algos.cpp 5.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
/**
 * \file dnn/src/aarch64/conv_bias/fp32/algos.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "src/aarch64/conv_bias/fp32/algos.h"
#include "src/aarch64/conv_bias/fp32/stride2_kern.h"
#include "src/arm_common/conv_bias/direct/multi_thread_common.h"
#include "src/arm_common/conv_bias/postprocess_helper.h"
#include "src/fallback/conv_bias/common.h"

#include "midout.h"

using namespace megdnn;
using namespace aarch64;

MIDOUT_DECL(megdnn_aarch64_conv_bias_stride2_conv2357_fp32)
bool ConvBiasImpl::AlgoF32DirectStride2::usable(
        FallbackConvBiasImpl*, const NCBKernSizeParam& param,
        AlgoSelectionStrategy algo_selection_strategy) const {
    MIDOUT_BEGIN(megdnn_aarch64_conv_bias_stride2_conv2357_fp32, 0, 0) {
        auto&& fm = param.filter_meta;
        auto FH = fm.spatial[0];
        bool aviliable =
                param.filter_meta.format == param::ConvBias::Format::NCHW &&
                param.src_type.enumv() == DTypeEnum::Float32 &&
                param.filter_type.enumv() == DTypeEnum::Float32 &&
                param.dst_type.enumv() == DTypeEnum::Float32 &&
                !fm.should_flip && fm.spatial_ndim == 2 &&
                fm.dilation[0] == 1 && fm.dilation[1] == 1 &&
                fm.stride[0] == 2 && fm.stride[1] == 2 && FH == fm.spatial[1] &&
                (FH == 2 || FH == 3 || FH == 5 || FH == 7);
        if (algo_selection_strategy == AlgoSelectionStrategy::HEURISTIC) {
            bool large_group = param.filter_meta.group >= param.nr_threads;
            aviliable &= (large_group == m_large_group);
        }
        return aviliable;
    }
    MIDOUT_END();
    return false;
}

size_t ConvBiasImpl::AlgoF32DirectStride2::get_workspace(
        FallbackConvBiasImpl*, const NCBKernSizeParam& param) const {
    MIDOUT_BEGIN(megdnn_aarch64_conv_bias_stride2_conv2357_fp32, 0, 1) {
        auto wbundle = arm_common::MultithreadDirectConvCommon<
                float, float>::get_bundle_stride(param, m_large_group);
        return wbundle.total_size_in_bytes();
    }
    MIDOUT_END();
    return 0;
}
SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoF32DirectStride2::dispatch_kerns(
        FallbackConvBiasImpl*, const NCBKernSizeParam& param) const {
    MIDOUT_BEGIN(megdnn_aarch64_conv_bias_stride2_conv2357_fp32, 0, 2) {
        return get_kimpls(param);
    }
    MIDOUT_END();
    return {};
}

SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoF32DirectStride2::get_kimpls(
        const NCBKernSizeParam& param) const {
    auto fm = param.filter_meta;
    auto FH = fm.spatial[0];
    size_t N = param.n;
    size_t IC = param.filter_meta.icpg;
    size_t OC = param.filter_meta.ocpg;
    size_t group = fm.group;
    using Func = std::function<void(const float*, const float*, float*, size_t,
                                    size_t, size_t, size_t, size_t)>;
    Func conv = nullptr;
    if (FH == 2) {
        conv = fp32::conv_stride2::do_conv_2x2_stride2;
    } else if (FH == 3) {
        conv = fp32::conv_stride2::do_conv_3x3_stride2;
    } else if (FH == 5) {
        conv = fp32::conv_stride2::do_conv_5x5_stride2;
    } else if (FH == 7) {
        conv = fp32::conv_stride2::do_conv_7x7_stride2;
    }

91
    WorkspaceBundle bundle = arm_common::MultithreadDirectConvCommon<
92 93 94 95 96 97
            float, float>::get_bundle_stride(param, m_large_group);
    SmallVector<NCBKern> ret_kerns;

    //! Dense conv and small group
    if (m_large_group) {
        //! Channel wise conv and big groups
98 99 100
        auto exec_one_group = [bundle, conv](
                                      const NCBKernParam& kern_param,
                                      const NCBKernIndex& ncb_index) mutable {
101 102 103
            auto fm = kern_param.filter_meta;
            size_t IC = fm.icpg;
            size_t OC = fm.ocpg;
104
            bundle.set(kern_param.workspace_ptr);
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
            for (size_t ic = 0; ic < IC; ic++) {
                arm_common::MultithreadDirectConvCommon<float, float>::
                        copy_padding_kern_stride(bundle, kern_param, ncb_index,
                                                 {ncb_index.thread_id, 0, ic});
            }
            for (size_t oc = 0; oc < OC; oc++) {
                arm_common::MultithreadDirectConvCommon<
                        float, float>::do_conv_kern_stride(bundle, kern_param,
                                                           ncb_index, conv,
                                                           {ncb_index.thread_id,
                                                            0, oc});
            }
        };
        ret_kerns.push_back({exec_one_group, {group, N, 1_z}});
    } else {
        auto copy_padding = [bundle](const NCBKernParam& kern_param,
121 122
                                     const NCBKernIndex& ncb_index) mutable {
            bundle.set(kern_param.workspace_ptr);
123 124 125 126 127 128
            arm_common::MultithreadDirectConvCommon<float, float>::
                    copy_padding_kern_stride(bundle, kern_param, ncb_index,
                                             ncb_index.ndrange_id);
        };
        ret_kerns.push_back({copy_padding, {group, N, IC}});
        auto do_conv = [bundle, conv](const NCBKernParam& kern_param,
129 130
                                      const NCBKernIndex& ncb_index) mutable {
            bundle.set(kern_param.workspace_ptr);
131 132 133 134 135 136 137 138 139
            arm_common::MultithreadDirectConvCommon<
                    float, float>::do_conv_kern_stride(bundle, kern_param,
                                                       ncb_index, conv,
                                                       ncb_index.ndrange_id);
        };
        ret_kerns.push_back({do_conv, {group, N, OC}});
    }
    return ret_kerns;
}