interpreter_impl.cpp 14.5 KB
Newer Older
M
Megvii Engine Team 已提交
1 2 3 4 5 6 7 8 9 10 11
/**
 * \file imperative/src/impl/interpreter_impl.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

12
#include "./interpreter_impl.h"
13
#include "megbrain/common.h"
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40


using namespace mgb;
using namespace imperative;
using namespace interpreter;
using namespace interpreter::intl;


std::unique_ptr<Interpreter::Channel> InterpreterImpl::create_channel() {
    return std::make_unique<ChannelImpl>();
}

Interpreter& Interpreter::inst() {
    static InterpreterImpl inst_;
    return inst_;
}

void* ChannelImpl::put(const HostTensorND& value) {
    auto info = alloc();
    info->desc.layout = value.layout();
    info->desc.comp_node = value.comp_node();
    info->desc.value = value.proxy_to_default_cpu();
    m_valid_handle.insert(info);
    m_worker.add_task(Put{info, value});
    return info;
}

M
Megvii Engine Team 已提交
41 42 43 44 45 46 47 48 49
void* ChannelImpl::put(const DeviceTensorND& data) {
    auto info = alloc();
    info->desc.layout = data.layout();
    info->desc.comp_node = data.comp_node();
    info->ptr = Tensor::make(data);
    m_valid_handle.insert(info);
    return info;
}

50 51 52 53 54
void ChannelImpl::del(void* handle) {
    mgb_assert(m_valid_handle.erase(handle), "invalid handle: %p", handle);
    m_worker.add_task(Del{reinterpret_cast<TensorInfo*>(handle)});
}

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
void ChannelImpl::swap_in(void* handle) {
    if (m_enable_evict & SWAP) {
        mgb_assert(m_valid_handle.find(handle) != m_valid_handle.end(),
                "invalid handle: %p", handle);
        m_worker.add_task(SwapIn{reinterpret_cast<TensorInfo*>(handle)});
    }
}

void ChannelImpl::swap_out(void* handle) {
    if (m_enable_evict & SWAP) {
        mgb_assert(m_valid_handle.find(handle) != m_valid_handle.end(),
                "invalid handle: %p", handle);
        m_worker.add_task(SwapOut{reinterpret_cast<TensorInfo*>(handle)});
    }
}

void ChannelImpl::drop(void* handle) {
    if (m_enable_evict & DROP) {
        mgb_assert(m_valid_handle.find(handle) != m_valid_handle.end(),
                "invalid handle: %p", handle);
        m_worker.add_task(Drop{reinterpret_cast<TensorInfo*>(handle)});
    }
}

79 80 81
SmallVector<void*> ChannelImpl::apply_op(
        std::shared_ptr<OpDef> op,
        const SmallVector<void*>& inputs) {
82 83 84 85
    for (auto i : inputs) {
        mgb_assert(m_valid_handle.find(i) != m_valid_handle.end(),
                "invalid handle: %p", i);
    }
86 87
    SmallVector<TensorInfo*> input_infos;
    input_infos.reserve(inputs.size());
88 89
    SmallVector<LogicalTensorDesc> input_descs;
    input_descs.reserve(inputs.size());
90
    std::unique_lock<decltype(m_mutex)> lock(m_mutex);
91 92
    for (auto i : inputs) {
        auto info = reinterpret_cast<TensorInfo*>(i);
93
        mgb_assert(!info->invalid, "Invalid tensor, unable to apply_op!");
94
        input_infos.push_back(info);
95 96
        input_descs.push_back(info->desc);
    }
97
    lock.unlock();
98 99

    auto [output_descs, validated] = OpDef::infer_output_attrs_fallible(*op, input_descs);
100
    ApplyOp cmd{std::move(op)};
101
    cmd.inputs = std::move(input_infos);
102 103
    cmd.outputs.reserve(output_descs.size());
    SmallVector<void*> outputs;
104 105
    // FIXME: remove this check when op check is correct
    bool validated_bkp = true;
106 107
    for (size_t i = 0;i < output_descs.size();i ++) {
        auto&& desc = output_descs[i];
108
        if (desc.layout.ndim == 0) {
109
            validated_bkp = false;
110
        }
111 112 113 114 115 116
        auto info = alloc();
        info->desc = desc;
        m_valid_handle.insert(info);
        cmd.outputs.push_back(info);
        outputs.push_back(info);
    }
117 118 119 120 121 122 123 124 125 126 127 128
    if (m_enable_evict & DROP) {
        for (auto out : cmd.outputs) {
            out->path.op = cmd.op;
            for (auto out_ : cmd.outputs) {
                out->path.outputs.push_back(m_st.at(out_));
            }
            for (auto inp : cmd.inputs) {
                out->path.inputs.push_back(m_st.at(inp));
                inp->path.dep_outputs.push_back(m_st.at(out));
            }
        }
    }
129
    m_worker.add_task(std::move(cmd));
130 131 132
    if (!(validated && validated_bkp) && m_async_level == 1) {
        sync();
    } else if (m_async_level == 0) {
133
        sync();
134 135 136 137
        // check device error
        for (auto&& oup : cmd.outputs) {
            oup->ptr->comp_node().sync();
        }
138
    }
139 140 141 142 143 144 145 146 147 148
    return outputs;
}

HostTensorND ChannelImpl::get_value(void* handle) {
    mgb_assert(m_valid_handle.find(handle) != m_valid_handle.end(),
               "invalid handle: %p", handle);
    auto info = reinterpret_cast<TensorInfo*>(handle);
    std::unique_lock<decltype(m_mutex)> lock(m_mutex);
    mgb_assert(!m_waitee);
    if (!info->value_fetched) {
149
        mgb_assert(!info->invalid, "Invalid tensor, unable to get_value!");
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
        m_waitee = info;
        m_worker.add_task(GetValue{info});
        m_cv.wait(lock, [&]() {
            check_worker_exc_unsafe();
            return info->value_fetched;
        });
        m_waitee = nullptr;
    }
    mgb_assert(info->ptr->value_fetched());
    return info->ptr->get_value();
}

TensorShape ChannelImpl::get_shape(void* handle) {
    mgb_assert(m_valid_handle.find(handle) != m_valid_handle.end(),
               "invalid handle: %p", handle);
    auto info = reinterpret_cast<TensorInfo*>(handle);
    if (info->desc.layout.ndim != 0) {
        return info->desc.layout;
    }
    std::unique_lock<decltype(m_mutex)> lock(m_mutex);
    mgb_assert(!m_waitee);
    m_waitee = info;
    m_cv.wait(lock, [&]() {
        check_worker_exc_unsafe();
        return bool(info->ptr);
    });
    m_waitee = nullptr;
    TensorShape ret = info->ptr->layout();
    mgb_assert(ret.ndim != 0);
    return ret;
}

DType ChannelImpl::get_dtype(void* handle) {
    mgb_assert(m_valid_handle.find(handle) != m_valid_handle.end(),
               "invalid handle: %p", handle);
    auto info = reinterpret_cast<TensorInfo*>(handle);
    auto ret = info->desc.layout.dtype;
    mgb_assert(ret.valid());
    return ret;
}

CompNode ChannelImpl::get_device(void* handle) {
    mgb_assert(m_valid_handle.find(handle) != m_valid_handle.end(),
               "invalid handle: %p", handle);
    auto info = reinterpret_cast<TensorInfo*>(handle);
    auto ret = info->desc.comp_node;
    mgb_assert(ret.valid());
    return ret;
}

DeviceTensorND ChannelImpl::get_dev_tensor(void* handle) {
    mgb_assert(m_valid_handle.find(handle) != m_valid_handle.end(),
               "invalid handle: %p", handle);
    auto info = reinterpret_cast<TensorInfo*>(handle);
    std::unique_lock<decltype(m_mutex)> lock(m_mutex);
    mgb_assert(!m_waitee);
    m_waitee = info;
    m_cv.wait(lock, [&]() {
        check_worker_exc_unsafe();
        return bool(info->ptr);
    });
    m_waitee = nullptr;
    return info->ptr->dev_tensor();
}

void ChannelImpl::sync() {
    m_worker.wait_all_task_finish();
    MGB_LOCK_GUARD(m_mutex);
    check_worker_exc_unsafe();
}

void ChannelImpl::close() {
    sync();
}

void ChannelImpl::config_async_level(int level) {
226 227 228 229 230 231
    mgb_assert(level <= 2 and level >= 0, "async_level should be 0, 1 or 2");
    m_async_level = level;
}

int ChannelImpl::get_async_level() {
    return m_async_level;
232 233 234 235
}

TensorInfo* ChannelImpl::alloc() {
    MGB_LOCK_GUARD(m_mutex);
236 237 238
    auto info = m_pool.alloc();
    m_st.insert(info);
    return info;
239 240 241 242
}

void ChannelImpl::free(TensorInfo* ptr) {
    MGB_LOCK_GUARD(m_mutex);
243 244 245 246 247
    if (ptr->path.dep_outputs.size() > 0) {
        remove_dep(ptr);
    }
    m_st.erase(ptr);
    mgb_assert(ptr->allow_delete, "delete before ref_cnt = 0");
248 249 250
    m_pool.free(ptr);
}

251 252 253
ChannelImpl::~ChannelImpl() {
    close();
}
254

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
void ChannelImpl::produce_tensor(TensorInfo* dest, TensorPtr ptr, bool notice = true) {
    if (notice) {
        MGB_LOCK_GUARD(m_mutex);
        dest->value_fetched = ptr->value_fetched();
        // update tensor desc for static infer
        dest->desc.layout = ptr->layout();
        dest->desc.comp_node = ptr->comp_node();
        dest->ptr = std::move(ptr);
        if (m_waitee == dest) {
            m_cv.notify_all();
        }
    } else {
        dest->value_fetched = ptr->value_fetched();
        // update tensor desc for static infer
        dest->desc.layout = ptr->layout();
        dest->desc.comp_node = ptr->comp_node();
        dest->ptr = std::move(ptr);
    }
}

void ChannelImpl::do_swap_out(TensorInfo* dest) {
    if (dest->evict_type == DROP) {
        mgb_log_warn("the evict type of tensor %p was set to DROP, this SWAP operation will be ignored", dest);
        return;
    }
    if (!dest->ptr) {
        return;
    }
    dest->evict_type = SWAP;
    dest->value_fetched = false;
    // TODO: swap in parallel
    dest->h_value.copy_from(dest->ptr->dev_tensor()).sync();
    dest->ptr.reset();
}

void ChannelImpl::do_swap_in(TensorInfo* dest) {
    if (dest->ptr) {
        return;
    }
    if (dest->h_value.empty()) {
        mgb_log_error("backup of the tensor %p not found", dest);
        return;
    }
    produce_tensor(dest, Tensor::make(dest->h_value), false);
    dest->evict_type = NONE;
}

void ChannelImpl::remove_dep(TensorInfo* dest) {
    for (auto i : dest->path.dep_outputs) {
        auto out_ptr = i.lock();
        if (out_ptr) {
            regenerate(out_ptr.get(), true);
        }
    }
}

void ChannelImpl::do_drop(TensorInfo* dest) {
    if (dest->evict_type == SWAP) {
        mgb_log_warn("the evict type of tensor %p was set to SWAP, this DROP operation will be ignored", dest);
        return;
    }
    if (!dest->path.op) {
        mgb_log_warn("the input that produced tensor %p has been deleted, this drop operation will be ignored", dest);
        return;
    }
    if (dest->recompute_times >= m_max_recompute_time) {
        mgb_log_warn("the recomputation time for tensor %p exceeds the limit, this drop operation will be ignored", dest);
        return;
    }
    if (!dest->ptr) {
        return;
    }
    dest->evict_type = DROP;
    dest->value_fetched = false;
    dest->ptr.reset();
}

void ChannelImpl::set_swap_flag(bool flag) {
    if (flag) {
        m_enable_evict |= SWAP;
    } else {
        m_enable_evict &= ~SWAP;
    }
}

void ChannelImpl::set_drop_flag(bool flag) {
    if (flag) {
        m_enable_evict |= DROP;
    } else {
        m_enable_evict &= ~DROP;
    }
}

void ChannelImpl::regenerate(TensorInfo* info, bool must_drop = false) {
    if (!info->ptr && info->evict_type != NONE) {
        if (info->evict_type == SWAP) {
            do_swap_in(info);
        } else {
            mgb_assert(info->evict_type == DROP);
            mgb_assert(info->path.op, "recomputation path not found");
            auto path = info->path;
            SmallVector<TensorPtr> inputs;
            inputs.reserve(path.inputs.size());
            for (auto i : path.inputs) {
                mgb_assert(i, "invalid history input");
                if (!i->ptr) {
                    regenerate(i.get(), must_drop);
                }
                inputs.push_back(i->ptr);
            }
            auto outputs = OpDef::apply_on_physical_tensor(*path.op, inputs); 
            for (size_t i = 0; i < outputs.size(); i ++) {
                auto out_ptr = path.outputs[i].lock();
                if (out_ptr) {
                    out_ptr->recompute_times ++;
                    if (!out_ptr->ptr && out_ptr->evict_type == DROP) {
                        produce_tensor(out_ptr.get(), std::move(outputs[i]), false);
                    }
                }
            }
        }
    }
    if (must_drop) {
        if (info->path.op) {
            info->path.op.reset();
            info->path.inputs.clear();
            if (info->evict_type == DROP) {
                info->evict_type = NONE;
            }
        }
385 386 387 388
    }
}

void ChannelImpl::process_one_task(Command& cmd) {
389
    //TODO: remove std::visit for support osx 10.12
390 391 392 393 394 395 396 397 398
    std::visit([this](auto& cmd) {
        using T = std::remove_reference_t<decltype(cmd)>;
        try {
            if constexpr (std::is_same_v<T, Put>) {
                produce_tensor(cmd.dest, Tensor::make(cmd.value));
            } else if constexpr (std::is_same_v<T, ApplyOp>) {
                SmallVector<TensorPtr> tensor_inputs;
                tensor_inputs.reserve(cmd.inputs.size());
                for (auto i : cmd.inputs) {
399 400 401 402 403
                    if (m_enable_evict && i->evict_type != NONE) {
                        if (!i->ptr) {
                            regenerate(i);
                        }
                    }
404
                    mgb_assert(i->ptr, "Invalid input tensor ptr!");
405 406 407 408 409 410 411 412 413 414
                    tensor_inputs.push_back(i->ptr);
                }
                auto tensor_outputs = OpDef::apply_on_physical_tensor(*cmd.op, tensor_inputs);
                mgb_assert(tensor_outputs.size() == cmd.outputs.size());
                for (size_t i = 0; i < tensor_outputs.size(); ++i) {
                    produce_tensor(cmd.outputs[i], std::move(tensor_outputs[i]));
                }
            } else if constexpr (std::is_same_v<T, Del>) {
                free(cmd.dest);
            } else if constexpr (std::is_same_v<T, GetValue>) {
415 416 417 418 419
                if (m_enable_evict && cmd.dest->evict_type != NONE) {
                    if (!cmd.dest->ptr) {
                        regenerate(cmd.dest);
                    }
                }
420
                mgb_assert(cmd.dest->ptr, "Invalid tensor ptr!");
421 422 423 424 425 426
                cmd.dest->ptr->fetch_value();
                MGB_LOCK_GUARD(m_mutex);
                cmd.dest->value_fetched = true;
                if (m_waitee == cmd.dest) {
                    m_cv.notify_all();
                }
427 428 429 430 431 432
            } else if constexpr (std::is_same_v<T, SwapIn>) {
                do_swap_in(cmd.dest);
            } else if constexpr (std::is_same_v<T, SwapOut>) {
                do_swap_out(cmd.dest);
            } else if constexpr (std::is_same_v<T, Drop>) {
                do_drop(cmd.dest);
433 434 435 436 437
            } else {
                static_assert(!std::is_same_v<T, T>);
            }
        } catch (...) {
            MGB_LOCK_GUARD(m_mutex);
438 439 440 441 442 443 444
            if constexpr (std::is_same_v<T, ApplyOp>) {
                for (auto oup : cmd.outputs) {
                    oup->invalid = true;
                }
            } else if constexpr (std::is_same_v<T, Put>) {
                cmd.dest->invalid = true;
            }
445 446 447 448 449 450 451 452 453 454 455 456 457 458
            m_worker_exc = std::current_exception();
            m_cv.notify_all();
        }
    }, cmd);
}


void ChannelImpl::check_worker_exc_unsafe() {
    if (m_worker_exc) {
        std::exception_ptr exc;
        std::swap(exc, m_worker_exc);
        std::rethrow_exception(exc);
    }
}