grad.cpp 21.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/**
 * \file imperative/python/src/grad.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "./grad.h"
#include "megbrain/imperative/proxy_graph_detail.h"
14
#include "megbrain/imperative/backward_graph_opt.h"
15
#include "megbrain/imperative/ops/autogen.h"
16
#include "megbrain/imperative/ops/utility.h"
17 18
#include "megbrain/utils/mempool.h"

19 20
#include "range/v3/all.hpp"

21
namespace py = pybind11;
22
namespace views = ranges::views;
23 24 25

namespace mgb::imperative::python {

26 27 28
using scoped_disable = ApplyContext::scoped_disable;
using Flags = Tensor::Flags;

29 30 31 32 33 34 35
namespace {

struct GradSlotWeakPtr {
    std::weak_ptr<GradFn> grad_fn;
    size_t idx;
};

36
struct BackwardGraphCache : std::unordered_map<uint64_t, std::shared_ptr<OptimizedBackwardGraphResult>>, CompNodeDepedentObject {
37 38 39 40 41 42
    std::shared_ptr<void> on_comp_node_finalize() override {
        clear();
        return {};
    }
} backward_graph_cache;

43
std::shared_ptr<OptimizedBackwardGraphResult> make_backward_graph(
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
        ApplyContext& ctx, const apply_result_t& outputs) {
    // hash
    static_assert(alignof(size_t) % alignof(bool) == 0);
    size_t buf_size = (1 + ctx.nargs * 2) * sizeof(size_t) + ctx.nargs * sizeof(bool);
    alignas(alignof(size_t)) std::byte buf[buf_size];
    size_t* size_t_ptr = reinterpret_cast<size_t*>(buf);
    bool* bool_ptr = reinterpret_cast<bool*>(size_t_ptr + (1 + ctx.nargs * 2));
    bool* bool_ptr0 = bool_ptr;
    *(size_t_ptr++) = ctx.op->hash();
    for (size_t i = 0; i < ctx.nargs; ++i) {
        *(size_t_ptr++) = mgb::hash(ctx.args[i]->dtype().handle());
        *(size_t_ptr++) = mgb::hash(ctx.args[i]->comp_node());
        *(bool_ptr++) = bool(ctx.args[i]->m_grad_info.grad_fn);
    }
    mgb_assert(bool_ptr0 == reinterpret_cast<bool*>(size_t_ptr) &&
               bool_ptr == reinterpret_cast<bool*>(buf + buf_size));
60
    uint64_t key = XXHash{}.update(buf, buf_size).digest();
61 62 63 64 65 66 67 68 69 70 71 72 73

    auto&& iter = backward_graph_cache.find(key);
    if (iter != backward_graph_cache.end()) {
        return iter->second;
    }

    // slow path
    SmallVector<LogicalTensorDesc> inputs(ctx.nargs);
    SmallVector<bool> input_requires_grad(ctx.nargs, false);
    SmallVector<bool> output_has_grad(outputs.size(), true);
    for (size_t i = 0; i < ctx.nargs; ++i) {
        inputs[i].comp_node = ctx.args[i]->comp_node();
        inputs[i].layout.dtype = ctx.args[i]->dtype();
74
        input_requires_grad[i] = python::input_requires_grad(ctx, i);
75
    }
76 77 78 79 80
    std::shared_ptr<OptimizedBackwardGraphResult> ret;
    auto bg = proxy_graph_detail::make_backward_graph(
            *ctx.op, inputs, input_requires_grad, output_has_grad);
    if (bg.backward) {
        ret = std::make_shared<OptimizedBackwardGraphResult>(bg);
81
    }
82 83
    backward_graph_cache.emplace(key, ret);
    return ret;
84 85 86
}

struct BackwardGraphWithClosure {
87
    std::shared_ptr<OptimizedBackwardGraphResult> backward_graph;
88 89 90 91
    SmallVector<std::shared_ptr<Tensor>> closure;
    size_t output_mask_offset;
    size_t grad_mask_offset;

92
    BackwardGraphWithClosure(std::shared_ptr<OptimizedBackwardGraphResult> backward_graph_,
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
                             ApplyContext& ctx, const apply_result_t& outputs)
            : backward_graph(backward_graph_),
              output_mask_offset(ctx.nargs),
              grad_mask_offset(ctx.nargs + outputs.size()) {
        // save_for_backward[0:nargs]:
        //     whether input is kept for backward
        //
        // save_for_backward[nargs:nargs+outputs.size()]:
        //     whether output is kept for backward
        //
        // save_for_backward[-outputs.size():]:
        //     whether gradient of output can propagate to any input
        //
        // Example:
        //     perform c = a * b, with a.requires_grad == True and
        //     b.requires_grad == False, save_for_backward = [0, 1, 0, 1]
        auto& save_for_backward = backward_graph->save_for_backward;
        mgb_assert(save_for_backward.size() == ctx.nargs + 2 * outputs.size());
111 112 113 114 115 116 117 118 119 120 121 122
        size_t count = std::count_if(save_for_backward.begin(),
                                     save_for_backward.end(),
                                     ranges::identity{});
        if (backward_graph->precomp) {
            auto&& irng = ranges::span(ctx.args, ctx.nargs);
            auto&& orng = views::transform(outputs, [](auto&& i){return i.get();});
            auto precomp = apply(backward_graph->precomp, views::concat(irng, orng));
            closure.reserve(precomp.size() + count);
            std::copy(precomp.begin(), precomp.end(), std::back_inserter(closure));
        } else {
            closure.reserve(count);
        }
123 124 125 126 127 128 129 130 131 132 133 134 135
        for (size_t i = 0; i < ctx.nargs; ++i) {
            if (save_for_backward[i]) {
                closure.push_back(ctx.args[i]->shared_from_this());
            }
        }
        for (size_t i = 0; i < outputs.size(); ++i) {
            if (save_for_backward[ctx.nargs + i]) {
                closure.push_back(outputs[i]);
            }
        }
    }

    template <typename T, typename R>
136
    void operator()(BackwardContext&, T&& grads, R&& receiver) {
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
        Tensor* args[closure.size() + grads.size()];
        size_t nargs = 0;
        for (auto&& t : closure) {
            args[nargs++] = t.get();
        }
        bool null_grad = false;
        for (size_t i = 0; i < grads.size(); ++i) {
            if (backward_graph->save_for_backward[grad_mask_offset + i]) {
                if (grads[i]) {
                    if (null_grad) {
                        PyErr_SetString(PyExc_NotImplementedError, "report to devs");
                        throw py::error_already_set();
                    }
                    args[nargs++] = grads[i];
                } else {
                    null_grad = true;
                }
            }
        }
        if (null_grad) return;

        ApplyContext ctx;
        ctx.op = backward_graph->backward;
160
        ctx.flags = is_tracing ? Flags::TRACE : 0;
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
        ctx.nargs = nargs;
        ctx.args = args;
        for (size_t i = 0; i < nargs; ++i) {
            ctx.flags |= args[i]->m_flags;
            mgb_assert(args[i]);
        }

        auto igrads = apply(ctx);
        auto&& it = igrads.begin();
        for (auto [i, p] : views::enumerate(backward_graph->input_has_grad)) {
            if (p) {
                receiver(i, std::move(*it));
                ++it;
            }
        }
    }

    bool input_has_grad(size_t i) {
        return backward_graph->input_has_grad[i];
    }

    bool output_requires_grad(size_t i) {
        return backward_graph->save_for_backward[grad_mask_offset + i];
    }

    bool output_captured(size_t i) {
        return backward_graph->save_for_backward[output_mask_offset + i];
    }
};

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
struct PythonBackward {
    py::object pyfunc;
    size_t input_size;

    PythonBackward(py::object f, size_t nin)
            : pyfunc(f), input_size(nin) {}

    template <typename T, typename R>
    void operator()(BackwardContext& ctx, T&& grads, R&& receiver) {
        auto args = py::tuple(grads.size());
        for (size_t i = 0; i < grads.size(); ++i) {
            auto&& g = grads[i];
            args[i] = g ? ctx.wrap_tensor(g) : py::none();
        }
        auto input_grads = py::reinterpret_steal<py::object>(PyObject_Call(pyfunc.ptr(), args.ptr(), nullptr));
206
        if (!input_grads) throw py::error_already_set();
207 208 209 210 211
        if (input_grads.is_none()) return;
        if (auto* tw = TensorWrapper::try_cast(input_grads.ptr())) {
            if (input_size != 1) {
                throw py::value_error("custom grad rule returned wrong number of grads");
            }
212 213 214
            if (!ctx.pytype) {
                ctx.pytype = Py_TYPE(input_grads.ptr());
            }
215 216 217 218 219 220 221 222 223 224 225 226
            receiver(0, tw->m_tensor);
            return;
        }
        if (py::len(input_grads) != input_size) {
            throw py::value_error("custom grad rule returned wrong number of grads");
        }
        for (auto [i, g] : views::enumerate(input_grads)) {
            if (g.is_none()) continue;
            auto* tw = TensorWrapper::try_cast(g.ptr());
            if (!tw) {
                throw py::type_error("custom grad rule returned non-tensor");
            }
227 228 229
            if (!ctx.pytype) {
                ctx.pytype = Py_TYPE(g.ptr());
            }
230 231 232 233 234 235 236 237 238
            receiver(i, tw->m_tensor);
        }
    }

    static constexpr bool input_has_grad(size_t) {return true;}
    static constexpr bool output_requires_grad(size_t) {return true;}
    static constexpr bool output_captured(size_t) {return true;}
};

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
} // namespace

struct GradProducerRecord : intrusive_list::Node<GradProducerRecord> {
    using Base = intrusive_list::Node<GradProducerRecord>;

    GradProducerRecord() = default;
    GradProducerRecord(GradProducerRecord::head_t& head) : Base(intrusive_list::after_t{}, head) {}
    // GradProducerRecord(GradProducerRecord&&) = default;
    // GradProducerRecord& operator=(GradProducerRecord&) = default;
    // GradProducerRecord& operator=(GradProducerRecord&&) = default;
};

struct GradSlot {
    std::shared_ptr<Tensor> grad;
    py::object callback;
    GradProducerRecord::head_t producer_head;
};

struct GradSlotProducerPtr : GradSlotPtr {
    GradProducerRecord producer_record;

    GradSlotProducerPtr() = default;
    GradSlotProducerPtr(GradInfo& info) : GradSlotPtr(info), producer_record(info->producer_head) {}
};

struct GradFn : std::enable_shared_from_this<GradFn> {
    static MemPool<GradFn> pool;

    std::weak_ptr<GradKey> key;
268 269
    // slots for receiving and accumulating grads
    // same length as outputs (of forward op)
270
    SmallVector<GradSlot> slots;
271 272
    // where to send and accumulate grads
    // same length as inputs (of forward op)
273
    SmallVector<GradSlotProducerPtr> dsts;
274
    // encapsules actual function to compute gradient
275
    std::variant<std::monostate, BackwardGraphWithClosure, PythonBackward, CustomBackward> backward;
276
    // a flag used during backward
277 278 279 280 281 282 283 284 285 286 287 288 289 290
    bool in_ref_keeper = false;

    static void deleter(GradFn* ptr) {
        pool.free(ptr);
    }

    std::shared_ptr<GradFn> make() {
        return std::shared_ptr<GradFn>(pool.alloc(), &deleter);
    }

    void clear() {
        key.reset();
        slots.clear();
        dsts.clear();
291
        backward.emplace<std::monostate>();
292 293 294
    }
};

295 296 297 298
GradSlotPtr::operator bool() const {
    return bool(grad_fn);
}

299 300 301 302 303 304
GradSlot* GradSlotPtr::operator->() {
    return &grad_fn->slots[idx];
}

namespace {

305 306
class GradFnHelper {
    std::shared_ptr<GradFn> grad_fn;
307

308 309 310 311 312
    GradFn* get() {
        if (!grad_fn) {
            grad_fn = std::make_shared<GradFn>();
        }
        return grad_fn.get();
313 314
    }

315
    friend apply_result_t imperative::python::apply_grad(ApplyContext&);
316

317 318 319 320
public:
    template<typename T, typename... Args>
    auto& emplace(Args&&... args) {
        return get()->backward.emplace<T>(std::forward<Args>(args)...);
321
    }
322 323

    void reset() { grad_fn = nullptr; }
324 325 326 327 328 329 330 331
};

apply_result_t backward_graph_grad_rule(ApplyContext& ctx, GradFnHelper& ret_grad_fn) {
    auto outputs = apply(ctx);

    auto backward_graph = make_backward_graph(ctx, outputs);
    if (!backward_graph) {
        return outputs;
332
    }
333 334 335 336

    ret_grad_fn.emplace<BackwardGraphWithClosure>(std::move(backward_graph), ctx, outputs);

    return outputs;
337 338
}

339 340 341 342 343 344 345
apply_result_t python_grad_rule(ApplyContext& ctx, GradFnHelper& ret_grad_fn) {
    auto* op = ctx.op->try_cast_final<GenericPyOp>();
    py::tuple pyin(ctx.nargs);
    for (size_t i = 0; i < ctx.nargs; ++i) {
        pyin[i] = TensorWrapper::make(ctx.pytype, ctx.args[i]->shared_from_this());
    }
    auto grad_rule = py::getattr(op->obj, "_grad_rule");
346
    auto pyret = py::reinterpret_steal<py::object>(PyObject_Call(grad_rule.ptr(), pyin.ptr(), nullptr));
347
    if (!pyret) throw py::error_already_set();
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
    auto [outputs, backward] = py::cast<std::tuple<py::object, py::function>>(pyret);
    ret_grad_fn.emplace<PythonBackward>(std::move(backward), ctx.nargs);
    if (auto* tw = TensorWrapper::try_cast(outputs.ptr())) {
        return {tw->m_tensor};
    }
    apply_result_t ret;
    ret.reserve(py::len(outputs));
    for (auto&& i : outputs) {
        auto* tw = TensorWrapper::try_cast(i.ptr());
        mgb_assert(tw);
        ret.push_back(tw->m_tensor);
    }
    return ret;
}

363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
} // namespace

apply_result_t apply_grad(ApplyContext& ctx) {
    std::shared_ptr<GradKey> grad_key;
    for (size_t i = 0; i < ctx.nargs; ++i) {
        auto* tensor = ctx.args[i];
        if (tensor->m_grad_info.grad_fn) {
            auto&& input_grad_key = tensor->m_grad_info.grad_fn->key.lock();
            // tensor is attached to a live GradKey
            if (input_grad_key && input_grad_key->active) {
                if (grad_key) {
                    if (grad_key != input_grad_key) {
                        PyErr_SetString(PyExc_NotImplementedError, "second order grad");
                        throw pyext17::py_err_set();
                    }
                } else {
                    grad_key = std::move(input_grad_key);
                }
            } else {
                // cleanup stale grad info
                // under what condition?
                tensor->m_grad_info = {};
385
                tensor->m_flags &= ~Flags::GRAD;
386 387
            }
        } else {
388
            tensor->m_flags &= ~Flags::GRAD;
389 390 391
        }
    }

392
    ctx.flags &= ~Flags::GRAD;
393 394

    if (!grad_key) {
395
        return apply(ctx);
396 397
    }

398
    GradFnHelper grad_fn_holder;
399 400 401 402 403 404 405 406 407 408 409 410 411 412
    auto outputs = [&]() {
        auto _ = scoped_disable(Flags::GRAD);
        if (ctx.op->same_type<GenericPyOp>()) {
            return python_grad_rule(ctx, grad_fn_holder);
        }
        auto&& registry = grad_rule_registry();
        auto&& it = registry.find(ctx.op->dyn_typeinfo());
        if (it != registry.end()) {
            auto&& maker = grad_fn_holder.emplace<CustomBackward>().maker(ctx);
            try {
                auto ret = it->second(ctx, maker);
                maker.finalize();
                return ret;
            } catch (GradRuleFallback&) {
413
                grad_fn_holder.reset();
414 415 416 417
            }
        }
        return backward_graph_grad_rule(ctx, grad_fn_holder);
    }();
418 419 420

    auto& grad_fn = grad_fn_holder.grad_fn;
    if (!grad_fn) {
421 422 423 424 425 426 427
        return outputs;
    }

    grad_fn->key = grad_key;
    grad_fn->slots.resize(outputs.size());
    grad_fn->dsts.reserve(ctx.nargs);

428 429 430 431 432 433
    std::visit([&](auto& backward) {
        using T = std::decay_t<decltype(backward)>;
        if constexpr (std::is_same_v<T, std::monostate>) {
            mgb_assert(0);
        } else {
            for (size_t i = 0; i < ctx.nargs; ++i) {
434
                if (backward.input_has_grad(i) && input_requires_grad(ctx, i)) {
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
                    auto& input_grad_info = ctx.args[i]->m_grad_info;
                    grad_fn->dsts.emplace_back(input_grad_info);
                    // register as grad producer
                    grad_fn->dsts.back().producer_record.insert_after(input_grad_info->producer_head);
                } else {
                    grad_fn->dsts.emplace_back();
                }
            }
            for (size_t i = 0; i < outputs.size(); ++i) {
                if (backward.output_requires_grad(i)) {
                    if (backward.output_captured(i)) {
                        // avoid reference cycle [Tensor <-> GradFn]
                        outputs[i] = outputs[i]->copy();
                    }
                    // populate grad info of output tensor
                    auto& grad_info = outputs[i]->m_grad_info;
                    grad_info.grad_fn = grad_fn;
                    grad_info.idx = i;
                    grad_info.insert_after(grad_key->free_vars_head);
454
                    outputs[i]->m_flags |= Flags::GRAD;
455
                }
456 457
            }
        }
458
    }, grad_fn->backward);
459 460 461 462 463 464 465 466 467 468 469

    // record forward history
    grad_key->tape.emplace_back(grad_fn);

    return outputs;
}

void GradKeyWrapper::attach(PyObject*const* args, size_t nargs) {
    if (nargs != 2) {
        throw py::type_error("expect 2 arguments");
    }
470
    auto* tw = TensorWrapper::try_cast(args[0]);
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
    if (!tw) {
        throw py::type_error("argument 1 must be Tensor");
    }
    auto* tensor = tw->m_tensor.get();
    py::object callback;
    if (args[1] != Py_None) {
        callback = py::reinterpret_borrow<py::object>(args[1]);
    }
    m_key->attach(tensor, std::move(callback));
}

//!  GradKey is weakly refered by tensor->m_grad_info.grad_fn->key after attach
void GradKey::attach(Tensor* tensor, pybind11::object callback) {
    if (!active) {
        throw py::value_error("grad key finalized");
    }

    if (tensor->m_grad_info.grad_fn) {
        if (tensor->m_grad_info.grad_fn->key.lock().get() != this) {
            PyErr_SetString(PyExc_NotImplementedError, "second order grad");
            throw pyext17::py_err_set();
        }
        if (tensor->m_grad_info->callback) {
            throw py::value_error("callback already set on this tensor");
        }
    } else {
        tensor->m_grad_info.idx = 0;
        auto& grad_fn = tensor->m_grad_info.grad_fn;
        grad_fn = std::make_shared<GradFn>();
        grad_fn->key = shared_from_this();
        grad_fn->slots.resize(1);
        tensor->m_grad_info.insert_after(free_vars_head);
503
        tensor->m_flags |= Flags::GRAD;
504 505 506 507
    }
    tensor->m_grad_info.grad_fn->slots[0].callback = std::move(callback);
}

508 509
template<typename T>
void accum_grad(std::shared_ptr<Tensor>& grad, T&& delta) {
510
    if (!grad) {
511
        grad = std::forward<T>(delta);
512 513
        return;
    }
514 515
    static std::shared_ptr<OpDef> op = std::shared_ptr<OpDef>(new Elemwise(Elemwise::Mode::ADD));
    grad = apply(op, grad, std::forward<T>(delta))[0];
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
}

void GradKey::backward(std::vector<TensorWrapper*> tensors, std::vector<TensorWrapper*> grads) {
    if (!active) {
        throw py::value_error("finalized");
    }
    if (tensors.size() != grads.size()) {
        throw py::value_error("tensor and grad size mismatch");
    }

    // this GradKey is marked inactive here
    active = false;
    struct CleanupGuard {
        GradKey* owner;
        CleanupGuard(GradKey* this_) : owner(this_) {}
        ~CleanupGuard() {owner->cleanup();}
    } _cleanup_guard(this);

534 535 536 537 538 539
    if (tape.empty()) return;

    BackwardContext bctx;
    if (!grads.empty()) {
        bctx.pytype = Py_TYPE(grads[0]->self().ptr());
    }
540 541 542 543 544 545 546 547 548 549 550 551 552 553

    for (size_t i = 0; i < tensors.size(); ++i) {
        auto& grad_info = tensors[i]->m_tensor->m_grad_info;
        if (grad_info.grad_fn && grad_info.grad_fn->key.lock().get() == this) {
            grad_info->grad = grads[i]->m_tensor;
        }
    }

    std::vector<std::shared_ptr<GradFn>> ref_keeper;
    ref_keeper.reserve(tape.size());
    // back-propagation in reverse order
    for (std::ptrdiff_t k = tape.size() - 1; k >= 0; --k) {
        auto&& grad_fn = tape[k].lock();
        if (!grad_fn) continue;
554

555
        auto grad_receiver = [&](size_t i, auto&& g) {
556 557 558 559
            auto& dst = grad_fn->dsts[i];
            if (dst) {
                accum_grad(dst->grad, std::forward<decltype(g)>(g));
            }
560 561 562 563 564 565 566
        };
        std::visit([&](auto&& backward) {
            using T = std::decay_t<decltype(backward)>;
            if constexpr (std::is_same_v<T, std::monostate>) {
                mgb_assert(0);
            } else {
                auto&& grads = views::transform(grad_fn->slots, [](auto&& slot) {return slot.grad.get();});
567
                backward(bctx, std::forward<decltype(grads)>(grads), grad_receiver);
568
            }
569 570
        }, grad_fn->backward);

571 572 573
        for (auto&& dst : grad_fn->dsts) {
            if (!dst.grad_fn) continue;
            if (!dst.grad_fn->in_ref_keeper) {
574 575
                // after grad_fn is cleared, refcnt of subsequent grad_fn
                // could drop to 0
576 577 578 579
                dst.grad_fn->in_ref_keeper = true;
                ref_keeper.push_back(dst.grad_fn);
            }
            if (!dst.producer_record.next && dst->callback && dst->grad) {
580
                // I'm the last grad producer, invoke callback
581
                dst->callback(bctx.wrap_tensor(dst->grad));
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
            }
        }
        grad_fn->clear();
    } // finish tape loop
}

void GradKey::cleanup() {
    active = false;
    tape.clear();
    for (intrusive_list::Iterator it(free_vars_head); it;) {
        it->grad_fn.reset();
        (it++)->unlink();
    }
}

void GradKeyWrapper::backward(std::vector<TensorWrapper*> tensors, std::vector<TensorWrapper*> grads) {
    m_key->backward(std::move(tensors), std::move(grads));
}

601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
PyObject* GradKeyWrapper::get_name() {
    return py::cast(m_key->name).release().ptr();
}

void GradKeyWrapper::set_name(py::handle name) {
    m_key->name = py::cast<std::string>(name);
}

PyObject* GradKeyWrapper::is_attached_to(PyObject*const* args, size_t nargs) {
    if (nargs != 1) {
        PyErr_SetString(PyExc_TypeError, "expect 1 argument");
        return nullptr;
    }
    auto* tw = TensorWrapper::try_cast(args[0]);
    if (!tw) {
        PyErr_SetString(PyExc_TypeError, "expect Tensor");
        return nullptr;
    }
    auto&& grad_fn = tw->m_tensor->m_grad_info.grad_fn;
    if (grad_fn && grad_fn->key.lock() == m_key) {
        Py_RETURN_TRUE;
    }
    Py_RETURN_FALSE;
}

626 627 628 629
GradKey::~GradKey() {
    cleanup();
}

630 631 632 633 634
std::unordered_map<Typeinfo*, GradRuleFn>& grad_rule_registry() {
    static std::unordered_map<Typeinfo*, GradRuleFn> registry;
    return registry;
}

635
} // namespace mgb::imperative::python