提交 e32929df 编写于 作者: M Megvii Engine Team

refactor(dispatch): implement scalar

GitOrigin-RevId: b244c2ca1ad5cb28ffcf0e320cd0440f298bea51
上级 59084fa8
/**
* \file imperative/src/impl/transformations/trace.cpp
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
*
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*/
#include "megbrain/imperative/transformations/scalar.h"
#include "megbrain/imperative/ops/autogen.h"
namespace mgb {
namespace imperative {
namespace {
using ScalarRule = std::function<std::vector<ValueRef>(const OpDef&, Span<ValueRef>)>;
static std::unordered_map<
Typeinfo*, std::function<std::vector<ValueRef>(const OpDef&, Span<ValueRef>)>>
scalar_rules;
ValueRef unwrap_input(ValueRef input) {
if (auto scalar_input = input.as_ref<ScalarValue>()) {
return scalar_input->value();
} else {
return input;
}
}
std::vector<ValueRef> unwrap_inputs(Span<ValueRef> inputs) {
std::vector<ValueRef> unwrapped_inputs;
for (auto&& input : inputs) {
unwrapped_inputs.push_back(unwrap_input(input));
}
return unwrapped_inputs;
}
ValueRef make_scalar_shape(CompNode device) {
HostTensorND scalar_shape(device, {1}, dtype::Int32());
scalar_shape.ptr<dt_int32>()[0] = 1;
return imperative::apply(
CreateTensor(CreateTensor::Const, device, scalar_shape.layout()),
HostStorage::make(scalar_shape.storage()))[0];
}
bool is_scalar_shape(ValueRef shape) {
if (shape.is<ScalarValue>()) {
return false;
}
auto shape_of_shape = shape.shape();
if (!shape_of_shape) {
// assume not scalar
return false;
}
return *shape_of_shape == ValueShape{0};
}
template <typename T>
void register_scalar_rule(std::vector<ValueRef> (*rule)(const T&, Span<ValueRef>)) {
scalar_rules[T::typeinfo()] = [rule](const OpDef& def, Span<ValueRef> inputs) {
return (*rule)(def.cast_final_safe<T>(), inputs);
};
}
std::vector<ValueRef> elemwise_rule(const Elemwise& elem, Span<ValueRef> inputs) {
bool all_scalar = true;
for (auto&& input : inputs) {
if (!input.is<ScalarValue>()) {
all_scalar = false;
break;
}
}
auto output = imperative::apply(elem, unwrap_inputs(inputs))[0];
if (all_scalar) {
return {ScalarValue::make(output)};
} else {
return {output};
}
}
std::vector<ValueRef> remove_axis_rule(
const RemoveAxis& remove_axis, Span<ValueRef> inputs) {
mgb_assert(inputs.size() == 1);
mgb_assert(!inputs[0].is<ScalarValue>());
auto output = imperative::apply(remove_axis, inputs)[0];
bool is_scalar = inputs[0].shape()->ndim == remove_axis.axis.size();
if (is_scalar) {
return {ScalarValue::make(output)};
} else {
return {output};
}
}
std::vector<ValueRef> reduce_rule(const Reduce& reduce, Span<ValueRef> inputs) {
if (inputs.size() == 1) {
return imperative::apply(reduce, unwrap_inputs(inputs));
}
mgb_assert(inputs.size() == 2);
bool is_scalar = is_scalar_shape(inputs[1]);
if (is_scalar) {
auto unwrapped_input = unwrap_input(inputs[0]);
CompNode device = *unwrapped_input.device();
return {ScalarValue::make(imperative::apply(
reduce, unwrapped_input, make_scalar_shape(device))[0])};
}
auto output = imperative::apply(reduce, unwrap_inputs(inputs))[0];
if (is_scalar) {
return {ScalarValue::make(output)};
} else {
return {output};
}
}
std::vector<ValueRef> typecvt_rule(const TypeCvt& typecvt, Span<ValueRef> inputs) {
mgb_assert(inputs.size() == 1);
if (auto scalar_input = inputs[0].as_ref<ScalarValue>()) {
return {ScalarValue::make(
imperative::apply(typecvt, scalar_input->value())[0])};
} else {
return imperative::apply(typecvt, inputs);
}
}
std::vector<ValueRef> collective_comm_rule(
const CollectiveComm& collective_comm, Span<ValueRef> inputs) {
mgb_assert(inputs.size() == 1);
static std::unordered_set<CollectiveComm::Mode> modes = {
CollectiveComm::Mode::ALL_REDUCE_MAX, CollectiveComm::Mode::ALL_REDUCE_MIN,
CollectiveComm::Mode::ALL_REDUCE_SUM, CollectiveComm::Mode::BROADCAST,
CollectiveComm::Mode::REDUCE_SUM,
};
if (modes.count(collective_comm.mode) == 0) {
return imperative::apply(collective_comm, inputs);
}
if (auto scalar_input = inputs[0].as_ref<ScalarValue>()) {
return {ScalarValue::make(
imperative::apply(collective_comm, scalar_input->value())[0])};
} else {
return imperative::apply(collective_comm, inputs);
}
}
std::vector<ValueRef> param_pack_split_rule(
const ParamPackSplit& param_pack_split, Span<ValueRef> inputs) {
auto outputs = imperative::apply(param_pack_split, unwrap_inputs(inputs));
size_t nr_outputs = outputs.size();
mgb_assert(nr_outputs == param_pack_split.shapes.size());
for (size_t i = 0; i < nr_outputs; ++i) {
if (param_pack_split.shapes[i].empty()) {
outputs[i] = ScalarValue::make(outputs[i]);
}
}
return outputs;
}
std::vector<ValueRef> dot_rule(const Dot& dot, Span<ValueRef> inputs) {
return {ScalarValue::make(imperative::apply(dot, unwrap_inputs(inputs))[0])};
}
std::vector<ValueRef> add_axis_rule(const AddAxis& add_axis, Span<ValueRef> inputs) {
mgb_assert(inputs.size() == 1);
if (auto scalar_input = inputs[0].as_ref<ScalarValue>()) {
mgb_assert(add_axis.axis[0] == 0);
if (add_axis.axis.size() == 1) {
return {scalar_input->value()};
} else {
std::vector<int32_t> axis(add_axis.axis.begin() + 1, add_axis.axis.end());
return imperative::apply(
ApplyOp(*AddAxis::make(axis, add_axis.scope())),
scalar_input->value());
}
} else {
return imperative::apply(add_axis, inputs);
}
}
std::vector<ValueRef> remote_recv_rule(
const RemoteRecv& remote_recv, Span<ValueRef> inputs) {
if (remote_recv.shape.empty()) {
std::vector<int32_t> shape = {1};
auto remote_recv_no_scalar = RemoteRecv::make(
remote_recv.key, remote_recv.addr, remote_recv.port,
remote_recv.rank_from, remote_recv.cn, shape, remote_recv.dtype,
remote_recv.backend);
remote_recv_no_scalar->set_scope(remote_recv.scope());
return imperative::apply(
ApplyOp(*remote_recv_no_scalar), unwrap_inputs(inputs));
} else {
return imperative::apply(remote_recv, unwrap_inputs(inputs));
}
}
std::vector<ValueRef> check_no_finite_rule(
const CheckNonFinite& check_no_finite, Span<ValueRef> inputs) {
auto outputs = imperative::apply(check_no_finite, unwrap_inputs(inputs));
mgb_assert(outputs.size() == inputs.size() + 1, "output size mismatch");
outputs.back() = ScalarValue::make(outputs.back());
for (size_t i = 0; i < inputs.size(); ++i) {
if (inputs[i].is<ScalarValue>()) {
outputs[i] = ScalarValue::make(outputs[i]);
}
}
return outputs;
}
std::vector<ValueRef> subtensor_rule(
const Subtensor& subtensor, Span<ValueRef> inputs) {
mgb_assert(inputs.size() >= 1);
auto input = inputs[0];
size_t ndim = input.is<ScalarValue>() ? 0 : input.shape()->ndim;
for (auto&& [axis, begin, end, step, idx] : subtensor.items) {
if (idx) {
ndim--;
}
}
auto output = imperative::apply(subtensor, unwrap_inputs(inputs))[0];
if (!ndim) {
return {ScalarValue::make(output)};
} else {
return {output};
}
}
std::vector<ValueRef> get_var_shape_rule(
const GetVarShape& get_var_shape, Span<ValueRef> inputs) {
bool all_scalar = true;
mgb_assert(inputs.size() >= 1);
for (auto&& input : inputs) {
if (!input.is<ScalarValue>()) {
all_scalar = false;
}
}
if (all_scalar) {
auto device = inputs[0].cast<ScalarValue>().value().device();
auto storage = HostStorage::make(*device);
// storage->ensure_size(1);
return imperative::apply(
CreateTensor(
CreateTensor::Const, *device, dtype::Int32(), ValueShape{0}),
storage);
} else {
return imperative::apply(get_var_shape, unwrap_inputs(inputs));
}
}
std::vector<ValueRef> fastpath_copy_rule(
const FastpathCopy& fastpath_copy, Span<ValueRef> inputs) {
mgb_assert(inputs.size() == 1);
bool is_scalar = inputs[0].is<ScalarValue>();
auto output = imperative::apply(fastpath_copy, unwrap_inputs(inputs))[0];
if (is_scalar) {
return {ScalarValue::make(output)};
} else {
return {output};
}
}
std::vector<ValueRef> reshape_rule(const Reshape& reshape, Span<ValueRef> inputs) {
mgb_assert(inputs.size() == 2);
bool is_scalar =
(!inputs[1].is<ScalarValue>()) && *inputs[1].shape() == ValueShape{0};
auto unwrapped_input = inputs[0].is<ScalarValue>()
? inputs[0].cast<ScalarValue>().value()
: inputs[0];
if (is_scalar) {
return {ScalarValue::make(imperative::apply(
reshape, unwrapped_input,
make_scalar_shape(*unwrapped_input.device()))[0])};
} else {
return imperative::apply(reshape, unwrap_inputs(inputs));
}
}
std::vector<ValueRef> broadcast_rule(
const Broadcast& broadcast, Span<ValueRef> inputs) {
mgb_assert(inputs.size() == 2);
bool is_scalar = is_scalar_shape(inputs[1]);
auto unwrapped_input = inputs[0].is<ScalarValue>()
? inputs[0].cast<ScalarValue>().value()
: inputs[0];
if (is_scalar) {
return {ScalarValue::make(imperative::apply(
broadcast, unwrapped_input,
make_scalar_shape(*unwrapped_input.device()))[0])};
} else {
return imperative::apply(broadcast, unwrap_inputs(inputs));
}
}
std::vector<ValueRef> copy_rule(const Copy& copy, Span<ValueRef> inputs) {
mgb_assert(inputs.size() == 1);
bool is_scalar = inputs[0].is<ScalarValue>();
if (is_scalar) {
return {ScalarValue::make(imperative::apply(copy, unwrap_inputs(inputs))[0])};
} else {
return imperative::apply(copy, unwrap_inputs(inputs));
}
}
std::vector<ValueRef> inplace_add_rule(
const InplaceAdd& inplace_add, Span<ValueRef> inputs) {
mgb_assert(inputs.size() == 4);
bool is_scalar = inputs[0].is<ScalarValue>();
if (is_scalar) {
return {ScalarValue::make(
imperative::apply(inplace_add, unwrap_inputs(inputs))[0])};
} else {
return imperative::apply(inplace_add, unwrap_inputs(inputs));
}
}
struct ScalarRuleRegistry {
ScalarRuleRegistry() {
register_scalar_rule(elemwise_rule);
register_scalar_rule(remove_axis_rule);
register_scalar_rule(reduce_rule);
register_scalar_rule(typecvt_rule);
register_scalar_rule(collective_comm_rule);
register_scalar_rule(param_pack_split_rule);
register_scalar_rule(dot_rule);
register_scalar_rule(add_axis_rule);
register_scalar_rule(remote_recv_rule);
register_scalar_rule(check_no_finite_rule);
register_scalar_rule(subtensor_rule);
register_scalar_rule(get_var_shape_rule);
register_scalar_rule(fastpath_copy_rule);
register_scalar_rule(reshape_rule);
register_scalar_rule(broadcast_rule);
register_scalar_rule(copy_rule);
register_scalar_rule(inplace_add_rule);
}
} _;
} // namespace
std::vector<ValueRef> ScalarTransformation::apply_transformation(
const Operator& op, Span<ValueRef> inputs) {
if (auto apply_op = op.as<ApplyOp>()) {
auto iter = scalar_rules.find(apply_op->op().dyn_typeinfo());
if (iter != scalar_rules.end()) {
return iter->second(apply_op->op(), inputs);
} else {
// TODO: repeat op
return imperative::apply(op, unwrap_inputs(inputs));
}
} else if (auto* create_tensor = op.as<CreateTensor>()) {
if (create_tensor->shape().is_scalar()) {
ValueShape scalar_shape = {1};
CreateTensor scalar_op(
create_tensor->kind(), create_tensor->device(),
create_tensor->dtype(), scalar_shape);
return {ScalarValue::make(imperative::apply(scalar_op, inputs)[0])};
} else {
return imperative::apply(op, inputs);
}
} else if (auto* get_attr = op.as<GetAttr>()) {
bool is_scalar = inputs.as_array<1>()[0].is<ScalarValue>();
auto output = imperative::apply(op, unwrap_inputs(inputs))[0];
if (!is_scalar) {
return {output};
}
switch (get_attr->attr()) {
case GetAttr::Shape: {
// Scalar Shape
return {ShapeValue::make()};
}
case GetAttr::Value: {
auto& hv = output.cast<HostValue>();
mgb_assert(
hv.shape() == ValueShape({1}),
"underlying value should has shape {1}, got %s",
hv.shape().to_string().c_str());
return {HostValue::make(hv.dtype(), ValueShape(), hv.storage())};
}
case GetAttr::Data: {
auto& dv = output.cast<DeviceValue>();
mgb_assert(
dv.shape() == ValueShape({1}),
"underlying value should has shape {1}, got %s",
dv.shape().to_string().c_str());
return {DeviceValue::make(dv.dtype(), ValueShape(), dv.storage())};
}
default:
return {output};
}
} else if (op.as<IsScalar>()) {
return {BoolValue::make(inputs.as_array<1>()[0].is<ScalarValue>())};
} else if (op.is<Operator::IdentityLike>()) {
bool is_scalar = inputs.as_array<1>()[0].is<ScalarValue>();
if (is_scalar) {
return {ScalarValue::make(imperative::apply(op, unwrap_inputs(inputs))[0])};
} else {
return imperative::apply(op, inputs);
}
} else {
return imperative::apply(op, unwrap_inputs(inputs));
}
};
} // namespace imperative
} // namespace mgb
/**
* \file imperative/src/include/megbrain/imperative/scalar.h
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
*
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*/
#pragma once
#include "megbrain/imperative/dispatch.h"
#include "megbrain/imperative/ops/autogen.h"
namespace mgb::imperative {
class ScalarValue final : public ValueImpl<ScalarValue> {
private:
ValueRef m_value;
public:
ScalarValue(ValueRef value) : m_value(value) {}
std::string to_string() const override {
return ssprintf("ScalarValue{value=%s}", m_value.to_string().c_str());
}
ValueRef value() const { return m_value; }
void clear() override { m_value = {}; }
void on_watch() override { m_value.watch(); }
void on_unwatch() override { m_value.unwatch(); }
};
/**
* \brief simulates scalar because megbrain graph system don't support scalar
*
* Assume that we has 'a = ScalarValue(b)', thus 'a.shape == []', 'b.shape == [1]'.
* This transformation simulates scalars with a flag. If a value is ScalarValue, it is
* scalar, vice versa. So there is not scalar down this layer.
*/
class ScalarTransformation final : public Transformation {
private:
public:
std::vector<ValueRef> apply_transformation(
const Operator& op, Span<ValueRef> inputs) override;
ValueRef unwrap(ValueRef value) override {
mgb_assert(!value.is<ScalarValue>());
return value;
}
std::string name() const override { return "ScalarTransformation"; }
};
} // namespace mgb::imperative
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册