algos.cpp 5.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
/**
 * \file dnn/src/aarch64/conv_bias/fp32/algos.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "src/aarch64/conv_bias/fp32/algos.h"
#include "src/aarch64/conv_bias/fp32/stride2_kern.h"
#include "src/arm_common/conv_bias/direct/multi_thread_common.h"
#include "src/arm_common/conv_bias/postprocess_helper.h"
#include "src/fallback/conv_bias/common.h"

#include "midout.h"

using namespace megdnn;
using namespace aarch64;

MIDOUT_DECL(megdnn_aarch64_conv_bias_stride2_conv2357_fp32)
bool ConvBiasImpl::AlgoF32DirectStride2::usable(
        FallbackConvBiasImpl*, const NCBKernSizeParam& param,
        AlgoSelectionStrategy algo_selection_strategy) const {
    MIDOUT_BEGIN(megdnn_aarch64_conv_bias_stride2_conv2357_fp32, 0, 0) {
        auto&& fm = param.filter_meta;
        auto FH = fm.spatial[0];
        bool aviliable =
                param.filter_meta.format == param::ConvBias::Format::NCHW &&
                param.src_type.enumv() == DTypeEnum::Float32 &&
                param.filter_type.enumv() == DTypeEnum::Float32 &&
                param.dst_type.enumv() == DTypeEnum::Float32 &&
                !fm.should_flip && fm.spatial_ndim == 2 &&
                fm.dilation[0] == 1 && fm.dilation[1] == 1 &&
                fm.stride[0] == 2 && fm.stride[1] == 2 && FH == fm.spatial[1] &&
                (FH == 2 || FH == 3 || FH == 5 || FH == 7);
        if (algo_selection_strategy == AlgoSelectionStrategy::HEURISTIC) {
            bool large_group = param.filter_meta.group >= param.nr_threads;
            aviliable &= (large_group == m_large_group);
        }
        return aviliable;
    }
    MIDOUT_END();
    return false;
}

size_t ConvBiasImpl::AlgoF32DirectStride2::get_workspace(
        FallbackConvBiasImpl*, const NCBKernSizeParam& param) const {
    MIDOUT_BEGIN(megdnn_aarch64_conv_bias_stride2_conv2357_fp32, 0, 1) {
        auto wbundle = arm_common::MultithreadDirectConvCommon<
                float, float>::get_bundle_stride(param, m_large_group);
        return wbundle.total_size_in_bytes();
    }
    MIDOUT_END();
    return 0;
}
SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoF32DirectStride2::dispatch_kerns(
        FallbackConvBiasImpl*, const NCBKernSizeParam& param) const {
    MIDOUT_BEGIN(megdnn_aarch64_conv_bias_stride2_conv2357_fp32, 0, 2) {
        return get_kimpls(param);
    }
    MIDOUT_END();
    return {};
}

SmallVector<ConvBiasImpl::NCBKern>
ConvBiasImpl::AlgoF32DirectStride2::get_kimpls(
        const NCBKernSizeParam& param) const {
    auto fm = param.filter_meta;
    auto FH = fm.spatial[0];
    size_t N = param.n;
    size_t IC = param.filter_meta.icpg;
    size_t OC = param.filter_meta.ocpg;
    size_t group = fm.group;
    using Func = std::function<void(const float*, const float*, float*, size_t,
                                    size_t, size_t, size_t, size_t)>;
    Func conv = nullptr;
    if (FH == 2) {
        conv = fp32::conv_stride2::do_conv_2x2_stride2;
    } else if (FH == 3) {
        conv = fp32::conv_stride2::do_conv_3x3_stride2;
    } else if (FH == 5) {
        conv = fp32::conv_stride2::do_conv_5x5_stride2;
    } else if (FH == 7) {
        conv = fp32::conv_stride2::do_conv_7x7_stride2;
    }

    WorkspaceBundle wbundle = arm_common::MultithreadDirectConvCommon<
            float, float>::get_bundle_stride(param, m_large_group);
    SmallVector<NCBKern> ret_kerns;

    //! Dense conv and small group
    if (m_large_group) {
        //! Channel wise conv and big groups
        auto exec_one_group = [wbundle, conv](const NCBKernParam& kern_param,
                                              const NCBKernIndex& ncb_index) {
            auto fm = kern_param.filter_meta;
            size_t IC = fm.icpg;
            size_t OC = fm.ocpg;
            WorkspaceBundle bundle = wbundle;
            for (size_t ic = 0; ic < IC; ic++) {
                arm_common::MultithreadDirectConvCommon<float, float>::
                        copy_padding_kern_stride(bundle, kern_param, ncb_index,
                                                 {ncb_index.thread_id, 0, ic});
            }
            for (size_t oc = 0; oc < OC; oc++) {
                arm_common::MultithreadDirectConvCommon<
                        float, float>::do_conv_kern_stride(bundle, kern_param,
                                                           ncb_index, conv,
                                                           {ncb_index.thread_id,
                                                            0, oc});
            }
        };
        ret_kerns.push_back({exec_one_group, {group, N, 1_z}});
    } else {
        WorkspaceBundle bundle = wbundle;
        auto copy_padding = [bundle](const NCBKernParam& kern_param,
                                     const NCBKernIndex& ncb_index) {
            arm_common::MultithreadDirectConvCommon<float, float>::
                    copy_padding_kern_stride(bundle, kern_param, ncb_index,
                                             ncb_index.ndrange_id);
        };
        ret_kerns.push_back({copy_padding, {group, N, IC}});
        auto do_conv = [bundle, conv](const NCBKernParam& kern_param,
                                      const NCBKernIndex& ncb_index) {
            arm_common::MultithreadDirectConvCommon<
                    float, float>::do_conv_kern_stride(bundle, kern_param,
                                                       ncb_index, conv,
                                                       ncb_index.ndrange_id);
        };
        ret_kerns.push_back({do_conv, {group, N, OC}});
    }
    return ret_kerns;
}