interpreter_impl.cpp 6.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
#include "./interpreter_impl.h"


using namespace mgb;
using namespace imperative;
using namespace interpreter;
using namespace interpreter::intl;


std::unique_ptr<Interpreter::Channel> InterpreterImpl::create_channel() {
    return std::make_unique<ChannelImpl>();
}

Interpreter& Interpreter::inst() {
    static InterpreterImpl inst_;
    return inst_;
}

void* ChannelImpl::put(const HostTensorND& value) {
    auto info = alloc();
    info->desc.layout = value.layout();
    info->desc.comp_node = value.comp_node();
    info->desc.value = value.proxy_to_default_cpu();
    m_valid_handle.insert(info);
    m_worker.add_task(Put{info, value});
    return info;
}

void ChannelImpl::del(void* handle) {
    mgb_assert(m_valid_handle.erase(handle), "invalid handle: %p", handle);
    m_worker.add_task(Del{reinterpret_cast<TensorInfo*>(handle)});
}

SmallVector<void*> ChannelImpl::apply_op(
        std::shared_ptr<OpDef> op,
        const SmallVector<void*>& inputs) {
    SmallVector<LogicalTensorDesc> input_descs;
    input_descs.reserve(inputs.size());
    for (auto h : inputs) {
        auto info = reinterpret_cast<TensorInfo*>(h);
        input_descs.push_back(info->desc);
    }
    auto output_descs = OpDef::infer_output_attrs_fallible(*op, input_descs);
    ApplyOp cmd{std::move(op)};
    cmd.inputs.reserve(inputs.size());
    for (auto i : inputs) {
        cmd.inputs.push_back(reinterpret_cast<TensorInfo*>(i));
    }
    cmd.outputs.reserve(output_descs.size());
    SmallVector<void*> outputs;
    for (auto&& desc : output_descs) {
        auto info = alloc();
        info->desc = desc;
        m_valid_handle.insert(info);
        cmd.outputs.push_back(info);
        outputs.push_back(info);
    }
    m_worker.add_task(std::move(cmd));
    return outputs;
}

HostTensorND ChannelImpl::get_value(void* handle) {
    mgb_assert(m_valid_handle.find(handle) != m_valid_handle.end(),
               "invalid handle: %p", handle);
    auto info = reinterpret_cast<TensorInfo*>(handle);
    std::unique_lock<decltype(m_mutex)> lock(m_mutex);
    mgb_assert(!m_waitee);
    if (!info->value_fetched) {
        m_waitee = info;
        m_worker.add_task(GetValue{info});
        m_cv.wait(lock, [&]() {
            check_worker_exc_unsafe();
            return info->value_fetched;
        });
        m_waitee = nullptr;
    }
    mgb_assert(info->ptr->value_fetched());
    return info->ptr->get_value();
}

TensorShape ChannelImpl::get_shape(void* handle) {
    mgb_assert(m_valid_handle.find(handle) != m_valid_handle.end(),
               "invalid handle: %p", handle);
    auto info = reinterpret_cast<TensorInfo*>(handle);
    if (info->desc.layout.ndim != 0) {
        return info->desc.layout;
    }
    std::unique_lock<decltype(m_mutex)> lock(m_mutex);
    mgb_assert(!m_waitee);
    m_waitee = info;
    m_cv.wait(lock, [&]() {
        check_worker_exc_unsafe();
        return bool(info->ptr);
    });
    m_waitee = nullptr;
    TensorShape ret = info->ptr->layout();
    mgb_assert(ret.ndim != 0);
    return ret;
}

DType ChannelImpl::get_dtype(void* handle) {
    mgb_assert(m_valid_handle.find(handle) != m_valid_handle.end(),
               "invalid handle: %p", handle);
    auto info = reinterpret_cast<TensorInfo*>(handle);
    auto ret = info->desc.layout.dtype;
    mgb_assert(ret.valid());
    return ret;
}

CompNode ChannelImpl::get_device(void* handle) {
    mgb_assert(m_valid_handle.find(handle) != m_valid_handle.end(),
               "invalid handle: %p", handle);
    auto info = reinterpret_cast<TensorInfo*>(handle);
    auto ret = info->desc.comp_node;
    mgb_assert(ret.valid());
    return ret;
}

DeviceTensorND ChannelImpl::get_dev_tensor(void* handle) {
    mgb_assert(m_valid_handle.find(handle) != m_valid_handle.end(),
               "invalid handle: %p", handle);
    auto info = reinterpret_cast<TensorInfo*>(handle);
    std::unique_lock<decltype(m_mutex)> lock(m_mutex);
    mgb_assert(!m_waitee);
    m_waitee = info;
    m_cv.wait(lock, [&]() {
        check_worker_exc_unsafe();
        return bool(info->ptr);
    });
    m_waitee = nullptr;
    return info->ptr->dev_tensor();
}

void ChannelImpl::sync() {
    m_worker.wait_all_task_finish();
    MGB_LOCK_GUARD(m_mutex);
    check_worker_exc_unsafe();
}

void ChannelImpl::close() {
    sync();
}

void ChannelImpl::config_async_level(int level) {
    mgb_assert(0);
}

TensorInfo* ChannelImpl::alloc() {
    MGB_LOCK_GUARD(m_mutex);
    return m_pool.alloc();
}

void ChannelImpl::free(TensorInfo* ptr) {
    MGB_LOCK_GUARD(m_mutex);
    m_pool.free(ptr);
}

ChannelImpl::~ChannelImpl() {}

void ChannelImpl::produce_tensor(TensorInfo* dest, TensorPtr ptr) {
    MGB_LOCK_GUARD(m_mutex);
    dest->value_fetched = ptr->value_fetched();
    dest->ptr = std::move(ptr);
    if (m_waitee == dest) {
        m_cv.notify_all();
    }
}

void ChannelImpl::process_one_task(Command& cmd) {
    std::visit([this](auto& cmd) {
        using T = std::remove_reference_t<decltype(cmd)>;
        try {
            if constexpr (std::is_same_v<T, Put>) {
                produce_tensor(cmd.dest, Tensor::make(cmd.value));
            } else if constexpr (std::is_same_v<T, ApplyOp>) {
                SmallVector<TensorPtr> tensor_inputs;
                tensor_inputs.reserve(cmd.inputs.size());
                for (auto i : cmd.inputs) {
                    tensor_inputs.push_back(i->ptr);
                }
                auto tensor_outputs = OpDef::apply_on_physical_tensor(*cmd.op, tensor_inputs);
                mgb_assert(tensor_outputs.size() == cmd.outputs.size());
                for (size_t i = 0; i < tensor_outputs.size(); ++i) {
                    produce_tensor(cmd.outputs[i], std::move(tensor_outputs[i]));
                }
            } else if constexpr (std::is_same_v<T, Del>) {
                free(cmd.dest);
            } else if constexpr (std::is_same_v<T, GetValue>) {
                cmd.dest->ptr->fetch_value();
                MGB_LOCK_GUARD(m_mutex);
                cmd.dest->value_fetched = true;
                if (m_waitee == cmd.dest) {
                    m_cv.notify_all();
                }
            } else {
                static_assert(!std::is_same_v<T, T>);
            }
        } catch (...) {
            MGB_LOCK_GUARD(m_mutex);
            m_worker_exc = std::current_exception();
            m_cv.notify_all();
        }
    }, cmd);
}


void ChannelImpl::check_worker_exc_unsafe() {
    if (m_worker_exc) {
        std::exception_ptr exc;
        std::swap(exc, m_worker_exc);
        std::rethrow_exception(exc);
    }
}