scalar.cpp 14.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
/**
 * \file imperative/src/impl/transformations/trace.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "megbrain/imperative/transformations/scalar.h"

#include "megbrain/imperative/ops/autogen.h"

namespace mgb {
namespace imperative {

namespace {

using ScalarRule = std::function<std::vector<ValueRef>(const OpDef&, Span<ValueRef>)>;
static std::unordered_map<
        Typeinfo*, std::function<std::vector<ValueRef>(const OpDef&, Span<ValueRef>)>>
        scalar_rules;

ValueRef unwrap_input(ValueRef input) {
    if (auto scalar_input = input.as_ref<ScalarValue>()) {
        return scalar_input->value();
    } else {
        return input;
    }
}

std::vector<ValueRef> unwrap_inputs(Span<ValueRef> inputs) {
    std::vector<ValueRef> unwrapped_inputs;
    for (auto&& input : inputs) {
        unwrapped_inputs.push_back(unwrap_input(input));
    }
    return unwrapped_inputs;
}

ValueRef make_scalar_shape(CompNode device) {
    HostTensorND scalar_shape(device, {1}, dtype::Int32());
    scalar_shape.ptr<dt_int32>()[0] = 1;
    return imperative::apply(
            CreateTensor(CreateTensor::Const, device, scalar_shape.layout()),
            HostStorage::make(scalar_shape.storage()))[0];
}

bool is_scalar_shape(ValueRef shape) {
    if (shape.is<ScalarValue>()) {
        return false;
    }
54
    // may have performance issue
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
    auto shape_of_shape = shape.shape();
    if (!shape_of_shape) {
        // assume not scalar
        return false;
    }
    return *shape_of_shape == ValueShape{0};
}

template <typename T>
void register_scalar_rule(std::vector<ValueRef> (*rule)(const T&, Span<ValueRef>)) {
    scalar_rules[T::typeinfo()] = [rule](const OpDef& def, Span<ValueRef> inputs) {
        return (*rule)(def.cast_final_safe<T>(), inputs);
    };
}

std::vector<ValueRef> elemwise_rule(const Elemwise& elem, Span<ValueRef> inputs) {
    bool all_scalar = true;
    for (auto&& input : inputs) {
        if (!input.is<ScalarValue>()) {
            all_scalar = false;
            break;
        }
    }
    auto output = imperative::apply(elem, unwrap_inputs(inputs))[0];
    if (all_scalar) {
        return {ScalarValue::make(output)};
    } else {
        return {output};
    }
}

std::vector<ValueRef> remove_axis_rule(
        const RemoveAxis& remove_axis, Span<ValueRef> inputs) {
    mgb_assert(inputs.size() == 1);
    mgb_assert(!inputs[0].is<ScalarValue>());
    auto output = imperative::apply(remove_axis, inputs)[0];
    bool is_scalar = inputs[0].shape()->ndim == remove_axis.axis.size();
    if (is_scalar) {
        return {ScalarValue::make(output)};
    } else {
        return {output};
    }
}

std::vector<ValueRef> reduce_rule(const Reduce& reduce, Span<ValueRef> inputs) {
    if (inputs.size() == 1) {
        return imperative::apply(reduce, unwrap_inputs(inputs));
    }
    mgb_assert(inputs.size() == 2);
    bool is_scalar = is_scalar_shape(inputs[1]);
    if (is_scalar) {
        auto unwrapped_input = unwrap_input(inputs[0]);
        CompNode device = *unwrapped_input.device();
        return {ScalarValue::make(imperative::apply(
                reduce, unwrapped_input, make_scalar_shape(device))[0])};
    }
    auto output = imperative::apply(reduce, unwrap_inputs(inputs))[0];
    if (is_scalar) {
        return {ScalarValue::make(output)};
    } else {
        return {output};
    }
}

std::vector<ValueRef> typecvt_rule(const TypeCvt& typecvt, Span<ValueRef> inputs) {
    mgb_assert(inputs.size() == 1);
    if (auto scalar_input = inputs[0].as_ref<ScalarValue>()) {
        return {ScalarValue::make(
                imperative::apply(typecvt, scalar_input->value())[0])};
    } else {
        return imperative::apply(typecvt, inputs);
    }
}

std::vector<ValueRef> collective_comm_rule(
        const CollectiveComm& collective_comm, Span<ValueRef> inputs) {
    mgb_assert(inputs.size() == 1);
    static std::unordered_set<CollectiveComm::Mode> modes = {
            CollectiveComm::Mode::ALL_REDUCE_MAX, CollectiveComm::Mode::ALL_REDUCE_MIN,
            CollectiveComm::Mode::ALL_REDUCE_SUM, CollectiveComm::Mode::BROADCAST,
            CollectiveComm::Mode::REDUCE_SUM,
    };
    if (modes.count(collective_comm.mode) == 0) {
        return imperative::apply(collective_comm, inputs);
    }
    if (auto scalar_input = inputs[0].as_ref<ScalarValue>()) {
        return {ScalarValue::make(
                imperative::apply(collective_comm, scalar_input->value())[0])};
    } else {
        return imperative::apply(collective_comm, inputs);
    }
}

std::vector<ValueRef> param_pack_split_rule(
        const ParamPackSplit& param_pack_split, Span<ValueRef> inputs) {
    auto outputs = imperative::apply(param_pack_split, unwrap_inputs(inputs));
    size_t nr_outputs = outputs.size();
    mgb_assert(nr_outputs == param_pack_split.shapes.size());
    for (size_t i = 0; i < nr_outputs; ++i) {
        if (param_pack_split.shapes[i].empty()) {
            outputs[i] = ScalarValue::make(outputs[i]);
        }
    }
    return outputs;
}

std::vector<ValueRef> dot_rule(const Dot& dot, Span<ValueRef> inputs) {
    return {ScalarValue::make(imperative::apply(dot, unwrap_inputs(inputs))[0])};
}

std::vector<ValueRef> add_axis_rule(const AddAxis& add_axis, Span<ValueRef> inputs) {
    mgb_assert(inputs.size() == 1);
    if (auto scalar_input = inputs[0].as_ref<ScalarValue>()) {
        mgb_assert(add_axis.axis[0] == 0);
        if (add_axis.axis.size() == 1) {
            return {scalar_input->value()};
        } else {
            std::vector<int32_t> axis(add_axis.axis.begin() + 1, add_axis.axis.end());
            return imperative::apply(
                    ApplyOp(*AddAxis::make(axis, add_axis.scope())),
                    scalar_input->value());
        }
    } else {
        return imperative::apply(add_axis, inputs);
    }
}

std::vector<ValueRef> remote_recv_rule(
        const RemoteRecv& remote_recv, Span<ValueRef> inputs) {
    if (remote_recv.shape.empty()) {
        std::vector<int32_t> shape = {1};
        auto remote_recv_no_scalar = RemoteRecv::make(
                remote_recv.key, remote_recv.addr, remote_recv.port,
                remote_recv.rank_from, remote_recv.cn, shape, remote_recv.dtype,
                remote_recv.backend);
        remote_recv_no_scalar->set_scope(remote_recv.scope());
        return imperative::apply(
                ApplyOp(*remote_recv_no_scalar), unwrap_inputs(inputs));
    } else {
        return imperative::apply(remote_recv, unwrap_inputs(inputs));
    }
}

std::vector<ValueRef> check_no_finite_rule(
        const CheckNonFinite& check_no_finite, Span<ValueRef> inputs) {
    auto outputs = imperative::apply(check_no_finite, unwrap_inputs(inputs));
    mgb_assert(outputs.size() == inputs.size() + 1, "output size mismatch");
    outputs.back() = ScalarValue::make(outputs.back());
    for (size_t i = 0; i < inputs.size(); ++i) {
        if (inputs[i].is<ScalarValue>()) {
            outputs[i] = ScalarValue::make(outputs[i]);
        }
    }
    return outputs;
}

std::vector<ValueRef> subtensor_rule(
        const Subtensor& subtensor, Span<ValueRef> inputs) {
    mgb_assert(inputs.size() >= 1);
    auto input = inputs[0];
215 216 217 218 219 220 221 222
    bool is_scalar;
    mgb_assert(!input.is<ScalarValue>(), "subtensor shouldn't have scalar input");
    if (auto shape = input.shape()) {
        size_t ndim = input.shape()->ndim;
        for (auto&& [axis, begin, end, step, idx] : subtensor.items) {
            if (idx) {
                ndim--;
            }
223
        }
224 225 226
        is_scalar = ndim == 0;
    } else {
        is_scalar = false;
227 228
    }
    auto output = imperative::apply(subtensor, unwrap_inputs(inputs))[0];
229
    if (is_scalar) {
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
        return {ScalarValue::make(output)};
    } else {
        return {output};
    }
}

std::vector<ValueRef> get_var_shape_rule(
        const GetVarShape& get_var_shape, Span<ValueRef> inputs) {
    bool all_scalar = true;
    mgb_assert(inputs.size() >= 1);
    for (auto&& input : inputs) {
        if (!input.is<ScalarValue>()) {
            all_scalar = false;
        }
    }
    if (all_scalar) {
        auto device = inputs[0].cast<ScalarValue>().value().device();
        auto storage = HostStorage::make(*device);
        // storage->ensure_size(1);
        return imperative::apply(
                CreateTensor(
                        CreateTensor::Const, *device, dtype::Int32(), ValueShape{0}),
                storage);
    } else {
        return imperative::apply(get_var_shape, unwrap_inputs(inputs));
    }
}

std::vector<ValueRef> fastpath_copy_rule(
        const FastpathCopy& fastpath_copy, Span<ValueRef> inputs) {
    mgb_assert(inputs.size() == 1);
    bool is_scalar = inputs[0].is<ScalarValue>();
    auto output = imperative::apply(fastpath_copy, unwrap_inputs(inputs))[0];
    if (is_scalar) {
        return {ScalarValue::make(output)};
    } else {
        return {output};
    }
}

std::vector<ValueRef> reshape_rule(const Reshape& reshape, Span<ValueRef> inputs) {
    mgb_assert(inputs.size() == 2);
272
    bool is_scalar = is_scalar_shape(inputs[1]);
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
    auto unwrapped_input = inputs[0].is<ScalarValue>()
                                 ? inputs[0].cast<ScalarValue>().value()
                                 : inputs[0];
    if (is_scalar) {
        return {ScalarValue::make(imperative::apply(
                reshape, unwrapped_input,
                make_scalar_shape(*unwrapped_input.device()))[0])};
    } else {
        return imperative::apply(reshape, unwrap_inputs(inputs));
    }
}

std::vector<ValueRef> broadcast_rule(
        const Broadcast& broadcast, Span<ValueRef> inputs) {
    mgb_assert(inputs.size() == 2);
    bool is_scalar = is_scalar_shape(inputs[1]);
    auto unwrapped_input = inputs[0].is<ScalarValue>()
                                 ? inputs[0].cast<ScalarValue>().value()
                                 : inputs[0];
    if (is_scalar) {
        return {ScalarValue::make(imperative::apply(
                broadcast, unwrapped_input,
                make_scalar_shape(*unwrapped_input.device()))[0])};
    } else {
        return imperative::apply(broadcast, unwrap_inputs(inputs));
    }
}

std::vector<ValueRef> copy_rule(const Copy& copy, Span<ValueRef> inputs) {
    mgb_assert(inputs.size() == 1);
    bool is_scalar = inputs[0].is<ScalarValue>();
    if (is_scalar) {
        return {ScalarValue::make(imperative::apply(copy, unwrap_inputs(inputs))[0])};
    } else {
        return imperative::apply(copy, unwrap_inputs(inputs));
    }
}

std::vector<ValueRef> inplace_add_rule(
        const InplaceAdd& inplace_add, Span<ValueRef> inputs) {
    mgb_assert(inputs.size() == 4);
    bool is_scalar = inputs[0].is<ScalarValue>();
    if (is_scalar) {
        return {ScalarValue::make(
                imperative::apply(inplace_add, unwrap_inputs(inputs))[0])};
    } else {
        return imperative::apply(inplace_add, unwrap_inputs(inputs));
    }
}

struct ScalarRuleRegistry {
    ScalarRuleRegistry() {
        register_scalar_rule(elemwise_rule);
        register_scalar_rule(remove_axis_rule);
        register_scalar_rule(reduce_rule);
        register_scalar_rule(typecvt_rule);
        register_scalar_rule(collective_comm_rule);
        register_scalar_rule(param_pack_split_rule);
        register_scalar_rule(dot_rule);
        register_scalar_rule(add_axis_rule);
        register_scalar_rule(remote_recv_rule);
        register_scalar_rule(check_no_finite_rule);
        register_scalar_rule(subtensor_rule);
        register_scalar_rule(get_var_shape_rule);
        register_scalar_rule(fastpath_copy_rule);
        register_scalar_rule(reshape_rule);
        register_scalar_rule(broadcast_rule);
        register_scalar_rule(copy_rule);
        register_scalar_rule(inplace_add_rule);
    }
} _;
}  // namespace

std::vector<ValueRef> ScalarTransformation::apply_transformation(
        const Operator& op, Span<ValueRef> inputs) {
    if (auto apply_op = op.as<ApplyOp>()) {
        auto iter = scalar_rules.find(apply_op->op().dyn_typeinfo());
        if (iter != scalar_rules.end()) {
            return iter->second(apply_op->op(), inputs);
        } else {
            // TODO: repeat op
            return imperative::apply(op, unwrap_inputs(inputs));
        }
    } else if (auto* create_tensor = op.as<CreateTensor>()) {
        if (create_tensor->shape().is_scalar()) {
            ValueShape scalar_shape = {1};
            CreateTensor scalar_op(
                    create_tensor->kind(), create_tensor->device(),
                    create_tensor->dtype(), scalar_shape);
            return {ScalarValue::make(imperative::apply(scalar_op, inputs)[0])};
        } else {
            return imperative::apply(op, inputs);
        }
    } else if (auto* get_attr = op.as<GetAttr>()) {
        bool is_scalar = inputs.as_array<1>()[0].is<ScalarValue>();
        auto output = imperative::apply(op, unwrap_inputs(inputs))[0];
        if (!is_scalar) {
            return {output};
        }
        switch (get_attr->attr()) {
            case GetAttr::Shape: {
                // Scalar Shape
                return {ShapeValue::make()};
            }
            case GetAttr::Value: {
                auto& hv = output.cast<HostValue>();
                mgb_assert(
                        hv.shape() == ValueShape({1}),
                        "underlying value should has shape {1}, got %s",
                        hv.shape().to_string().c_str());
                return {HostValue::make(hv.dtype(), ValueShape(), hv.storage())};
            }
            case GetAttr::Data: {
                auto& dv = output.cast<DeviceValue>();
                mgb_assert(
                        dv.shape() == ValueShape({1}),
                        "underlying value should has shape {1}, got %s",
                        dv.shape().to_string().c_str());
                return {DeviceValue::make(dv.dtype(), ValueShape(), dv.storage())};
            }
            default:
                return {output};
        }
    } else if (op.as<IsScalar>()) {
        return {BoolValue::make(inputs.as_array<1>()[0].is<ScalarValue>())};
    } else if (op.is<Operator::IdentityLike>()) {
        bool is_scalar = inputs.as_array<1>()[0].is<ScalarValue>();
        if (is_scalar) {
            return {ScalarValue::make(imperative::apply(op, unwrap_inputs(inputs))[0])};
        } else {
            return imperative::apply(op, inputs);
        }
    } else {
        return imperative::apply(op, unwrap_inputs(inputs));
    }
};

}  // namespace imperative
}  // namespace mgb