rand.cpp 15.4 KB
Newer Older
1 2 3 4
/**
 * \file src/opr/impl/rand.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "megbrain/opr/rand.h"
#include "megbrain/opr/utility.h"
#include "megbrain/graph/grad_impl.h"

#include "./internal/megdnn_opr_wrapper.inl"

using namespace mgb;
using namespace opr;
using namespace intl;

22 23 24
template<typename MegDNNOpr>
RNGOprBase<MegDNNOpr>::RNGOprBase(const OperatorNodeBaseCtorParam &opr, const Param &param):
    Super(opr),m_param(param)
25 26 27
{
}

28 29 30 31 32
template<class MegDNNOpr>
UniqPtrWithCN<MegDNNOpr> RNGOprBase<MegDNNOpr>::create_megdnn_opr() {
    auto opr = intl::create_megdnn_opr<MegDNNOpr>(comp_node());
    opr->param() = param();
    return opr;
33 34
}

35 36
template<typename MegDNNOpr>
void RNGOprBase<MegDNNOpr>::ensure_megdnn_opr() {
37
    if (!m_dnn_opr || m_dnn_opr.comp_node() != comp_node()) {
38 39
        // activate comp_node for curandCreateGenerator in create_megdnn_opr
        comp_node().activate();
40
        m_dnn_opr = create_megdnn_opr();
41 42 43
    }
}

44 45 46 47 48 49 50
/* ================= RNG with shape =================  */
#define _INST_RNG_OPR_WITH_SHAPE(RNGOpr, name)                                      \
MGB_DYN_TYPE_OBJ_FINAL_IMPL(RNGOpr);                                                \
cg::OperatorNodeBase::NodeProp* RNGOpr::do_make_node_prop() const {                 \
    auto prop = Super::do_make_node_prop();                                         \
    prop->add_flag(NodeProp::Flag::IMPURE_FUNC);                                    \
    prop->reset_dep_type(input(), {NodeProp::DepType::HOST_VALUE});                 \
51 52 53
    for (auto i: input()) {                                                         \
        prop->add_dep_type_existing_var(i, NodeProp::DepType::VALUE_ALLOW_EMPTY);   \
    }                                                                               \
54 55 56 57 58 59 60 61
    return prop;                                                                    \
}                                                                                   \
RNGOpr::RNGOpr(VarNode *shape, const Param &param,                                  \
                        const OperatorNodeConfig &config):                          \
    Super({shape->owner_graph(), config, (name), {shape}}, param)                   \
{                                                                                   \
    DType dtype = DType::from_enum(param.dtype);                                    \
    add_input({shape});                                                             \
62
    add_output(None)->dtype(dtype).add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);      \
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    cg::add_workspace_output(this);                                                 \
    add_equivalence_component<ScalarHash<void*>>(this);                             \
}                                                                                   \
SymbolVar RNGOpr::make(SymbolVar shape, const Param &param,                         \
                        const OperatorNodeConfig &config){                          \
    return shape.insert_single_output_opr<RNGOpr>(shape.node(), param, config);     \
}                                                                                   \
void RNGOpr::init_output_static_infer_desc() {                                      \
    using namespace cg::static_infer;                                               \
    auto &&mgr = owner_graph()->static_infer_manager();                             \
    auto infer_out = [](TensorShape &dest, const InpVal &inp) {                     \
        cg::copy_tensor_value_to_shape(dest, inp.val.at(0).value());                \
        return true;                                                                \
    };                                                                              \
    auto infer_wk = [this](TensorShape &dest, const InpVal &inp) {                  \
        ensure_megdnn_opr();                                                        \
        dest.ndim = 1;                                                              \
        dest.shape[0] = m_dnn_opr->get_workspace_in_bytes(                          \
                {inp.val.at(0).shape(), output(0)->dtype()});                       \
        return true;                                                                \
    };                                                                              \
    mgr.register_shape_infer(output(0),                                             \
            {SourceType::DEP, {{input(0), DepType::VALUE}}, infer_out});            \
    mgr.register_shape_infer(output(1),                                             \
            {SourceType::DEP, {{output(0), DepType::SHAPE}}, infer_wk});            \
}                                                                                   \
void RNGOpr::scn_do_execute() {                                                     \
90 91 92 93 94 95
    auto&& ret = output(0);                                                         \
    if (ret->layout().is_empty()) {                                                 \
        mgb_assert(ret->dev_tensor().empty());                                      \
        return;                                                                     \
    }                                                                               \
    m_dnn_opr->exec(ret->dev_tensor().as_megdnn(),                                  \
96
            get_megdnn_workspace_from_var(output(1)));                              \
97 98
}

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
_INST_RNG_OPR_WITH_SHAPE(UniformRNG,"uniform_rng")
_INST_RNG_OPR_WITH_SHAPE(GaussianRNG,"gaussian_rng")
_INST_RNG_OPR_WITH_SHAPE(PermutationRNG,"permutation_rng")
#undef _INST_RNG_OPR_WITH_SHAPE

/* ================= RNG with input =================  */
#define _AS_MEGDNN(idx) input((idx))->dev_tensor().as_megdnn()
#define _INFER_WK_DEPS(idx) {input((idx)), DepType::SHAPE}
#define _INFER_WK_ARGS(idx) {inp.val.at((idx)).shape(), input((idx))->dtype()}

#define _INST_RNG_OPR_WITH_INPUT(RNGOpr, name)                                          \
MGB_DYN_TYPE_OBJ_FINAL_IMPL(RNGOpr);                                                    \
RNGOpr::RNGOpr(_INPUTS(VarNode*,), const Param &param,                                  \
                        const OperatorNodeConfig &config):                              \
    Super({i0->owner_graph(), config, (name), {_INPUTS(,)}}, param)                     \
{                                                                                       \
    add_input({_INPUTS(,)});                                                            \
116
    add_output(None)->dtype(i0->dtype()).add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);    \
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
    cg::add_workspace_output(this);                                                     \
    add_equivalence_component<ScalarHash<void*>>(this);                                 \
}                                                                                       \
SymbolVar RNGOpr::make(_INPUTS(SymbolVar,), const Param &param,                         \
                        const OperatorNodeConfig &config){                              \
    return i0.insert_single_output_opr<RNGOpr>(_INPUTS(,.node()), param, config);       \
}                                                                                       \
void RNGOpr::init_output_static_infer_desc() {                                          \
    using namespace cg::static_infer;                                                   \
    auto &&mgr = owner_graph()->static_infer_manager();                                 \
    auto infer_wk = [this](TensorShape &dest, const InpVal &inp) {                      \
        ensure_megdnn_opr();                                                            \
        dest.ndim = 1;                                                                  \
        dest.shape[0] = m_dnn_opr->get_workspace_in_bytes(                              \
                _FOR_EACH(_INFER_WK_ARGS),                                              \
                {output(0)->shape(), output(0)->dtype()});                              \
        return true;                                                                    \
    };                                                                                  \
    mgr.register_shape_infer(output(0),ShapeInferDesc::make_identity(input(0)));        \
    mgr.register_shape_infer(output(1),{SourceType::DEP, {_FOR_EACH(_INFER_WK_DEPS)},   \
                                        infer_wk});                                     \
}                                                                                       \
void RNGOpr::add_input_layout_constraint(){                                             \
    for (auto i : input()) i->add_layout_constraint_contiguous();                       \
};                                                                                      \
void RNGOpr::scn_do_execute() {                                                         \
143 144 145 146 147
    auto&& ret = output(0);                                                             \
    if (ret->layout().is_empty()) {                                                     \
        mgb_assert(ret->dev_tensor().empty());                                          \
        return;                                                                         \
    }                                                                                   \
148 149
    m_dnn_opr->exec(_FOR_EACH(_AS_MEGDNN),output(0)->dev_tensor().as_megdnn(),          \
                    get_megdnn_workspace_from_var(output(1)));                          \
150 151 152 153 154 155 156 157 158
}                                                                                       \
cg::OperatorNodeBase::NodeProp* RNGOpr::do_make_node_prop() const {                     \
    auto prop = Super::do_make_node_prop();                                             \
    prop->add_flag(NodeProp::Flag::IMPURE_FUNC);                                        \
    for (auto i: input()) {                                                             \
        prop->add_dep_type_existing_var(i, NodeProp::DepType::VALUE_ALLOW_EMPTY);       \
    }                                                                                   \
    return prop;                                                                        \
}
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178

/* ================= 1 input =================  */
#define _INPUTS(prefix, subfix) prefix i0 subfix
#define _FOR_EACH(cb) cb(0)
_INST_RNG_OPR_WITH_INPUT(PoissonRNG,"poisson_rng")
#undef _INPUTS
#undef _FOR_EACH

/* ================= 2 input =================  */
#define _INPUTS(prefix,subfix) prefix i0 subfix, prefix i1 subfix
#define _FOR_EACH(cb) cb(0), cb(1)
_INST_RNG_OPR_WITH_INPUT(BetaRNG,"beta_rng")
_INST_RNG_OPR_WITH_INPUT(GammaRNG,"gamma_rng")
#undef _INPUTS
#undef _FOR_EACH

#undef _AS_MEGDNN
#undef _INFER_WK_DEPS
#undef _INFER_WK_ARGS
#undef _INST_RNG_OPR_WITH_INPUT
179

180 181 182 183 184
#define IMPL(_cls)                                      \
    MGB_IMPL_OPR_GRAD(_cls) {                           \
        MGB_MARK_USED_VAR(out_grad);                    \
        return InvalidGrad::make(opr, wrt_idx);         \
    }
185 186 187 188

namespace mgb {
namespace opr {
namespace intl {
189 190 191 192 193 194
template class RNGOprBase<::megdnn::GaussianRNG>;
template class RNGOprBase<::megdnn::UniformRNG>;
template class RNGOprBase<::megdnn::GammaRNG>;
template class RNGOprBase<::megdnn::PermutationRNG>;
template class RNGOprBase<::megdnn::BetaRNG>;
template class RNGOprBase<::megdnn::PoissonRNG>;
195 196
template class RNGOprBase<::megdnn::ShuffleRNGForward>;
template class RNGOprBase<::megdnn::ShuffleRNGBackward>;
197
#if MGB_ENABLE_GRAD
198 199
IMPL(GaussianRNG);
IMPL(UniformRNG);
200 201 202 203
IMPL(GammaRNG);
IMPL(PoissonRNG);
IMPL(PermutationRNG);
IMPL(BetaRNG);
204
#endif
205 206 207 208 209 210 211 212 213 214 215 216
}  // namespace intl
}  // namespace opr
}  // namespace mgb

/* ================= ShuffleRNGForward =================  */

MGB_DYN_TYPE_OBJ_FINAL_IMPL(ShuffleRNGForward);

ShuffleRNGForward::ShuffleRNGForward(VarNode* data, const Param& param,
                                     const OperatorNodeConfig& config)
        : Super({data->owner_graph(), config, "shuffle_rng", {data}}, param) {
    add_input({data});
217 218 219 220 221 222
    add_output(None)
            ->dtype(data->dtype())
            .add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
    add_output(None)
            ->dtype(dtype::Int32{})
            .add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
223 224 225 226 227 228 229 230 231 232 233
    cg::add_workspace_output(this);
    add_equivalence_component<ScalarHash<void*>>(this);
}

SymbolVarArray ShuffleRNGForward::make(SymbolVar in_tensor, const Param& param,
                                       const OperatorNodeConfig& config) {
    auto node = in_tensor.node()->owner_graph()->insert_opr(
            std::make_unique<ShuffleRNGForward>(in_tensor.node(), param,
                                                config));
    mgb_assert(node->output().size() == 3);
    return {node->output(0), node->output(1)};
234
}
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265

void ShuffleRNGForward::init_output_static_infer_desc() {
    using namespace cg::static_infer;
    auto&& mgr = owner_graph()->static_infer_manager();

    mgr.register_shape_infer(output(0),
                             ShapeInferDesc::make_identity(input(0)));

    auto infer_oshp1 = [this](TensorShape& dest, const InpVal& iv) {
        TensorLayout o0, o1;
        m_dnn_opr->deduce_layout({iv.val[0].shape(), input(0)->dtype()}, o0,
                                 o1);
        dest = o1;
        return true;
    };
    mgr.register_shape_infer(
            output(1),
            {SourceType::DEP, {{input(0), DepType::SHAPE}}, infer_oshp1});

    auto infer_wk = [this](TensorShape& dest, const InpVal& inp) {
        ensure_megdnn_opr();
        dest.ndim = 1;
        dest.shape[0] = m_dnn_opr->get_workspace_in_bytes(
                {inp.val[0].shape(), input(0)->dtype()},
                {output(0)->shape(), output(0)->dtype()},
                {output(1)->shape(), output(1)->dtype()});
        return true;
    };
    mgr.register_shape_infer(
            output(2),
            {SourceType::DEP, {{input(0), DepType::SHAPE}}, infer_wk});
266 267
}

268 269 270 271 272
void ShuffleRNGForward::add_input_layout_constraint() {
    input(0)->add_layout_constraint_contiguous();
};

void ShuffleRNGForward::scn_do_execute() {
273 274 275 276 277
    auto&& ret = output(0);
    if (ret->layout().is_empty()) {
        mgb_assert(ret->dev_tensor().empty());
        return;
    }
278 279 280 281 282 283
    m_dnn_opr->exec(input(0)->dev_tensor().as_megdnn(),
                    output(0)->dev_tensor().as_megdnn(),
                    output(1)->dev_tensor().as_megdnn(),
                    get_megdnn_workspace_from_var(output(2)));
}

284 285 286 287 288 289 290 291 292 293
cg::OperatorNodeBase::NodeProp* ShuffleRNGForward::do_make_node_prop() const {
    auto prop = Super::do_make_node_prop();
    prop->add_flag(NodeProp::Flag::IMPURE_FUNC);
    for (auto i : input()) {
        prop->add_dep_type_existing_var(i,
                                        NodeProp::DepType::VALUE_ALLOW_EMPTY);
    }
    return prop;
}

294 295 296 297 298 299 300 301 302 303 304 305
#if MGB_ENABLE_GRAD
MGB_IMPL_OPR_GRAD(ShuffleRNGForward) {
    mgb_assert(out_grad.size() == 3 && wrt_idx == 0 && !out_grad[2]);
    if (!out_grad[0])
        return nullptr;
    return ShuffleRNGBackward::make(out_grad[0], opr.output(1), opr.input(0)).node();
}
#endif

MGB_DYN_TYPE_OBJ_FINAL_IMPL(ShuffleRNGBackward);
MEGDNN_OPR_INIT3(ShuffleRNGBackward, "shuffle_rng_bwd", 2, true)

306 307
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}