network.py 31.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# -*- coding: utf-8 -*-

from ctypes import *

import numpy as np

from .base import _Cnetwork, _Ctensor, _lib, _LiteCObjBase
from .struct import *
from .tensor import *


class LiteOptions(Structure):
    """
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    the inference options which can optimize the network forwarding
    performance

    Attributes:
        weight_preprocess: is the option which optimize the inference performance
            with processing the weights of the network ahead

        fuse_preprocess: fuse preprocess patten, like astype + pad_channel +
            dimshuffle

        fake_next_exec: whether only to perform non-computing tasks (like
            memory allocation and queue initialization) for next exec. This will be
            reset to false when the graph is executed.

        var_sanity_check_first_run: Disable var sanity check on the first run.
            Var sanity check is enabled on the first-time execution by default, and can
            be used to find some potential memory access errors in the operator

        const_shape: used to reduce memory usage and improve performance since some
            static inference data structures can be omitted and some operators can be
            compute before forwarding

        force_dynamic_alloc: force dynamic allocate memory for all vars

        force_output_dynamic_alloc: force dynamic allocate memory for output tensor
            which are used as the input of CallbackCaller Operator

        no_profiling_on_shape_change: do not re-profile to select best implement
            algo when input shape changes (use previous algo)

        jit_level: Execute supported operators with JIT (support MLIR,
            NVRTC). Can only be used on Nvidia GPUs and X86 CPU, this value indicates JIT level:

            level 1: for JIT execute with basic elemwise operator

            level 2: for JIT execute elemwise and reduce operators

        record_level: flags to optimize the inference performance with record the
            kernel tasks in first run, hereafter the inference all need is to execute the
            recorded tasks.

            level = 0 means the normal inference

            level = 1 means use record inference

            level = 2 means record inference with free the extra memory


        graph_opt_level: network optimization level:

            0: disable

            1: level-1: inplace arith transformations during graph construction

            2: level-2: level-1, plus global optimization before graph compiling

            3: also enable JIT

        async_exec_level: level of dispatch on separate threads for different comp_node.

            0: do not perform async dispatch

            1: dispatch async if there are more than one comp node with limited queue

            mask 0b10: async if there are multiple comp nodes with

            mask 0b100: always async

    Examples:
        .. code-block::

            from megenginelite import *
            options = LiteOptions()
            options.weight_preprocess = true
            options.record_level = 1
            options.fuse_preprocess = true
90 91 92 93 94 95 96 97 98 99
    """

    _fields_ = [
        ("weight_preprocess", c_int),
        ("fuse_preprocess", c_int),
        ("fake_next_exec", c_int),
        ("var_sanity_check_first_run", c_int),
        ("const_shape", c_int),
        ("force_dynamic_alloc", c_int),
        ("force_output_dynamic_alloc", c_int),
100
        ("force_output_use_user_specified_memory", c_int),
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
        ("no_profiling_on_shape_change", c_int),
        ("jit_level", c_int),
        ("comp_node_seq_record_level", c_int),
        ("graph_opt_level", c_int),
        ("async_exec_level", c_int),
        # layout transform options
        ("enable_nchw44", c_int),
        ("enable_nchw44_dot", c_int),
        ("enable_nchw88", c_int),
        ("enable_nhwcd4", c_int),
        ("enable_nchw4", c_int),
        ("enable_nchw32", c_int),
        ("enable_nchw64", c_int),
    ]

    def __init__(self):
117

118 119 120 121 122 123 124
        self.weight_preprocess = False
        self.fuse_preprocess = False
        self.fake_next_exec = False
        self.var_sanity_check_first_run = True
        self.const_shape = False
        self.force_dynamic_alloc = False
        self.force_output_dynamic_alloc = False
125
        self.force_output_use_user_specified_memory = False
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
        self.no_profiling_on_shape_change = False
        self.jit_level = 0
        self.comp_node_seq_record_level = 0
        self.graph_opt_level = 2
        self.async_exec_level = 1

    def __repr__(self):
        data = {
            "weight_preprocess": bool(self.weight_preprocess),
            "fuse_preprocess": bool(self.fuse_preprocess),
            "fake_next_exec": bool(self.fake_next_exec),
            "var_sanity_check_first_run": bool(self.var_sanity_check_first_run),
            "const_shape": bool(self.const_shape),
            "force_dynamic_alloc": bool(self.force_dynamic_alloc),
            "force_output_dynamic_alloc": bool(self.force_output_dynamic_alloc),
141 142 143
            "force_output_use_user_specified_memory": bool(
                self.force_output_use_user_specified_memory
            ),
144 145 146 147 148 149 150 151 152 153 154
            "no_profiling_on_shape_change": bool(self.no_profiling_on_shape_change),
            "jit_level": self.jit_level,
            "comp_node_seq_record_level": self.comp_node_seq_record_level,
            "graph_opt_level": self.graph_opt_level,
            "async_exec_level": self.async_exec_level,
        }
        return data.__repr__()


class LiteConfig(Structure):
    """
155 156 157 158 159
    Configuration when load and compile a network

    Attributes:
        has_compression: flag whether the model is compressed, the compress
            method is stored in the model
160

161
        device_id: configure the device id of a network
162

163
        device_type: configure the device type of a network
164

165 166 167 168 169 170 171 172 173
        backend: configure the inference backend of a network, now only support
            megengine

        bare_model_cryption_name: is the bare model encryption method name, bare
            model is not packed with json information, this encryption method name is
            useful to decrypt the encrypted bare model

        options: configuration of Options

174 175
        auto_optimize_inference: lite will detect the device information add set the options heuristically

176 177 178 179 180
    Examples:
        .. code-block::

            from megenginelite import *
            config = LiteConfig()
181
            config.has_compression = False
182 183 184
            config.device_type = LiteDeviceType.LITE_CPU
            config.backend = LiteBackend.LITE_DEFAULT
            config.bare_model_cryption_name = "AES_default".encode("utf-8")
185
            config.auto_optimize_inference = False
186 187 188 189 190 191 192
    """

    _fields_ = [
        ("has_compression", c_int),
        ("device_id", c_int),
        ("device_type", c_int),
        ("backend", c_int),
193
        ("_bare_model_cryption_name", c_char_p),
194
        ("options", LiteOptions),
195
        ("auto_optimize_inference", c_int),
196 197 198 199 200 201 202 203 204
    ]

    def __init__(self, device_type=LiteDeviceType.LITE_CPU, option=None):
        self.device_type = device_type
        if option:
            self.options = option
        else:
            self.options = LiteOptions()

205
        self._bare_model_cryption_name = c_char_p(b"")
206 207 208
        self.use_loader_dynamic_param = 0
        self.has_compression = 0
        self.backend = LiteBackend.LITE_DEFAULT
209
        self.auto_optimize_inference = 0
210

211 212 213 214 215 216 217 218 219 220 221 222
    @property
    def bare_model_cryption_name(self):
        return self._bare_model_cryption_name.decode("utf-8")

    @bare_model_cryption_name.setter
    def bare_model_cryption_name(self, name):
        if isinstance(name, str):
            self._bare_model_cryption_name = name.encode("utf-8")
        else:
            assert isinstance(name, bytes), "name should be str or bytes type."
            self._bare_model_cryption_name = name

223 224 225 226 227 228
    def __repr__(self):
        data = {
            "has_compression": bool(self.has_compression),
            "device_id": LiteDeviceType(self.device_id),
            "device_type": LiteDeviceType(self.device_type),
            "backend": LiteBackend(self.backend),
229
            "bare_model_cryption_name": self.bare_model_cryption_name,
230
            "options": self.options,
231
            "auto_optimize_inference": self.auto_optimize_inference,
232 233 234 235
        }
        return data.__repr__()


236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
class LiteExtraConfig(Structure):
    """
    Extra configuration when load and compile the graph

    disable_configure_by_model_info: disable the configuration dumped with
    model, if set true, all configuration in the model will not apply, users
    should configure the network.
    """

    _fields_ = [
        ("disable_configure_by_model_info", c_int),
    ]

    def __init__(self, disable_model_config=False):
        self.disable_configure_by_model_info = disable_model_config

    def __repr__(self):
        data = {
            "disable_configure_by_model_info": bool(
                self.disable_configure_by_model_info
            ),
        }
        return data.__repr__()


261 262
class LiteIO(Structure):
    """
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
    config the network input and output item, the input and output tensor
    information will describe there

    Attributes:
        name: the tensor name in the graph corresponding to the IO
            is_host: Used to mark where the input tensor comes from and where the output
            tensor will copy to, if is_host is true, the input is from host and output copy
            to host, otherwise in device. Sometimes the input is from device and output no need
            copy to host, default is true.

        io_type: The IO type, it can be SHAPE or VALUE, when SHAPE is set, the input or
            output tensor value is invaid, only shape will be set, default is VALUE

        config_layout: The layout of the config from user, if other layout is set before
            forward or get after forward, this layout will by pass. if no other
            layout is set before forward, this layout will work. if this layout is
            no set, the model will forward with its origin layout. if in output, it
            will used to check.

    Note:
        if other layout is set to input tensor before forwarding, this layout will not work
284

285
        if no layout is set before forwarding, the model will forward with its origin layout
286

287
        if layout is set in output tensor, it will used to check whether the layout computed from the network is correct
288

289 290 291 292 293 294 295 296 297 298
    Examples:
        .. code-block::

            from megenginelite import *
            io = LiteIO(
                "data2",
                is_host=True,
                io_type=LiteIOType.LITE_IO_SHAPE,
                layout=LiteLayout([2, 4, 4]),
            )
299 300 301 302

    """

    _fields_ = [
303
        ("_name", c_char_p),
304 305 306 307 308 309 310 311 312
        ("is_host", c_int),
        ("io_type", c_int),
        ("config_layout", LiteLayout),
    ]

    def __init__(
        self, name, is_host=True, io_type=LiteIOType.LITE_IO_VALUE, layout=None
    ):
        if type(name) == str:
313
            self._name = c_char_p(name.encode("utf-8"))
314
        else:
315
            self._name = c_char_p(name)
316 317 318 319 320 321 322 323 324

        if layout:
            self.config_layout = layout
        else:
            self.config_layout = LiteLayout()

        self.is_host = is_host
        self.io_type = io_type

325 326
    @property
    def name(self):
327 328 329
        """
        get the name of IO item
        """
330 331 332 333
        return self._name.decode("utf-8")

    @name.setter
    def name(self, name):
334 335 336
        """
        set the name of IO item
        """
337 338 339 340 341 342
        if isinstance(name, str):
            self._name = name.encode("utf-8")
        else:
            assert isinstance(name, bytes), "name should be str or bytes type."
            self._name = name

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
    def __repr__(self):
        data = {
            "name": self.name,
            "is_host": bool(self.is_host),
            "io_type": LiteIOType(self.io_type),
            "config_layout": self.config_layout,
        }
        return data.__repr__()

    def __hash__(self):
        return hash(self.name)


class _LiteNetworkIO(Structure):

    _fields_ = [
        ("inputs", POINTER(LiteIO)),
        ("outputs", POINTER(LiteIO)),
        ("input_size", c_size_t),
        ("output_size", c_size_t),
    ]

    def __init__(self):
        self.inputs = POINTER(LiteIO)()
        self.outputs = POINTER(LiteIO)()
        self.input_size = 0
        self.output_size = 0


class LiteNetworkIO(object):
    """
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
    the input and output information when load the network for user
    the NetworkIO will remain in the network until the network is destroyed.

    Attributes:
        inputs: The all input tensors information that will configure to the network

        outputs: The all output tensors information that will configure to the network

    Examples:
        .. code-block::

            from megenginelite import *
            input_io = LiteIO("data", is_host=False, io_type=LiteIOType.LITE_IO_VALUE)
            io = LiteNetworkIO()
            io.add_input(input_io)
            output_io = LiteIO("out", is_host=True, layout=LiteLayout([1, 1000]))
            io.add_output(output_io)

392 393
    """

394
    def __init__(self, inputs=None, outputs=None):
395 396
        self.inputs = []
        self.outputs = []
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
        if inputs:
            for i in inputs:
                if isinstance(i, list):
                    self.inputs.append(LiteIO(*i))
                else:
                    assert isinstance(
                        i, LiteIO
                    ), "the param to construct LiteNetworkIO must be list of the LiteIO member or the LiteIO."
                    self.inputs.append(i)
        if outputs:
            for i in outputs:
                if isinstance(i, list):
                    self.outputs.append(LiteIO(*i))
                else:
                    assert isinstance(
                        i, LiteIO
                    ), "the param to construct LiteNetworkIO must be list of the LiteIO member or the LiteIO."
                    self.outputs.append(i)

    def add_input(
        self, obj, is_host=True, io_type=LiteIOType.LITE_IO_VALUE, layout=None
    ):
419 420 421
        """
        add input information into LiteNetworkIO
        """
422 423 424 425 426
        if isinstance(obj, LiteIO):
            self.inputs.append(obj)
        else:
            name = obj
            self.add_input(LiteIO(name, is_host, io_type, layout))
427

428 429 430
    def add_output(
        self, obj, is_host=True, io_type=LiteIOType.LITE_IO_VALUE, layout=None
    ):
431 432 433
        """
        add output information into LiteNetworkIO
        """
434 435 436 437 438
        if isinstance(obj, LiteIO):
            self.outputs.append(obj)
        else:
            name = obj
            self.add_output(LiteIO(name, is_host, io_type, layout))
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457

    def _create_network_io(self):
        network_io = _LiteNetworkIO()
        length = 1 if len(self.inputs) == 0 else len(self.inputs)
        self.c_inputs = (LiteIO * length)(*self.inputs)
        length = 1 if len(self.outputs) == 0 else len(self.outputs)
        self.c_outputs = (LiteIO * length)(*self.outputs)
        network_io.inputs = pointer(self.c_inputs[0])
        network_io.outputs = pointer(self.c_outputs[0])
        network_io.input_size = len(self.inputs)
        network_io.output_size = len(self.outputs)
        return network_io

    def __repr__(self):
        data = {"inputs": list(self.inputs), "outputs": list(self.outputs)}
        return data.__repr__()


LiteAsyncCallback = CFUNCTYPE(c_int)
458 459 460 461 462 463 464 465 466 467 468 469
LiteStartCallback = CFUNCTYPE(c_int, POINTER(LiteIO), POINTER(_Ctensor), c_size_t)
LiteFinishCallback = CFUNCTYPE(c_int, POINTER(LiteIO), POINTER(_Ctensor), c_size_t)


def wrap_async_callback(func):
    global wrapper

    @CFUNCTYPE(c_int)
    def wrapper():
        return func()

    return wrapper
470 471 472


def start_finish_callback(func):
473 474
    global wrapper

475 476 477 478
    @CFUNCTYPE(c_int, POINTER(LiteIO), POINTER(_Ctensor), c_size_t)
    def wrapper(c_ios, c_tensors, size):
        ios = {}
        for i in range(size):
479
            tensor = LiteTensor(physic_construct=False)
480
            tensor._tensor = c_void_p(c_tensors[i])
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
            tensor.update()
            io = c_ios[i]
            ios[io] = tensor
        return func(ios)

    return wrapper


class _NetworkAPI(_LiteCObjBase):
    """
    get the network api from the lib
    """

    _api_ = [
        ("LITE_make_default_network", [POINTER(_Cnetwork)]),
        ("LITE_make_network", [POINTER(_Cnetwork), LiteConfig, _LiteNetworkIO]),
        ("LITE_load_model_from_mem", [_Cnetwork, c_void_p, c_size_t]),
        ("LITE_load_model_from_path", [_Cnetwork, c_char_p]),
        ("LITE_shared_weight_with_network", [_Cnetwork, _Ctensor]),
        ("LITE_destroy_network", [_Cnetwork]),
        ("LITE_forward", [_Cnetwork]),
        ("LITE_wait", [_Cnetwork]),
        ("LITE_get_io_tensor", [_Cnetwork, c_char_p, c_int, POINTER(_Ctensor)]),
        ("LITE_get_input_name", [_Cnetwork, c_size_t, POINTER(c_char_p)]),
        ("LITE_get_output_name", [_Cnetwork, c_size_t, POINTER(c_char_p)]),
        ("LITE_get_all_input_name", [_Cnetwork, POINTER(c_size_t), POINTER(c_char_p)]),
        ("LITE_get_all_output_name", [_Cnetwork, POINTER(c_size_t), POINTER(c_char_p)]),
        ("LITE_is_cpu_inplace_mode", [_Cnetwork, POINTER(c_int)]),
        ("LITE_get_cpu_threads_number", [_Cnetwork, POINTER(c_size_t)]),
        ("LITE_get_device_id", [_Cnetwork, POINTER(c_int)]),
        ("LITE_set_device_id", [_Cnetwork, c_int]),
        ("LITE_set_cpu_inplace_mode", [_Cnetwork]),
        ("LITE_use_tensorrt", [_Cnetwork]),
        ("LITE_set_cpu_threads_number", [_Cnetwork, c_size_t]),
        ("LITE_set_stream_id", [_Cnetwork, c_int]),
        ("LITE_get_stream_id", [_Cnetwork, POINTER(c_int)]),
        ("LITE_set_network_algo_policy", [_Cnetwork, c_int]),
        ("LITE_set_network_algo_fastrun_config", [_Cnetwork, c_int, c_int]),
        ("LITE_set_network_algo_workspace_limit", [_Cnetwork, c_size_t]),
        ("LITE_share_runtime_memroy", [_Cnetwork, _Cnetwork]),
        ("LITE_enable_profile_performance", [_Cnetwork, c_char_p]),
        ("LITE_enable_io_txt_dump", [_Cnetwork, c_char_p]),
        ("LITE_enable_io_bin_dump", [_Cnetwork, c_char_p]),
        ("LITE_set_async_callback", [_Cnetwork, LiteAsyncCallback]),
525 526
        ("LITE_set_start_callback", [_Cnetwork, LiteStartCallback]),
        ("LITE_set_finish_callback", [_Cnetwork, LiteFinishCallback]),
527
        ("LITE_get_static_memory_alloc_info", [_Cnetwork, c_char_p]),
528 529
        ("LITE_enable_global_layout_transform", [_Cnetwork]),
        ("LITE_dump_layout_transform_model", [_Cnetwork, c_char_p]),
530 531 532 533 534 535 536 537
        (
            "LITE_get_model_io_info_by_path",
            [c_char_p, LiteConfig, POINTER(_LiteNetworkIO)],
        ),
        (
            "LITE_get_model_io_info_by_memory",
            [c_char_p, c_size_t, LiteConfig, POINTER(_LiteNetworkIO)],
        ),
538
        ("LITE_extra_configure", [_Cnetwork, LiteExtraConfig]),
539 540 541 542 543 544
    ]


class LiteNetwork(object):
    """
    the network to load a model and forward
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565

    Examples:

        .. code-block::

            from megenginelite import *
            config = LiteConfig()
            config.device_type = LiteDeviceType.LITE_CPU
            network = LiteNetwork(config)
            network.load("model_path")

            input_name = network.get_input_name(0)
            input_tensor = network.get_io_tensor(input_name)
            output_name = network.get_output_name(0)
            output_tensor = network.get_io_tensor(output_name)

            input_tensor.set_data_by_copy(input_data)

            network.forward()
            network.wait()

566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
    """

    _api = _NetworkAPI()._lib

    def __init__(self, config=None, io=None):
        """
        create a network with config and networkio
        """
        self._network = _Cnetwork()

        if config:
            self.config = config
        else:
            self.config = LiteConfig()

        if io:
            self.network_io = io
        else:
            self.network_io = LiteNetworkIO()

        c_network_io = self.network_io._create_network_io()
        self._api.LITE_make_network(byref(self._network), self.config, c_network_io)

    def __repr__(self):
        data = {"config": self.config, "IOs": self.network_io}
        return data.__repr__()

    def __del__(self):
        self._api.LITE_destroy_network(self._network)

    def load(self, path):
597 598 599
        """
        load network from given path
        """
600 601 602 603
        c_path = c_char_p(path.encode("utf-8"))
        self._api.LITE_load_model_from_path(self._network, c_path)

    def forward(self):
604 605 606 607
        """
        forward the network with filled input data and fill the output data
        to the output tensor
        """
608 609 610
        self._api.LITE_forward(self._network)

    def wait(self):
611 612 613
        """
        wait until forward finish in sync model
        """
614 615 616 617 618
        self._api.LITE_wait(self._network)

    def is_cpu_inplace_mode(self):
        """
        whether the network run in cpu inpalce mode
619 620 621 622 623

        Returns:
            if use inpalce mode return True, else return False


624 625 626 627 628 629 630 631 632
        """
        inplace = c_int()
        self._api.LITE_is_cpu_inplace_mode(self._network, byref(inplace))
        return bool(inplace.value)

    def enable_cpu_inplace_mode(self):
        """
        set cpu forward in inplace mode with which cpu forward only create one
        thread
633 634 635 636

        Note:
            this must be set before the network loaded

637 638 639 640 641
        """
        self._api.LITE_set_cpu_inplace_mode(self._network)

    def use_tensorrt(self):
        """
642 643 644 645 646
        use TensorRT

        Note:
            this must be set before the network loaded

647 648 649 650 651 652 653
        """
        self._api.LITE_use_tensorrt(self._network)

    @property
    def device_id(self):
        """
        get the device id
654 655 656

        Returns:
            the device id of current network used
657 658 659 660 661 662 663 664 665
        """
        device_id = c_int()
        self._api.LITE_get_device_id(self._network, byref(device_id))
        return device_id.value

    @device_id.setter
    def device_id(self, device_id):
        """
        set the device id
666 667 668 669

        Note:
            this must be set before the network loaded

670 671 672 673 674 675 676
        """
        self._api.LITE_set_device_id(self._network, device_id)

    @property
    def stream_id(self):
        """
        get the stream id
677 678 679

        Returns:
            the value of stream id set for detwork
680 681 682 683 684 685 686 687 688
        """
        stream_id = c_int()
        self._api.LITE_get_stream_id(self._network, byref(stream_id))
        return stream_id.value

    @stream_id.setter
    def stream_id(self, stream_id):
        """
        set the stream id
689 690 691

        Note:
            this must be set before the network loaded
692 693 694 695 696 697 698
        """
        self._api.LITE_set_stream_id(self._network, stream_id)

    @property
    def threads_number(self):
        """
        get the thread number of the netwrok
699 700 701

        Returns:
            the number of thread set in the network
702 703 704 705 706 707 708 709 710
        """
        nr_thread = c_size_t()
        self._api.LITE_get_cpu_threads_number(self._network, byref(nr_thread))
        return nr_thread.value

    @threads_number.setter
    def threads_number(self, nr_threads):
        """
        set the network forward in multithread mode, and the thread number
711 712 713

        Note:
            this must be set before the network loaded
714 715 716 717 718 719
        """
        self._api.LITE_set_cpu_threads_number(self._network, nr_threads)

    def get_io_tensor(self, name, phase=LiteTensorPhase.LITE_IO):
        """
        get input or output tensor by its name
720 721 722 723 724 725 726

        Args:
            name: the name of io tensor
            phase: the type of LiteTensor, this is useful to separate input or output tensor with the same name

        Returns:
            the tensor with given name and type
727 728 729 730 731
        """
        if type(name) == str:
            c_name = c_char_p(name.encode("utf-8"))
        else:
            c_name = c_char_p(name)
732
        tensor = LiteTensor(physic_construct=False)
733 734 735 736 737 738 739 740 741
        self._api.LITE_get_io_tensor(
            self._network, c_name, phase, byref(tensor._tensor)
        )
        tensor.update()
        return tensor

    def get_input_name(self, index):
        """
        get the input name by the index in the network
742 743 744 745 746 747

        Args:
            index: the index of the input name

        Returns:
            the name of input tesor with given index
748 749 750 751 752 753 754 755
        """
        c_name = c_char_p()
        self._api.LITE_get_input_name(self._network, index, byref(c_name))
        return c_name.value.decode("utf-8")

    def get_output_name(self, index):
        """
        get the output name by the index in the network
756 757 758 759 760 761

        Args:
            index: the index of the output name

        Returns:
            the name of output tesor with given index
762 763 764 765 766 767 768 769
        """
        c_name = c_char_p()
        self._api.LITE_get_output_name(self._network, index, byref(c_name))
        return c_name.value.decode("utf-8")

    def get_all_input_name(self):
        """
        get all the input tensor name in the network
770 771 772

        Returns:
            the names of all input tesor in the network
773 774 775 776 777 778 779 780 781 782 783 784 785
        """
        nr_input = c_size_t()
        self._api.LITE_get_all_input_name(self._network, byref(nr_input), None)

        if nr_input.value > 0:
            names = (c_char_p * nr_input.value)()
            self._api.LITE_get_all_input_name(self._network, None, names)
            ret_name = [names[i].decode("utf-8") for i in range(nr_input.value)]
            return ret_name

    def get_all_output_name(self):
        """
        get all the output tensor name in the network
786 787 788

        Returns:
            the names of all output tesor in the network
789 790 791 792 793 794 795 796 797 798
        """
        nr_output = c_size_t()
        self._api.LITE_get_all_output_name(self._network, byref(nr_output), None)

        if nr_output.value > 0:
            names = (c_char_p * nr_output.value)()
            self._api.LITE_get_all_output_name(self._network, None, names)
            ret_name = [names[i].decode("utf-8") for i in range(nr_output.value)]
            return ret_name

799 800 801 802 803 804
    def extra_configure(self, extra_config):
        """
        Extra Configuration to the network.
        """
        self._api.LITE_extra_configure(self._network, extra_config)

805 806 807
    def share_weights_with(self, src_network):
        """
        share weights with the loaded network
808 809 810

        Args:
            src_network: the network to share weights
811 812 813 814 815 816 817
        """
        assert isinstance(src_network, LiteNetwork)
        self._api.LITE_shared_weight_with_network(self._network, src_network._network)

    def share_runtime_memroy(self, src_network):
        """
        share runtime memory with the srouce network
818 819 820

        Args:
            src_network: the network to share runtime memory
821 822 823 824 825
        """
        assert isinstance(src_network, LiteNetwork)
        self._api.LITE_share_runtime_memroy(self._network, src_network._network)

    def async_with_callback(self, async_callback):
826 827 828 829 830 831 832
        """
        set the network forwarding in async mode and set the AsyncCallback callback
        function

        Args:
            async_callback: the callback to set for network
        """
833 834
        callback = wrap_async_callback(async_callback)
        self._api.LITE_set_async_callback(self._network, callback)
835 836 837 838 839 840

    def set_start_callback(self, start_callback):
        """
        when the network start forward, the callback will be called,
        the start_callback with param mapping from LiteIO to the corresponding
        LiteTensor
841 842 843

        Args:
            start_callback: the callback to set for network
844
        """
845 846
        callback = start_finish_callback(start_callback)
        self._api.LITE_set_start_callback(self._network, callback)
847 848 849 850 851 852

    def set_finish_callback(self, finish_callback):
        """
        when the network finish forward, the callback will be called,
        the finish_callback with param mapping from LiteIO to the corresponding
        LiteTensor
853 854 855

        Args:
            finish_callback: the callback to set for network
856
        """
857 858
        callback = start_finish_callback(finish_callback)
        self._api.LITE_set_finish_callback(self._network, callback)
859 860

    def enable_profile_performance(self, profile_file):
861 862 863 864 865 866
        """
        enable get the network performance profiled information and save into given file

        Args:
            profile_file: the file to save profile information
        """
867 868 869 870
        c_file = profile_file.encode("utf-8")
        self._api.LITE_enable_profile_performance(self._network, c_file)

    def set_network_algo_workspace_limit(self, size_limit):
871 872 873 874 875 876 877 878
        """
        set the opr workspace limitation in the target network, some opr
        maybe use large of workspace to get good performance, set workspace limitation
        can save memory but may influence the performance

        Args:
            size_limit: the byte size of workspace limitation
        """
879 880 881 882 883 884
        self._api.LITE_set_network_algo_workspace_limit(self._network, size_limit)

    def set_network_algo_policy(
        self, policy, shared_batch_size=0, binary_equal_between_batch=False
    ):
        """
885 886 887 888 889 890 891 892 893 894 895
        set the network algorithm search policy for fast-run

        Args:
            shared_batch_size: the batch size used by fastrun,
                Non-zero value means that fastrun use this batch size
                regardless of the batch size of the model. Zero means
                fastrun use batch size of the model

            binary_equal_between_batch: if the content of each input batch is
                binary equal,whether the content of each output batch is
                promised to be equal
896 897 898 899 900 901 902 903

        """
        self._api.LITE_set_network_algo_policy(self._network, policy)
        self._api.LITE_set_network_algo_fastrun_config(
            self._network, shared_batch_size, binary_equal_between_batch
        )

    def io_txt_dump(self, txt_file):
904 905 906 907 908 909 910
        """
        dump all input/output tensor of all operators to the output file, in txt
        format, user can use this function to debug compute error

        Args:
            txt_file: the txt file
        """
911 912 913 914
        c_file = txt_file.encode("utf-8")
        self._api.LITE_enable_io_txt_dump(self._network, c_file)

    def io_bin_dump(self, bin_dir):
915 916 917 918 919 920 921
        """
        dump all input/output tensor of all operators to the output file, in
        binary format, user can use this function to debug compute error

        Args:
            bin_dir: the binary file directory
        """
922 923
        c_dir = bin_dir.encode("utf-8")
        self._api.LITE_enable_io_bin_dump(self._network, c_dir)
924 925

    def get_static_memory_alloc_info(self, log_dir="logs/test"):
926 927 928 929 930 931
        """
        get static peak memory info showed by Graph visualization

        Args:
            log_dir: the directory to save information log
        """
932 933
        c_log_dir = log_dir.encode("utf-8")
        self._api.LITE_get_static_memory_alloc_info(self._network, c_log_dir)
934 935

    def enable_global_layout_transform(self):
936 937 938 939 940 941
        """
        set global layout transform optimization for network, global
        layout optimization can auto determine the layout of every operator in
        the network by profile, thus it can improve the performance of the
        network forwarding
        """
942 943 944
        self._api.LITE_enable_global_layout_transform(self._network)

    def dump_layout_transform_model(self, model_file):
945 946 947 948 949 950 951
        """
        dump network after global layout transform optimization to the
        specific path

        Args:
            model_file: the file path to dump model
        """
952 953
        c_file = model_file.encode("utf-8")
        self._api.LITE_dump_layout_transform_model(self._network, c_file)
954 955 956 957


def get_model_io_info(model_path, config=None):
    """
958 959 960 961 962 963 964 965
    get the model io information before model loaded by model path.

    Args:
        model_path: the model path to get the model IO information
        config the model configuration

    Returns:
        the input and output information in the network configuration
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
    """
    api = _NetworkAPI()._lib
    c_path = c_char_p(model_path.encode("utf-8"))

    ios = _LiteNetworkIO()

    if config is not None:
        api.LITE_get_model_io_info_by_path(c_path, config, byref(ios))
    else:
        config = LiteConfig()
        api.LITE_get_model_io_info_by_path(c_path, config, byref(ios))

    ret_ios = LiteNetworkIO()
    for i in range(ios.input_size):
        ret_ios.add_input(ios.inputs[i])
    for i in range(ios.output_size):
        ret_ios.add_output(ios.outputs[i])
    return ret_ios