_shape_infer(output(0), ShapeInferDesc::make_identity(input(0)));
236 237 238

    auto infer_oshp1 = [this](TensorShape& dest, const InpVal& iv) {
        TensorLayout o0, o1;
M
Megvii Engine Team 已提交
239
        m_dnn_opr->deduce_layout({iv.val[0].shape(), input(0)->dtype()}, o0, o1);
240 241 242 243
        dest = o1;
        return true;
    };
    mgr.register_shape_infer(
M
Megvii Engine Team 已提交
244
            output(1), {SourceType::DEP, {{input(0), DepType::SHAPE}}, infer_oshp1});
245 246 247 248 249 250 251 252 253 254 255

    auto infer_wk = [this](TensorShape& dest, const InpVal& inp) {
        ensure_megdnn_opr();
        dest.ndim = 1;
        dest.shape[0] = m_dnn_opr->get_workspace_in_bytes(
                {inp.val[0].shape(), input(0)->dtype()},
                {output(0)->shape(), output(0)->dtype()},
                {output(1)->shape(), output(1)->dtype()});
        return true;
    };
    mgr.register_shape_infer(
M
Megvii Engine Team 已提交
256
            output(2), {SourceType::DEP, {{input(0), DepType::SHAPE}}, infer_wk});
257 258
}

259 260 261 262 263
void ShuffleRNGForward::add_input_layout_constraint() {
    input(0)->add_layout_constraint_contiguous();
};

void ShuffleRNGForward::scn_do_execute() {
264 265 266 267 268
    auto&& ret = output(0);
    if (ret->layout().is_empty()) {
        mgb_assert(ret->dev_tensor().empty());
        return;
    }
M
Megvii Engine Team 已提交
269 270 271 272
    m_dnn_opr->exec(
            input(0)->dev_tensor().as_megdnn(), output(0)->dev_tensor().as_megdnn(),
            output(1)->dev_tensor().as_megdnn(),
            get_megdnn_workspace_from_var(output(2)));
273 274
}

275 276 277 278
cg::OperatorNodeBase::NodeProp* ShuffleRNGForward::do_make_node_prop() const {
    auto prop = Super::do_make_node_prop();
    prop->add_flag(NodeProp::Flag::IMPURE_FUNC);
    for (auto i : input()) {
M
Megvii Engine Team 已提交
279
        prop->add_dep_type_existing_var(i, NodeProp::DepType::VALUE_ALLOW_EMPTY);
280 281 282 283
    }
    return prop;
}

284 285 286 287 288 289 290 291 292 293 294 295
#if MGB_ENABLE_GRAD
MGB_IMPL_OPR_GRAD(ShuffleRNGForward) {
    mgb_assert(out_grad.size() == 3 && wrt_idx == 0 && !out_grad[2]);
    if (!out_grad[0])
        return nullptr;
    return ShuffleRNGBackward::make(out_grad[0], opr.output(1), opr.input(0)).node();
}
#endif

MGB_DYN_TYPE_OBJ_FINAL_IMPL(ShuffleRNGBackward);
MEGDNN_OPR_INIT3(ShuffleRNGBackward, "shuffle_rng_bwd", 2, true)

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
/* ================= DropoutForward =================  */

MGB_DYN_TYPE_OBJ_FINAL_IMPL(DropoutForward);

DropoutForward::DropoutForward(
        VarNode* inp, const Param& param, const OperatorNodeConfig& config)
        : Super({inp->owner_graph(), config, "dropout", {inp}}, param) {
    add_input({inp});
    add_output(None)->dtype(inp->dtype()).add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
    add_output(None)->dtype(dtype::Byte()).add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
    cg::add_workspace_output(this);
    add_equivalence_component<ScalarHash<void*>>(this);
}

SymbolVarArray DropoutForward::make(
        SymbolVar inp, const Param& param, const OperatorNodeConfig& config) {
    auto node = inp.node()->owner_graph()->insert_opr(
            std::make_unique<DropoutForward>(inp.node(), param, config));
    mgb_assert(node->output().size() == 3);
    return {node->output(0), node->output(1)};
}

void DropoutForward::init_output_static_infer_desc() {
    using namespace cg::static_infer;
    auto&& mgr = owner_graph()->static_infer_manager();
    mgr.register_shape_infer(output(0), ShapeInferDesc::make_identity(input(0)));

    auto infer_mask = [this](TensorShape& dest, const InpVal& iv) {
        ensure_megdnn_opr();
        dest.ndim = 1;
        dest.shape[0] = m_dnn_opr->get_mask_size_in_bytes(
                {iv.val[0].shape(), input(0)->dtype()});
        return true;
    };
    mgr.register_shape_infer(
            output(1), {SourceType::DEP, {{input(0), DepType::SHAPE}}, infer_mask});

    auto infer_wk = [this](TensorShape& dest, const InpVal& inp) {
        ensure_megdnn_opr();
        dest.ndim = 1;
        dest.shape[0] = m_dnn_opr->get_workspace_in_bytes(
                {inp.val[0].shape(), input(0)->dtype()},
                {output(0)->shape(), output(0)->dtype()},
                {output(1)->shape(), output(1)->dtype()});
        return true;
    };
    mgr.register_shape_infer(
            output(2), {SourceType::DEP, {{input(0), DepType::SHAPE}}, infer_wk});
}

void DropoutForward::add_input_layout_constraint() {
    input(0)->add_layout_constraint_contiguous();
};

void DropoutForward::scn_do_execute() {
    auto&& ret = output(0);
    if (ret->layout().is_empty()) {
        mgb_assert(ret->dev_tensor().empty());
        return;
    }
    m_dnn_opr->exec(
            input(0)->dev_tensor().as_megdnn(), output(0)->dev_tensor().as_megdnn(),
            output(1)->dev_tensor().as_megdnn(),
            get_megdnn_workspace_from_var(output(2)));
}

cg::OperatorNodeBase::NodeProp* DropoutForward::do_make_node_prop() const {
    auto prop = Super::do_make_node_prop();
    prop->add_flag(NodeProp::Flag::IMPURE_FUNC);
    for (auto i : input()) {
        prop->add_dep_type_existing_var(i, NodeProp::DepType::VALUE_ALLOW_EMPTY);
    }
    return prop;
}

#if MGB_ENABLE_GRAD
MGB_IMPL_OPR_GRAD(DropoutForward) {
    SymbolVar grad = DropoutBackward::make(out_grad[0], opr.output(1), opr.param());
    VarNodeArray ret;
    ret.push_back(grad.node());
    return ret;
}
#endif

380
/* ==================== DropoutBackward ==================== */
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425

MGB_DYN_TYPE_OBJ_FINAL_IMPL(DropoutBackward);

DropoutBackward::DropoutBackward(
        VarNode* doup, VarNode* mask, const Param& param,
        const OperatorNodeConfig& config)
        : Super({doup->owner_graph(), config, "dropout_backward", {doup, mask}}, 0,
                true) {
    init_megdnn_opr(*this, param);
    add_input({doup, mask});
}

SymbolVar DropoutBackward::make(
        SymbolVar doup, SymbolVar mask, const Param& param,
        const OperatorNodeConfig& config) {
    return doup.insert_single_output_opr<DropoutBackward>(
            doup.node(), mask.node(), param, config);
}

void DropoutBackward::init_output_static_infer_desc() {
    using namespace cg::static_infer;
    auto&& mgr = owner_graph()->static_infer_manager();
    mgr.register_shape_infer(output(0), ShapeInferDesc::make_identity(input(0)));
    this->init_output_static_infer_desc_workspace(false);
}

void DropoutBackward::init_output_dtype() {
    output(0)->dtype(input(0)->dtype());
}

size_t DropoutBackward::get_workspace_size_bytes(
        const TensorShapeArray& input_shapes,
        const TensorShapeArray& output_shapes) const {
    return megdnn_opr()->get_workspace_in_bytes(
            {input_shapes[0], input(0)->dtype(), input(0)->format()},
            {input_shapes[1], input(1)->dtype(), input(1)->format()},
            {output_shapes[0], output(0)->dtype(), output(0)->format()});
}

void DropoutBackward::scn_do_execute() {
    megdnn_opr()->exec(
            input(0)->dev_tensor().as_megdnn(), input(1)->dev_tensor().as_megdnn(),
            output(0)->dev_tensor().as_megdnn(), {});
}

426 427 428
/* ==================== MultiHeadAttnForward ==================== */
using INPUT_TYPE = MultiHeadAttnForward::Param::TENSOR_COMBINATION_TYPE;

429 430 431
MGB_DYN_TYPE_OBJ_FINAL_IMPL(MultiHeadAttnForward);

MultiHeadAttnForward::MultiHeadAttnForward(
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
        VarNode* queries, VarNode* keys, VarNode* values, VarNode* qkvo_weight_bias,
        VarNode* attn_mask, VarNode* bias_k, VarNode* bias_v, const Param& param,
        const OperatorNodeConfig& config)
        : Super{{queries->owner_graph(),
                 config,
                 "multi_head_attn",
                 {queries, keys, values, qkvo_weight_bias, attn_mask, bias_k, bias_v}},
                param} {
    mgb_assert(
            param.tensor_combination_type ==
            MultiHeadAttnForward::Param::TENSOR_COMBINATION_TYPE::ALL);
    add_input({queries, keys, values, qkvo_weight_bias, attn_mask, bias_k, bias_v});
    add_output(None)->dtype(queries->dtype());
    add_output(None)
            ->dtype(queries->dtype())
            .add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
    add_output(None)->dtype(dtype::Byte()).add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
    add_output(None)
            ->dtype(queries->dtype())
            .add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
    cg::add_workspace_output(this);
    add_equivalence_component<ScalarHash<void*>>(this);
}

MultiHeadAttnForward::MultiHeadAttnForward(
        VarNode* queries, VarNode* keys, VarNode* values, VarNode* qkvo_weight_bias,
        VarNode* attn_mask, const Param& param, const OperatorNodeConfig& config)
        : Super{{queries->owner_graph(),
                 config,
                 "multi_head_attn",
                 {queries, keys, values, qkvo_weight_bias, attn_mask}},
                param} {
    mgb_assert(
            param.tensor_combination_type ==
            MultiHeadAttnForward::Param::TENSOR_COMBINATION_TYPE::ONLY_MASK);
    add_input({queries, keys, values, qkvo_weight_bias, attn_mask});
    add_output(None)->dtype(queries->dtype());
    add_output(None)
            ->dtype(queries->dtype())
            .add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
    add_output(None)->dtype(dtype::Byte()).add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
    add_output(None)
            ->dtype(queries->dtype())
            .add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
    cg::add_workspace_output(this);
    add_equivalence_component<ScalarHash<void*>>(this);
}

MultiHeadAttnForward::MultiHeadAttnForward(
        VarNode* queries, VarNode* keys, VarNode* values, VarNode* qkvo_weight_bias,
        VarNode* bias_k, VarNode* bias_v, const Param& param,
        const OperatorNodeConfig& config)
        : Super{{queries->owner_graph(),
                 config,
                 "multi_head_attn",
                 {queries, keys, values, qkvo_weight_bias, bias_k, bias_v}},
                param} {
    mgb_assert(
            param.tensor_combination_type ==
            MultiHeadAttnForward::Param::TENSOR_COMBINATION_TYPE::ONLY_BIASKV);
    add_input({queries, keys, values, qkvo_weight_bias, bias_k, bias_v});
    add_output(None)->dtype(queries->dtype());
    add_output(None)
            ->dtype(queries->dtype())
            .add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
    add_output(None)->dtype(dtype::Byte()).add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
    add_output(None)
            ->dtype(queries->dtype())
            .add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
    cg::add_workspace_output(this);
    add_equivalence_component<ScalarHash<void*>>(this);
}

MultiHeadAttnForward::MultiHeadAttnForward(
        VarNode* queries, VarNode* keys, VarNode* values, VarNode* qkvo_weight_bias,
507 508 509 510
        const Param& param, const OperatorNodeConfig& config)
        : Super{{queries->owner_graph(),
                 config,
                 "multi_head_attn",
511
                 {queries, keys, values, qkvo_weight_bias}},
512
                param} {
513 514 515 516 517
    mgb_assert(
            param.tensor_combination_type ==
            MultiHeadAttnForward::Param::TENSOR_COMBINATION_TYPE::NONE);
    add_input({queries, keys, values, qkvo_weight_bias});
    add_output(None)->dtype(queries->dtype());
518 519 520 521
    add_output(None)
            ->dtype(queries->dtype())
            .add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
    add_output(None)->dtype(dtype::Byte()).add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
522 523 524
    add_output(None)
            ->dtype(queries->dtype())
            .add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
525 526 527 528 529
    cg::add_workspace_output(this);
    add_equivalence_component<ScalarHash<void*>>(this);
}

SymbolVarArray MultiHeadAttnForward::make(
530 531 532
        SymbolVar queries, SymbolVar keys, SymbolVar values, SymbolVar qkvo_weight_bias,
        SymbolVar attn_mask, SymbolVar bias_k, SymbolVar bias_v, const Param& param,
        const OperatorNodeConfig& config) {
533 534 535
    auto outs = queries.node()
                        ->owner_graph()
                        ->insert_opr(std::make_unique<MultiHeadAttnForward>(
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
                                queries.node(), keys.node(), values.node(),
                                qkvo_weight_bias.node(), attn_mask.node(),
                                bias_k.node(), bias_v.node(), param, config))
                        ->output();
    mgb_assert(outs.size() == 5);
    return {outs[0], outs[1], outs[2], outs[3]};
}
SymbolVarArray MultiHeadAttnForward::make(
        SymbolVar queries, SymbolVar keys, SymbolVar values, SymbolVar qkvo_weight_bias,
        SymbolVar attn_mask, const Param& param, const OperatorNodeConfig& config) {
    auto outs =
            queries.node()
                    ->owner_graph()
                    ->insert_opr(std::make_unique<MultiHeadAttnForward>(
                            queries.node(), keys.node(), values.node(),
                            qkvo_weight_bias.node(), attn_mask.node(), param, config))
                    ->output();
    mgb_assert(outs.size() == 5);
    return {outs[0], outs[1], outs[2], outs[3]};
}
SymbolVarArray MultiHeadAttnForward::make(
        SymbolVar queries, SymbolVar keys, SymbolVar values, SymbolVar qkvo_weight_bias,
        SymbolVar bias_k, SymbolVar bias_v, const Param& param,
        const OperatorNodeConfig& config) {
    auto outs = queries.node()
                        ->owner_graph()
                        ->insert_opr(std::make_unique<MultiHeadAttnForward>(
                                queries.node(), keys.node(), values.node(),
                                qkvo_weight_bias.node(), bias_k.node(), bias_v.node(),
565 566
                                param, config))
                        ->output();
567 568 569 570 571 572 573 574 575 576 577 578 579 580
    mgb_assert(outs.size() == 5);
    return {outs[0], outs[1], outs[2], outs[3]};
}
SymbolVarArray MultiHeadAttnForward::make(
        SymbolVar queries, SymbolVar keys, SymbolVar values, SymbolVar qkvo_weight_bias,
        const Param& param, const OperatorNodeConfig& config) {
    auto outs = queries.node()
                        ->owner_graph()
                        ->insert_opr(std::make_unique<MultiHeadAttnForward>(
                                queries.node(), keys.node(), values.node(),
                                qkvo_weight_bias.node(), param, config))
                        ->output();
    mgb_assert(outs.size() == 5);
    return {outs[0], outs[1], outs[2], outs[3]};
581 582 583 584 585 586 587
}

void MultiHeadAttnForward::init_output_static_infer_desc() {
    using namespace cg::static_infer;
    auto&& mgr = owner_graph()->static_infer_manager();
    mgr.register_shape_infer(output(0), ShapeInferDesc::make_identity(input(0)));

588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
    auto infer_oshp1 = [this](TensorShape& dest, const InpVal& iv) {
        TensorLayout in0{iv.val[0].shape(), input(0)->dtype()};
        TensorLayout in1{iv.val[1].shape(), input(1)->dtype()};
        TensorLayout in2{iv.val[2].shape(), input(2)->dtype()};
        TensorLayout in3{iv.val[3].shape(), input(3)->dtype()};
        TensorLayout in4{iv.val[4].shape(), input(4)->dtype()};
        TensorLayout in5{iv.val[5].shape(), input(5)->dtype()};
        TensorLayout in6{iv.val[6].shape(), input(6)->dtype()};
        TensorLayout o0, o1, o2, o3;
        m_dnn_opr->deduce_layout(in0, in1, in2, in3, in4, in5, in6, o0, o1, o2, o3);
        dest = o1;
        return true;
    };
    mgr.register_shape_infer(
            output(1), {SourceType::DEP, {{input(0), DepType::SHAPE}}, infer_oshp1});

604 605 606
    auto infer_mask = [this](TensorShape& dest, const InpVal& iv) {
        ensure_megdnn_opr();
        dest.ndim = 1;
607 608 609 610 611 612 613 614 615 616 617 618 619 620
        dest.shape[0] = m_dnn_opr->get_mask_reservespace_in_bytes(
                {iv.val[0].shape(), input(0)->dtype()},
                {iv.val[1].shape(), input(1)->dtype()},
                {iv.val[2].shape(), input(2)->dtype()},
                {iv.val[3].shape(), input(3)->dtype()},
                {iv.val[4].shape(), input(4)->dtype()},
                {iv.val[5].shape(), input(5)->dtype()},
                {iv.val[6].shape(), input(6)->dtype()}, {}, {}, {}, {});
        return true;
    };
    auto infer_othr = [this](TensorShape& dest, const InpVal& iv) {
        ensure_megdnn_opr();
        dest.ndim = 1;
        dest.shape[0] = m_dnn_opr->get_othr_reservespace_in_bytes(
621 622 623
                {iv.val[0].shape(), input(0)->dtype()},
                {iv.val[1].shape(), input(1)->dtype()},
                {iv.val[2].shape(), input(2)->dtype()},
624 625 626 627
                {iv.val[3].shape(), input(3)->dtype()},
                {iv.val[4].shape(), input(4)->dtype()},
                {iv.val[5].shape(), input(5)->dtype()},
                {iv.val[6].shape(), input(6)->dtype()}, {}, {}, {}, {});
628 629 630
        return true;
    };
    mgr.register_shape_infer(
631 632 633
            output(2), {SourceType::DEP, {{input(0), DepType::SHAPE}}, infer_mask});
    mgr.register_shape_infer(
            output(3), {SourceType::DEP, {{input(0), DepType::SHAPE}}, infer_othr});
634 635 636 637 638 639 640 641 642 643 644
}

void MultiHeadAttnForward::add_input_layout_constraint() {
    input(0)->add_layout_constraint_contiguous();
    input(1)->add_layout_constraint_contiguous();
    input(2)->add_layout_constraint_contiguous();
    input(3)->add_layout_constraint_contiguous();
};

void MultiHeadAttnForward::scn_do_execute() {
    auto&& ret = output(0);
645
    auto input_type = m_dnn_opr->param().tensor_combination_type;
646 647 648 649
    if (ret->layout().is_empty()) {
        mgb_assert(ret->dev_tensor().empty());
        return;
    }
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
    megdnn::TensorND empty_dnn;
    if (input_type == INPUT_TYPE::ALL) {
        m_dnn_opr->exec(
                input(0)->dev_tensor().as_megdnn(), input(1)->dev_tensor().as_megdnn(),
                input(2)->dev_tensor().as_megdnn(), input(3)->dev_tensor().as_megdnn(),
                input(4)->dev_tensor().as_megdnn(), input(5)->dev_tensor().as_megdnn(),
                input(6)->dev_tensor().as_megdnn(), output(0)->dev_tensor().as_megdnn(),
                output(1)->dev_tensor().as_megdnn(),
                output(2)->dev_tensor().as_megdnn(),
                output(3)->dev_tensor().as_megdnn(),
                get_megdnn_workspace_from_var(output(4)));
    } else if (input_type == INPUT_TYPE::ONLY_MASK) {
        m_dnn_opr->exec(
                input(0)->dev_tensor().as_megdnn(), input(1)->dev_tensor().as_megdnn(),
                input(2)->dev_tensor().as_megdnn(), input(3)->dev_tensor().as_megdnn(),
                input(4)->dev_tensor().as_megdnn(), empty_dnn, empty_dnn,
                output(0)->dev_tensor().as_megdnn(),
                output(1)->dev_tensor().as_megdnn(),
                output(2)->dev_tensor().as_megdnn(),
                output(3)->dev_tensor().as_megdnn(),
                get_megdnn_workspace_from_var(output(4)));
    } else if (input_type == INPUT_TYPE::ONLY_BIASKV) {
        m_dnn_opr->exec(
                input(0)->dev_tensor().as_megdnn(), input(1)->dev_tensor().as_megdnn(),
                input(2)->dev_tensor().as_megdnn(), input(3)->dev_tensor().as_megdnn(),
                empty_dnn, input(4)->dev_tensor().as_megdnn(),
                input(5)->dev_tensor().as_megdnn(), output(0)->dev_tensor().as_megdnn(),
                output(1)->dev_tensor().as_megdnn(),
                output(2)->dev_tensor().as_megdnn(),
                output(3)->dev_tensor().as_megdnn(),
                get_megdnn_workspace_from_var(output(4)));
    } else {
        m_dnn_opr->exec(
                input(0)->dev_tensor().as_megdnn(), input(1)->dev_tensor().as_megdnn(),
                input(2)->dev_tensor().as_megdnn(), input(3)->dev_tensor().as_megdnn(),
                empty_dnn, empty_dnn, empty_dnn, output(0)->dev_tensor().as_megdnn(),
                output(1)->dev_tensor().as_megdnn(),
                output(2)->dev_tensor().as_megdnn(),
                output(3)->dev_tensor().as_megdnn(),
                get_megdnn_workspace_from_var(output(4)));
    }
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
}

cg::OperatorNodeBase::NodeProp* MultiHeadAttnForward::do_make_node_prop() const {
    auto prop = Super::do_make_node_prop();
    prop->add_flag(NodeProp::Flag::IMPURE_FUNC);
    for (auto i : input()) {
        prop->add_dep_type_existing_var(i, NodeProp::DepType::VALUE_ALLOW_EMPTY);
    }
    return prop;
}

#if MGB_ENABLE_GRAD
MGB_IMPL_OPR_GRAD(MultiHeadAttnForward) {
    MGB_MARK_USED_VAR(opr);
    MGB_MARK_USED_VAR(out_grad);
    SymbolVarArray grad;
    VarNodeArray ret;
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
    mgb_assert(wrt_idx < 7, "wrt_idx %zu is out of range", wrt_idx);
    auto input_type = opr.param().tensor_combination_type;
    if (input_type == INPUT_TYPE::ALL or input_type == INPUT_TYPE::ONLY_MASK)
        grad = MultiHeadAttnBackward::make(
                out_grad[0], opr.input(0), opr.input(1), opr.input(2), opr.input(3),
                opr.input(4), opr.output(1), opr.output(2), opr.output(3), opr.param());
    else
        grad = MultiHeadAttnBackward::make(
                out_grad[0], opr.input(0), opr.input(1), opr.input(2), opr.input(3),
                opr.output(1), opr.output(2), opr.output(3), opr.param());
    uint32_t nr_ret = 7;
    if (input_type == INPUT_TYPE::NONE)
        nr_ret = 4;
    if (input_type == INPUT_TYPE::ONLY_MASK)
        nr_ret = 5;
    if (input_type == INPUT_TYPE::ONLY_BIASKV)
        nr_ret = 6;
725 726 727 728 729 730 731 732 733 734 735
    for (uint32_t i = 0; i < nr_ret; ++i) {
        ret.push_back(grad[i].node());
    }
    return ret;
}
#endif

/* ==================== MultiHeadAttnBackwardData ==================== */
MGB_DYN_TYPE_OBJ_FINAL_IMPL(MultiHeadAttnBackward);

MultiHeadAttnBackward::MultiHeadAttnBackward(
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
        VarNode* diff, VarNode* queries, VarNode* keys, VarNode* values,
        VarNode* qkvo_weight_bias, VarNode* attn_mask, VarNode* attn_weight,
        VarNode* mask_reservespace, VarNode* othr_reservespace, const Param& param,
        const OperatorNodeConfig& config)
        : Super({queries->owner_graph(),
                 config,
                 "multi_head_attn_backward",
                 {diff, queries, keys, values, qkvo_weight_bias, attn_mask, attn_weight,
                  mask_reservespace, othr_reservespace}},
                0, true) {
    init_megdnn_opr(*this, param);
    add_input(
            {diff, queries, keys, values, qkvo_weight_bias, attn_mask, attn_weight,
             mask_reservespace, othr_reservespace});
    this->output()[3]->add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
    this->output()[4]->add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
    this->output()[5]->add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
}
MultiHeadAttnBackward::MultiHeadAttnBackward(
        VarNode* diff, VarNode* queries, VarNode* keys, VarNode* values,
        VarNode* qkvo_weight_bias, VarNode* attn_weight, VarNode* mask_reservespace,
        VarNode* othr_reservespace, const Param& param,
        const OperatorNodeConfig& config)
759 760 761
        : Super({queries->owner_graph(),
                 config,
                 "multi_head_attn_backward",
762 763
                 {diff, queries, keys, values, qkvo_weight_bias, attn_weight,
                  mask_reservespace, othr_reservespace}},
764 765
                0, true) {
    init_megdnn_opr(*this, param);
766 767 768 769 770 771
    add_input(
            {diff, queries, keys, values, qkvo_weight_bias, attn_weight,
             mask_reservespace, othr_reservespace});
    this->output()[3]->add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
    this->output()[4]->add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
    this->output()[5]->add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
772 773 774 775
}

SymbolVarArray MultiHeadAttnBackward::make(
        SymbolVar diff, SymbolVar queries, SymbolVar keys, SymbolVar values,
776 777
        SymbolVar qkvo_weight_bias, SymbolVar attn_mask, SymbolVar attn_weight,
        SymbolVar mask_reservespace, SymbolVar othr_reservespace, const Param& param,
778 779 780 781 782
        const OperatorNodeConfig& config) {
    auto outs = queries.node()
                        ->owner_graph()
                        ->insert_opr(std::make_unique<MultiHeadAttnBackward>(
                                diff.node(), queries.node(), keys.node(), values.node(),
783 784 785
                                qkvo_weight_bias.node(), attn_mask.node(),
                                attn_weight.node(), mask_reservespace.node(),
                                othr_reservespace.node(), param, config))
786
                        ->output();
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
    mgb_assert(outs.size() == 7);

    return {outs[0], outs[1], outs[2], outs[3], outs[4], outs[5], {}};
}
SymbolVarArray MultiHeadAttnBackward::make(
        SymbolVar diff, SymbolVar queries, SymbolVar keys, SymbolVar values,
        SymbolVar qkvo_weight_bias, SymbolVar attn_weight, SymbolVar mask_reservespace,
        SymbolVar othr_reservespace, const Param& param,
        const OperatorNodeConfig& config) {
    auto outs = queries.node()
                        ->owner_graph()
                        ->insert_opr(std::make_unique<MultiHeadAttnBackward>(
                                diff.node(), queries.node(), keys.node(), values.node(),
                                qkvo_weight_bias.node(), attn_weight.node(),
                                mask_reservespace.node(), othr_reservespace.node(),
                                param, config))
                        ->output();
    mgb_assert(outs.size() == 7);

    return {outs[0], outs[1], outs[2], outs[3], outs[4], outs[5], {}};
807 808 809 810 811 812 813 814 815
}

void MultiHeadAttnBackward::init_output_static_infer_desc() {
    using namespace cg::static_infer;
    auto&& mgr = owner_graph()->static_infer_manager();
    mgr.register_shape_infer(output(0), ShapeInferDesc::make_identity(input(1)));
    mgr.register_shape_infer(output(1), ShapeInferDesc::make_identity(input(2)));
    mgr.register_shape_infer(output(2), ShapeInferDesc::make_identity(input(3)));
    mgr.register_shape_infer(output(3), ShapeInferDesc::make_identity(input(4)));
816 817 818 819 820 821 822 823 824
    auto input_type = param().tensor_combination_type;
    if (input_type == INPUT_TYPE::ALL or input_type == INPUT_TYPE::ONLY_BIASKV) {
        mgr.register_shape_infer(output(4), ShapeInferDesc::make_identity(input(4)));
        mgr.register_shape_infer(output(5), ShapeInferDesc::make_identity(input(4)));
    } else {
        TensorShape empty{0};
        mgr.register_shape_infer(output(4), ShapeInferDesc::make_const(empty));
        mgr.register_shape_infer(output(5), ShapeInferDesc::make_const(empty));
    }
825 826 827 828 829 830 831 832
    this->init_output_static_infer_desc_workspace(false);
}

void MultiHeadAttnBackward::init_output_dtype() {
    output(0)->dtype(input(1)->dtype());
    output(1)->dtype(input(2)->dtype());
    output(2)->dtype(input(3)->dtype());
    output(3)->dtype(input(4)->dtype());
833 834
    output(4)->dtype(input(2)->dtype());
    output(5)->dtype(input(3)->dtype());
835 836 837 838 839
}

size_t MultiHeadAttnBackward::get_workspace_size_bytes(
        const TensorShapeArray& input_shapes,
        const TensorShapeArray& output_shapes) const {
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
    auto input_type = megdnn_opr()->param().tensor_combination_type;
    megdnn::TensorLayout empty_dnn;
    if (input_type == INPUT_TYPE::ALL or input_type == INPUT_TYPE::ONLY_MASK)
        return megdnn_opr()->get_workspace_in_bytes(
                {input_shapes[0], input(0)->dtype(), input(0)->format()},
                {input_shapes[1], input(1)->dtype(), input(1)->format()},
                {input_shapes[2], input(2)->dtype(), input(2)->format()},
                {input_shapes[3], input(3)->dtype(), input(3)->format()},
                {input_shapes[4], input(4)->dtype(), input(4)->format()},
                {input_shapes[5], input(5)->dtype(), input(5)->format()},
                {input_shapes[6], input(6)->dtype(), input(6)->format()},
                {input_shapes[7], input(7)->dtype(), input(7)->format()},
                {input_shapes[8], input(8)->dtype(), input(8)->format()},
                {output_shapes[0], output(0)->dtype(), output(0)->format()},
                {output_shapes[1], output(1)->dtype(), output(1)->format()},
                {output_shapes[2], output(2)->dtype(), output(2)->format()},
                {output_shapes[3], output(3)->dtype(), output(3)->format()},
                {output_shapes[4], output(4)->dtype(), output(4)->format()},
                {output_shapes[5], output(5)->dtype(), output(5)->format()});
    else
        return megdnn_opr()->get_workspace_in_bytes(
                {input_shapes[0], input(0)->dtype(), input(0)->format()},
                {input_shapes[1], input(1)->dtype(), input(1)->format()},
                {input_shapes[2], input(2)->dtype(), input(2)->format()},
                {input_shapes[3], input(3)->dtype(), input(3)->format()},
                {input_shapes[4], input(4)->dtype(), input(4)->format()}, empty_dnn,
                {input_shapes[5], input(5)->dtype(), input(5)->format()},
                {input_shapes[6], input(6)->dtype(), input(6)->format()},
                {input_shapes[7], input(7)->dtype(), input(7)->format()},
                {output_shapes[0], output(0)->dtype(), output(0)->format()},
                {output_shapes[1], output(1)->dtype(), output(1)->format()},
                {output_shapes[2], output(2)->dtype(), output(2)->format()},
                {output_shapes[3], output(3)->dtype(), output(3)->format()},
                {output_shapes[4], output(4)->dtype(), output(4)->format()},
                {output_shapes[5], output(5)->dtype(), output(5)->format()});
875 876 877
}

void MultiHeadAttnBackward::scn_do_execute() {
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
    auto input_type = megdnn_opr()->param().tensor_combination_type;
    megdnn::TensorND empty_dnn;
    if (input_type == INPUT_TYPE::ALL or input_type == INPUT_TYPE::ONLY_MASK)
        megdnn_opr()->exec(
                input(0)->dev_tensor().as_megdnn(), input(1)->dev_tensor().as_megdnn(),
                input(2)->dev_tensor().as_megdnn(), input(3)->dev_tensor().as_megdnn(),
                input(4)->dev_tensor().as_megdnn(), input(5)->dev_tensor().as_megdnn(),
                input(6)->dev_tensor().as_megdnn(), input(7)->dev_tensor().as_megdnn(),
                input(8)->dev_tensor().as_megdnn(), output(0)->dev_tensor().as_megdnn(),
                output(1)->dev_tensor().as_megdnn(),
                output(2)->dev_tensor().as_megdnn(),
                output(3)->dev_tensor().as_megdnn(),
                output(4)->dev_tensor().as_megdnn(),
                output(5)->dev_tensor().as_megdnn(),
                get_megdnn_workspace_from_var(output(6)));
    else
        megdnn_opr()->exec(
                input(0)->dev_tensor().as_megdnn(), input(1)->dev_tensor().as_megdnn(),
                input(2)->dev_tensor().as_megdnn(), input(3)->dev_tensor().as_megdnn(),
                input(4)->dev_tensor().as_megdnn(), empty_dnn,
                input(5)->dev_tensor().as_megdnn(), input(6)->dev_tensor().as_megdnn(),
                input(7)->dev_tensor().as_megdnn(), output(0)->dev_tensor().as_megdnn(),
                output(1)->dev_tensor().as_megdnn(),
                output(2)->dev_tensor().as_megdnn(),
                output(3)->dev_tensor().as_megdnn(),
                output(4)->dev_tensor().as_megdnn(),
                output(5)->dev_tensor().as_megdnn(),
                get_megdnn_workspace_from_var(output(6)));
906 907
}

908
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}