conv_bias.cpp 19.7 KB
Newer Older
1 2 3 4 5 6 7 8
/**
 * \file dnn/src/common/conv_bias.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 */

#include "src/common/conv_bias.h"
#include "megdnn/oprs/nn.h"
#include "src/common/utils.h"

namespace megdnn {

void ConvBiasForward::deduce_dtype(DType src, DType filter, DType /* bias */,
                                   DType /* z */, DType& dst) {
    check_or_deduce_dtype_fwd(src, filter, dst);
}

void ConvBiasForward::deduce_layout(const TensorLayout& src,
                                    const TensorLayout& filter,
                                    const TensorLayout& /* bias */,
                                    const TensorLayout& /* z */,
                                    TensorLayout& dst) {
    deduce_layout_fwd(src, filter, dst);
}

ConvBiasForward::CanonizedFilterMeta ConvBiasForward::check_exec(
        const TensorLayout& src, const TensorLayout& filter,
        const TensorLayout& bias, const TensorLayout& z,
        const TensorLayout& dst, size_t workspace_in_bytes) {
    if ((param().format == param::ConvBias::Format::NCHW_WINOGRAD ||
37 38
         param().format == param::ConvBias::Format::NCHW88_WINOGRAD ||
         param().format == param::ConvBias::Format::NCHW44_WINOGRAD) &&
39 40 41 42 43 44 45 46 47 48 49
        src.dtype.category() == DTypeCategory::QUANTIZED) {
        megdnn_assert(filter.dtype.enumv() == DTypeEnum::QuantizedS16);
        megdnn_assert(src.dtype.enumv() == DTypeEnum::QuantizedS8 ||
                      src.dtype.enumv() == DTypeEnum::Quantized8Asymm);
    } else {
        megdnn_assert(src.dtype.enumv() == filter.dtype.enumv());
    }
    if (src.dtype.enumv() == DTypeEnum::QuantizedS8) {
        float scale_src = src.dtype.param<dtype::QuantizedS8>().scale;
        float scale_filter = 0.f;
        if (param().format == param::ConvBias::Format::NCHW_WINOGRAD ||
50 51
            param().format == param::ConvBias::Format::NCHW88_WINOGRAD ||
            param().format == param::ConvBias::Format::NCHW44_WINOGRAD) {
52 53 54 55 56 57 58 59 60 61 62 63
            scale_filter = filter.dtype.param<dtype::QuantizedS16>().scale;
        } else {
            scale_filter = filter.dtype.param<dtype::QuantizedS8>().scale;
        }
        float scale_bias = bias.dtype.param<dtype::QuantizedS32>().scale;
        megdnn_assert(std::abs(scale_src * scale_filter - scale_bias) < 1e-6,
                      "scale_src: %f scale_filter: %f scale_bias: %f",
                      scale_src, scale_filter, scale_bias);
    } else if (src.dtype.enumv() == DTypeEnum::Quantized8Asymm) {
        float scale_src = src.dtype.param<dtype::Quantized8Asymm>().scale;
        float scale_filter = 0.f;
        if (param().format == param::ConvBias::Format::NCHW_WINOGRAD ||
64 65
            param().format == param::ConvBias::Format::NCHW88_WINOGRAD ||
            param().format == param::ConvBias::Format::NCHW44_WINOGRAD) {
66 67 68 69 70 71 72 73 74 75 76 77 78
            scale_filter = filter.dtype.param<dtype::QuantizedS16>().scale;
        } else {
            scale_filter = filter.dtype.param<dtype::Quantized8Asymm>().scale;
        }
        float scale_bias = bias.dtype.param<dtype::QuantizedS32>().scale;
        megdnn_assert(std::abs(scale_src * scale_filter - scale_bias) < 1e-6,
                      "scale_src: %f scale_filter: %f scale_bias: %f",
                      scale_src, scale_filter, scale_bias);
    }

    auto ret = check_layout_fwd(src, filter, dst);
    megdnn_assert_contiguous(bias);
    auto required_workspace_in_bytes =
79
            get_workspace_in_bytes(src, filter, bias, z, dst, nullptr);
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
    megdnn_assert(workspace_in_bytes >= required_workspace_in_bytes);
    if (bias.ndim != 0) {
        //! bias.layout == dst.layout failed, no assert information
        auto check_eq = [](const TensorLayout& bias, const TensorLayout& dst) {
            if (dst.dtype.category() == DTypeCategory::QUANTIZED) {
                return bias.eq_shape(dst);
            } else {
                return bias.eq_layout(dst);
            }
        };
        if (check_eq(bias, dst))
            return ret;
        if (param().format == param::ConvBias::Format::NCHW ||
            param().format == param::ConvBias::Format::NCHW_WINOGRAD) {
            megdnn_assert(bias.shape[0] == 1);
            megdnn_assert(bias.shape[1] == dst.shape[1], "bias:%s, dst:%s",
                          bias.to_string().c_str(), dst.to_string().c_str());
            megdnn_assert(bias.shape[2] == 1);
            megdnn_assert(bias.shape[3] == 1);
        } else if (param().format == param::ConvBias::Format::NHWC) {
            megdnn_assert(bias.shape[0] == 1);
            megdnn_assert(bias.shape[1] == 1);
            megdnn_assert(bias.shape[2] == 1);
            megdnn_assert(bias.shape[3] == dst.shape[3], "bias:%s, dst:%s",
                          bias.to_string().c_str(), dst.to_string().c_str());
105 106
        } else if (param().format == param::ConvBias::Format::NCHW4 ||
                   param().format == param::ConvBias::Format::NCHW44 ||
107
                   param().format == param::ConvBias::Format::NCHW44_DOT ||
108
                   param().format == param::ConvBias::Format::NCHW44_WINOGRAD) {
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
            megdnn_assert(bias.shape[0] == 1);
            megdnn_assert(bias.shape[1] == dst.shape[1], "bias:%s, dst:%s",
                          bias.to_string().c_str(), dst.to_string().c_str());
            megdnn_assert(bias.shape[2] == 1);
            megdnn_assert(bias.shape[3] == 1);
            megdnn_assert(bias.shape[4] == 4);
        } else if (param().format == param::ConvBias::Format::NCHW8 ||
                   param().format == param::ConvBias::Format::NCHW88 ||
                   param().format == param::ConvBias::Format::NCHW88_WINOGRAD) {
            megdnn_assert(bias.shape[0] == 1);
            megdnn_assert(bias.shape[1] == dst.shape[1], "bias:%s, dst:%s",
                          bias.to_string().c_str(), dst.to_string().c_str());
            megdnn_assert(bias.shape[2] == 1);
            megdnn_assert(bias.shape[3] == 1);
            megdnn_assert(bias.shape[4] == 8);
        } else if (param().format == param::ConvBias::Format::NCHW32) {
            megdnn_assert(bias.shape[0] == 1);
            megdnn_assert(bias.shape[1] == dst.shape[1], "bias:%s, dst:%s",
                          bias.to_string().c_str(), dst.to_string().c_str());
            megdnn_assert(bias.shape[2] == 1);
            megdnn_assert(bias.shape[3] == 1);
            megdnn_assert(bias.shape[4] == 32);
        } else if (param().format == param::ConvBias::Format::CHWN4) {
            megdnn_assert(bias.shape[0] == dst.shape[0], "bias:%s, dst:%s",
                          bias.to_string().c_str(), dst.to_string().c_str());
            megdnn_assert(bias.shape[1] == 1);
            megdnn_assert(bias.shape[2] == 1);
            megdnn_assert(bias.shape[3] == 1);
            megdnn_assert(bias.shape[4] == 4);
        } else {
            megdnn_assert(param().format == param::ConvBias::Format::NHWCD4);
            megdnn_assert(bias.shape[0] == 1);
            megdnn_assert(bias.shape[1] == 1);
            megdnn_assert(bias.shape[2] == dst.shape[2], "bias:%s, dst:%s",
                          bias.to_string().c_str(), dst.to_string().c_str());
            megdnn_assert(bias.shape[3] == 1);
            megdnn_assert(bias.shape[4] == 4);
        }
    }

    if (z.ndim != 0) {
        megdnn_assert(param().format != param::ConvBias::Format::NCHW_WINOGRAD);
151 152 153 154
        megdnn_assert(param().format !=
                      param::ConvBias::Format::NCHW88_WINOGRAD);
        megdnn_assert(param().format !=
                      param::ConvBias::Format::NCHW44_WINOGRAD);
155 156 157 158 159 160 161
        megdnn_assert(z.dtype.enumv() == dst.dtype.enumv());
        megdnn_assert(z.eq_shape(dst));
    }
    return ret;
}

template <typename T>
162 163 164 165
struct NCHWParamTrait;

template <typename T>
struct NCHW44ParamTrait;
166 167 168 169 170 171 172

std::string ConvBias::WinogradParam::to_string() const {
    return ssprintf("%u:%u:%u", channel_block_size, output_block_size,
                    tile_size);
}

template <typename T>
173 174 175 176 177 178 179 180 181 182 183
std::string ConvBias::algo_name(const std::string& base, const T& p,
                                param::ConvBias::Format format) {
    if (format == param::ConvBias::Format::NCHW) {
        return ssprintf("%s:%s:%s", NCHWParamTrait<T>::category.c_str(),
                        base.c_str(), p.to_string().c_str());
    } else if (format == param::ConvBias::Format::NCHW44) {
        return ssprintf("%s:%s:%s", NCHW44ParamTrait<T>::category.c_str(),
                        base.c_str(), p.to_string().c_str());
    }
    megdnn_throw("Invalid format");
    return "";
184 185 186
}

#define FOREACH_CONV_BIAS_PARAM(cb) \
187
    cb(WinogradParam) cb(DirectParam) cb(MatmulParam) cb(DefaultParam)
188

189 190 191 192 193 194 195 196
#define cb(pt)                              \
    template <>                             \
    struct NCHWParamTrait<ConvBias::pt> {   \
        static const std::string category;  \
    };                                      \
    template <>                             \
    struct NCHW44ParamTrait<ConvBias::pt> { \
        static const std::string category;  \
197 198 199 200
    };
FOREACH_CONV_BIAS_PARAM(cb)
#undef cb

201 202 203
#define cb(pt, ct)                                                 \
    const std::string NCHWParamTrait<ConvBias::pt>::category = ct; \
    const std::string NCHW44ParamTrait<ConvBias::pt>::category = ct
204 205 206 207 208
cb(DirectParam, "DIRECT");
cb(MatmulParam, "MATMUL");
cb(DefaultParam, "DEFAULT");
#undef cb

209 210 211 212 213
const std::string NCHWParamTrait<ConvBias::WinogradParam>::category =
        "WINOGRAD";
const std::string NCHW44ParamTrait<ConvBias::WinogradParam>::category =
        "WINOGRAD_NCHW44";

214 215
#define cb(t)                                              \
    template std::string ConvBias::algo_name<ConvBias::t>( \
216 217
            const std::string& base, const ConvBias::t& p, \
            param::ConvBias::Format format);
218 219 220 221 222 223 224
FOREACH_CONV_BIAS_PARAM(cb)
#undef cb

ConvBias::WinogradParam ConvBias::parse_winograd_name(
        const std::string& algo_name) {
    ConvBias::WinogradParam ret = INVALID_WINOGRAD_PARAM;
    char base[128];
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
    char name[128];

    auto parse = [&](const std::string& algo_name,
                     const std::string& pre) -> auto {
        memset(name, 0, 128);
        sscanf(algo_name.c_str(), "%[^:]:%[^:]:%u:%u:%u", name, base,
               &(ret.channel_block_size), &(ret.output_block_size),
               &(ret.tile_size));
        if (strcmp(name, pre.c_str())) {
            megdnn_log_warn("algo %s is not %s algo", name, pre.c_str());
            ret = INVALID_WINOGRAD_PARAM;
            return false;
        }
        if (ret.tile_size == 0 || ret.output_block_size == 0 ||
            ret.channel_block_size == 0) {
            megdnn_log_warn("the algo name %s is not suitable for %s",
                            algo_name.c_str(), pre.c_str());
            ret = INVALID_WINOGRAD_PARAM;
            return false;
        }
        return true;
    };

    if (parse(algo_name, "WINOGRAD_NCHW44")) {
        return ret;
    } else {
        parse(algo_name, "WINOGRAD");
        return ret;
253 254
    }
}
255

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
constexpr ConvBias::WinogradParam ConvBias::INVALID_WINOGRAD_PARAM;

void handle_bias_and_nonlinear(Handle* handle, param::ConvBias args,
                               const TensorND* conv_dst_tensor,
                               const TensorND* dst_tensor,
                               const TensorND* bias_tensor) {
    using NonlineMode = param::ConvBias::NonlineMode;
    switch (args.nonlineMode) {
#define cb(_mode)                                                          \
    case NonlineMode::_mode: {                                             \
        if (conv_dst_tensor->layout.dtype.category() !=                    \
            DTypeCategory::QUANTIZED) {                                    \
            auto nonlinear = handle->create_operator<ElemwiseForward>();   \
            if (bias_tensor->layout.ndim > 0) {                            \
                nonlinear->param().mode =                                  \
                        Elemwise::Param::Mode::FUSE_ADD_##_mode;           \
                nonlinear->exec({*conv_dst_tensor, *bias_tensor},          \
                                *dst_tensor);                              \
            } else {                                                       \
                nonlinear->param().mode = Elemwise::Param::Mode::_mode;    \
                nonlinear->exec({*conv_dst_tensor}, *dst_tensor);          \
            }                                                              \
        } else {                                                           \
            auto nonlinear = handle->create_operator<ElemwiseMultiType>(); \
            if (bias_tensor->layout.ndim > 0) {                            \
                nonlinear->param().mode =                                  \
                        ElemwiseMultiType::Param::Mode::QFUSE_ADD_##_mode; \
                nonlinear->exec({*conv_dst_tensor, *bias_tensor},          \
                                *dst_tensor);                              \
            } else {                                                       \
                nonlinear->param().mode =                                  \
                        ElemwiseMultiType::Param::Mode::Q##_mode;          \
                nonlinear->exec({*conv_dst_tensor}, *dst_tensor);          \
            }                                                              \
        }                                                                  \
        break;                                                             \
    }
        cb(RELU);
        cb(H_SWISH);
#undef cb
        case NonlineMode::SIGMOID: {
            megdnn_assert(conv_dst_tensor->layout.dtype.category() !=
                          DTypeCategory::QUANTIZED);
            auto nonlinear = handle->create_operator<ElemwiseForward>();
            if (bias_tensor->layout.ndim > 0) {
                nonlinear->param().mode =
                        Elemwise::Param::Mode::FUSE_ADD_SIGMOID;
                nonlinear->exec({*conv_dst_tensor, *bias_tensor},
                                *conv_dst_tensor);
            } else {
                nonlinear->param().mode = Elemwise::Param::Mode::SIGMOID;
                nonlinear->exec({*conv_dst_tensor}, *conv_dst_tensor);
            }
            break;
        }
        case NonlineMode::IDENTITY: {
            if (bias_tensor->layout.ndim > 0) {
                if (dst_tensor->layout.dtype.category() ==
                    DTypeCategory::QUANTIZED) {
                    auto nonlinear =
                            handle->create_operator<ElemwiseMultiType>();
                    nonlinear->param().mode =
                            ElemwiseMultiType::Param::Mode::QADD;
                    nonlinear->exec({*conv_dst_tensor, *bias_tensor},
                                    *dst_tensor);
                } else {
                    auto nonlinear = handle->create_operator<Elemwise>();
                    nonlinear->param().mode = Elemwise::Param::Mode::ADD;
                    nonlinear->exec({*conv_dst_tensor, *bias_tensor},
                                    *dst_tensor);
                }
            } else {
                if (conv_dst_tensor->layout.dtype != dst_tensor->layout.dtype) {
                    handle->create_operator<TypeCvt>()->exec({*conv_dst_tensor},
                                                             *dst_tensor);
                }
            }
            break;
        }
        default:
            megdnn_assert(false);
    }
}

//! Only used for naive implementation. DO NOT use the following function in
//! other backends.
void handle_z_inp_and_activation(Handle* handle,
                                 param::ConvBias::NonlineMode nonline_mode,
                                 const TensorND& conv_bias_tensor,
                                 const TensorND& z_tensor,
                                 const TensorND& dst_tensor,
                                 dt_byte* workspace_ptr) {
    auto res = dst_tensor, z_float = z_tensor;
    if (z_tensor.layout.ndim > 0 &&
        z_tensor.layout.dtype.category() != DTypeCategory::FLOAT) {
        dt_byte *res_float_workspace_ptr = nullptr,
                *z_float_workspace_ptr = nullptr;
        megdnn_assert(z_tensor.layout.eq_shape(dst_tensor.layout));
        res_float_workspace_ptr = workspace_ptr;
        z_float_workspace_ptr = res_float_workspace_ptr +
                                TensorLayout{z_tensor.layout, dtype::Float32()}
                                        .span()
                                        .dist_byte();
        res = TensorND{res_float_workspace_ptr,
                       TensorLayout{dst_tensor.layout, dtype::Float32()}};
        z_float = TensorND{z_float_workspace_ptr,
                           TensorLayout{z_tensor.layout, dtype::Float32()}};
    }
    // ====================sfb + z_tensor=====================
    if (z_tensor.layout.ndim > 0) {
        if (z_tensor.layout.dtype.category() != DTypeCategory::FLOAT) {
            auto&& type_cvt = handle->create_operator<TypeCvt>();
            type_cvt->exec(conv_bias_tensor, res);
            type_cvt->exec(z_tensor, z_float);
        }
        auto add_opr = handle->create_operator<ElemwiseForward>();
        add_opr->param().mode = Elemwise::Param::Mode::ADD;
        add_opr->exec({res, z_float}, res);
    } else {
        res = conv_bias_tensor;
    }

    using NonlineMode = param::ConvBias::NonlineMode;

    switch (nonline_mode) {
#define cb(_mode)                                                          \
    case NonlineMode::_mode: {                                             \
        if (res.layout.dtype.category() != DTypeCategory::QUANTIZED) {     \
            auto nonlinear = handle->create_operator<ElemwiseForward>();   \
            nonlinear->param().mode = Elemwise::Param::Mode::_mode;        \
            if (res.layout.dtype == dst_tensor.layout.dtype) {             \
                nonlinear->exec({res}, dst_tensor);                        \
            } else {                                                       \
                nonlinear->exec({res}, res);                               \
                handle->create_operator<TypeCvt>()->exec(res, dst_tensor); \
            }                                                              \
        } else {                                                           \
            auto nonlinear = handle->create_operator<ElemwiseMultiType>(); \
            nonlinear->param().mode =                                      \
                    ElemwiseMultiType::Param::Mode::Q##_mode;              \
            nonlinear->exec({res}, dst_tensor);                            \
        }                                                                  \
        break;                                                             \
    }
        cb(RELU);
        cb(H_SWISH);
#undef cb
        case NonlineMode::SIGMOID: {
            megdnn_assert(res.layout.dtype.category() !=
                          DTypeCategory::QUANTIZED);
            auto nonlinear = handle->create_operator<ElemwiseForward>();
            nonlinear->param().mode = Elemwise::Param::Mode::SIGMOID;
            nonlinear->exec({res}, res);
            if (res.raw_ptr != dst_tensor.raw_ptr) {
                handle->create_operator<TypeCvt>()->exec(res, dst_tensor);
            }
            break;
        }
        case NonlineMode::IDENTITY: {
            if (res.raw_ptr != dst_tensor.raw_ptr) {
                handle->create_operator<TypeCvt>()->exec(res, dst_tensor);
            }
            break;
        }
        default:
            megdnn_assert(false);
    }
}

}  // namespace megdnn

// vim: syntax=cpp.doxygen