opr_impl.cpp 15.5 KB
Newer Older
1 2 3 4
/**
 * \file dnn/src/naive/conv_bias/opr_impl.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13 14 15
 */
#include "src/naive/conv_bias/opr_impl.h"
#include "src/naive/convolution/helper.h"

#include <cstring>
16
#include "megdnn/heuristic_cache.h"
17
#include "megdnn/dtype.h"
18 19
#include "src/common/conv_bias.h"
#include "src/common/opr_delegate.h"
20 21 22 23 24 25 26 27 28 29
#include "src/common/utils.h"
#include "src/naive/handle.h"
#include "src/naive/lowbit_utils.h"

#include "midout.h"
MIDOUT_DECL(megdnn_naive_conv_bias_fwd)

namespace megdnn {
namespace naive {

30 31 32 33 34 35 36
//! Only used for naive implementation. DO NOT use the following function in
//! other backends.
void handle_z_inp_and_activation_naive(
        param::ConvBias::NonlineMode nonline_mode,
        const TensorND& conv_bias_tensor, const TensorND& z_tensor,
        const TensorND& dst_tensor, dt_byte* workspace_ptr) {
    auto res = dst_tensor, z_float = z_tensor;
37
    //! create naive inplace handle
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    auto handle = inplace_cpu_handle(2);
    if (z_tensor.layout.ndim > 0 &&
        z_tensor.layout.dtype.category() != DTypeCategory::FLOAT) {
        dt_byte *res_float_workspace_ptr = nullptr,
                *z_float_workspace_ptr = nullptr;
        megdnn_assert(z_tensor.layout.eq_shape(dst_tensor.layout));
        res_float_workspace_ptr = workspace_ptr;
        z_float_workspace_ptr = res_float_workspace_ptr +
                                TensorLayout{z_tensor.layout, dtype::Float32()}
                                        .span()
                                        .dist_byte();
        res = TensorND{res_float_workspace_ptr,
                       TensorLayout{dst_tensor.layout, dtype::Float32()}};
        z_float = TensorND{z_float_workspace_ptr,
                           TensorLayout{z_tensor.layout, dtype::Float32()}};
    }
    // ====================sfb + z_tensor=====================
    if (z_tensor.layout.ndim > 0) {
        if (z_tensor.layout.dtype.category() != DTypeCategory::FLOAT) {
            auto&& type_cvt = handle->create_operator<TypeCvt>();
            type_cvt->exec(conv_bias_tensor, res);
            type_cvt->exec(z_tensor, z_float);
        }
        auto add_opr = handle->create_operator<ElemwiseForward>();
        add_opr->param().mode = Elemwise::Param::Mode::ADD;
        add_opr->exec({res, z_float}, res);
    } else {
        res = conv_bias_tensor;
    }

    using NonlineMode = param::ConvBias::NonlineMode;

    switch (nonline_mode) {
#define cb(_mode)                                                          \
    case NonlineMode::_mode: {                                             \
        if (res.layout.dtype.category() != DTypeCategory::QUANTIZED) {     \
            auto nonlinear = handle->create_operator<ElemwiseForward>();   \
            nonlinear->param().mode = Elemwise::Param::Mode::_mode;        \
            if (res.layout.dtype == dst_tensor.layout.dtype) {             \
                nonlinear->exec({res}, dst_tensor);                        \
            } else {                                                       \
                nonlinear->exec({res}, res);                               \
                handle->create_operator<TypeCvt>()->exec(res, dst_tensor); \
            }                                                              \
        } else {                                                           \
            auto nonlinear = handle->create_operator<ElemwiseMultiType>(); \
            nonlinear->param().mode =                                      \
                    ElemwiseMultiType::Param::Mode::Q##_mode;              \
            nonlinear->exec({res}, dst_tensor);                            \
        }                                                                  \
        break;                                                             \
    }
        cb(RELU);
        cb(H_SWISH);
#undef cb
        case NonlineMode::SIGMOID: {
            megdnn_assert(res.layout.dtype.category() !=
                          DTypeCategory::QUANTIZED);
            auto nonlinear = handle->create_operator<ElemwiseForward>();
            nonlinear->param().mode = Elemwise::Param::Mode::SIGMOID;
            nonlinear->exec({res}, res);
            if (res.raw_ptr != dst_tensor.raw_ptr) {
                handle->create_operator<TypeCvt>()->exec(res, dst_tensor);
            }
            break;
        }
        case NonlineMode::IDENTITY: {
            if (res.raw_ptr != dst_tensor.raw_ptr) {
                handle->create_operator<TypeCvt>()->exec(res, dst_tensor);
            }
            break;
        }
        default:
            megdnn_assert(false);
    }
}

115 116 117 118 119 120 121 122 123 124 125
namespace convolution {

template <>
void forward_bias<dt_quint4, dt_quint4, dt_qint32, dt_qint32>(
        _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_in bias,
        _megdnn_tensor_out dst, dt_byte* workspace_ptr,
        const ConvBiasForward::CanonizedFilterMeta& filter_meta) {
    auto convert_layout = [](const TensorLayout& layout) {
        auto ret = layout;
        auto param = layout.dtype.param<dtype::Quantized4Asymm>();
        ret.dtype = dtype::Quantized8Asymm(param.scale, param.zero_point);
126
        ret.format = TensorFormat(ret.dtype);
127
        ret.init_contiguous_stride();
128 129 130 131 132 133 134 135 136 137 138 139 140
        return ret;
    };
    TensorND new_src = {workspace_ptr, convert_layout(src.layout)};
    TensorND new_flt = {workspace_ptr + new_src.layout.span().dist_byte(),
                        convert_layout(filter.layout)};

    uint4_to_uint8(src, new_src);
    uint4_to_uint8(filter, new_flt);
    auto new_filter_meta = filter_meta;
    new_filter_meta.dtype = new_flt.layout.dtype;
    forward_bias<dt_quint8, dt_quint8, dt_qint32, dt_qint32>(
            new_src, new_flt, bias, dst, nullptr, new_filter_meta);
}
141 142 143 144 145 146 147 148 149 150 151

template <>
void forward_bias<dt_qint4, dt_qint4, dt_qint32, dt_qint32>(
        _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_in bias,
        _megdnn_tensor_out dst, dt_byte* workspace_ptr,
        const ConvBiasForward::CanonizedFilterMeta& filter_meta) {
    auto convert_layout = [](const TensorLayout& layout) {
        auto ret = layout;
        auto param = layout.dtype.param<dtype::QuantizedS4>();
        ret.dtype = dtype::QuantizedS8(param.scale);
        ret.format = TensorFormat(ret.dtype);
152
        ret.init_contiguous_stride();
153 154 155 156 157 158 159 160 161 162 163 164
        return ret;
    };
    TensorND new_src = {workspace_ptr, convert_layout(src.layout)};
    TensorND new_flt = {workspace_ptr + new_src.layout.span().dist_byte(),
                        convert_layout(filter.layout)};
    int4_to_int8(src, new_src);
    int4_to_int8(filter, new_flt);
    auto new_filter_meta = filter_meta;
    new_filter_meta.dtype = new_flt.layout.dtype;
    forward_bias<dt_qint8, dt_qint8, dt_qint32, dt_qint32>(
            new_src, new_flt, bias, dst, nullptr, new_filter_meta);
}
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196

template <>
void forward_bias<dt_quint4, dt_qint4, dt_qint32, dt_qint32>(
        _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_in bias,
        _megdnn_tensor_out dst, dt_byte* workspace_ptr,
        const ConvBiasForward::CanonizedFilterMeta& filter_meta) {
    auto convert_layout_src = [](const TensorLayout& layout) {
        auto ret = layout;
        auto param = layout.dtype.param<dtype::Quantized4Asymm>();
        ret.dtype = dtype::QuantizedS8(param.scale);
        ret.format = TensorFormat(ret.dtype);
        ret.init_contiguous_stride();
        return ret;
    };
    auto convert_layout_flt = [](const TensorLayout& layout) {
        auto ret = layout;
        auto param = layout.dtype.param<dtype::QuantizedS4>();
        ret.dtype = dtype::QuantizedS8(param.scale);
        ret.format = TensorFormat(ret.dtype);
        ret.init_contiguous_stride();
        return ret;
    };
    TensorND new_src = {workspace_ptr, convert_layout_src(src.layout)};
    TensorND new_flt = {workspace_ptr + new_src.layout.span().dist_byte(),
                        convert_layout_flt(filter.layout)};
    uint4_to_int8(src, new_src);
    int4_to_int8(filter, new_flt);
    auto new_filter_meta = filter_meta;
    new_filter_meta.dtype = new_flt.layout.dtype;
    forward_bias<dt_qint8, dt_qint8, dt_qint32, dt_qint32>(
            new_src, new_flt, bias, dst, nullptr, new_filter_meta);
}
197 198 199 200 201 202
}  // namespace convolution

size_t ConvBiasForwardImpl::get_workspace_in_bytes(const TensorLayout& src,
                                                   const TensorLayout& flt,
                                                   const TensorLayout& bias,
                                                   const TensorLayout& z,
203 204
                                                   const TensorLayout& dst,
                                                   const PreprocessedFilter*) {
205 206 207 208 209 210 211 212 213
    TensorLayoutArray layouts{src, flt, bias, z, dst};
    HeuristicCache::Key key{this->handle(), this->get_opr_type(),
                            layouts.data(), layouts.size(), &this->param(),
                            sizeof(this->param())};
    auto rst = HeuristicCache::instance().get(key);
    if (rst.policy.algo.valid()) {
        return rst.workspace;
    }

214 215 216 217 218 219 220 221
    size_t float_workspace_size = 0;

    if (z.ndim > 0 && z.dtype.category() != DTypeCategory::FLOAT) {
        megdnn_assert(z.eq_shape(dst));
        // (w * f + b).astype(float) + (z).astype(float)
        float_workspace_size =
                2 * TensorLayout{z, dtype::Float32()}.span().dist_byte();
    }
222 223 224 225 226 227 228
    
    if ((src.dtype.enumv() == DTypeEnum::Quantized4Asymm ||
         src.dtype.enumv() == DTypeEnum::QuantizedS4) &&
        bias.dtype.enumv() == DTypeEnum::QuantizedS32) {
        float_workspace_size +=
                (src.total_nr_elems() + flt.total_nr_elems()) * sizeof(uint8_t);
    }
229 230

    if (bias.dtype.enumv() != dst.dtype.enumv()) {
231 232
        float_workspace_size +=
                TensorLayout{dst, bias.dtype}.span().dist_byte();
233 234 235 236 237 238 239
    }
    return float_workspace_size;
}

void ConvBiasForwardImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_in filter,
                               _megdnn_tensor_in bias, _megdnn_tensor_in z,
                               _megdnn_tensor_out dst,
240
                               const PreprocessedFilter* preprocessed_filter,
241 242
                               _megdnn_workspace workspace) {
    MIDOUT_BEGIN(megdnn_naive_conv_bias_fwd) {
243
        dt_byte* workspace_ptr = workspace.raw_ptr;
244 245
        // ============================w * f + b================================

246 247 248
        auto filter_meta = check_exec_allow_noncontiguous(
                src.layout, filter.layout, bias.layout, z.layout, dst.layout,
                workspace.size, preprocessed_filter);
249 250 251 252 253 254 255
        auto sfb = dst;
        if (bias.layout.dtype.enumv() != dst.layout.dtype.enumv()) {
            // intermediate result
            sfb = TensorND{workspace_ptr,
                           TensorLayout{dst.layout, bias.layout.dtype}};
            workspace_ptr += sfb.layout.span().dist_byte();
        }
256
#define DISPATCH_RAW(in_dt, flt_dt, bias_dt, out_dt, cmode, func)              \
257
    else if (src.layout.dtype.enumv() == DTypeTrait<dtype::in_dt>::enumv &&    \
258 259
             filter.layout.dtype.enumv() ==                                    \
                     DTypeTrait<dtype::flt_dt>::enumv &&                       \
260 261 262 263 264 265 266 267
             bias.layout.dtype.enumv() == DTypeTrait<dtype::bias_dt>::enumv && \
             sfb.layout.dtype.enumv() == DTypeTrait<dtype::out_dt>::enumv &&   \
             param().compute_mode == Param::ComputeMode::cmode) {              \
        MEGDNN_DISPATCH_CPU_KERN_OPR(                                          \
                func(src, filter, bias, sfb, workspace_ptr, filter_meta));     \
    }
#define DISPATCH(in_dt, out_dt)                                          \
    DISPATCH_RAW(                                                        \
268
            in_dt, in_dt, out_dt, out_dt, DEFAULT,                       \
269 270 271 272
            (convolution::forward_bias<DTypeTrait<dtype::in_dt>::ctype,  \
                                       DTypeTrait<dtype::in_dt>::ctype,  \
                                       DTypeTrait<dtype::out_dt>::ctype, \
                                       DTypeTrait<dtype::out_dt>::ctype>))
273 274
        if (0) {
        }
275 276 277 278
        DISPATCH(Float32, Float32)
        DISPATCH(Int8, Int16)
        DISPATCH(Int8, Int32)
        DISPATCH(QuantizedS8, QuantizedS32)
279
        DISPATCH(QuantizedS8, Float32)
280 281
        DISPATCH(Quantized8Asymm, QuantizedS32)
        DISPATCH(Quantized4Asymm, QuantizedS32)
282 283
        DISPATCH_RAW(QuantizedS8, QuantizedS8, QuantizedS32, QuantizedS32,
                     FLOAT32,
284 285
                     (convolution::forward_bias<dt_int8, dt_int8, dt_int32,
                                                dt_int32>))
286
        DISPATCH(QuantizedS4, QuantizedS32)
287 288 289 290
        DISPATCH_RAW(Quantized4Asymm, QuantizedS4, QuantizedS32, QuantizedS32,
                     DEFAULT,
                     (convolution::forward_bias<dt_quint4, dt_qint4, dt_qint32,
                                                dt_qint32>))
291 292
#if !MEGDNN_DISABLE_FLOAT16
        DISPATCH(Float16, Float16)
293
        DISPATCH_RAW(Float16, Float16, Float16, Float16, FLOAT32,
294 295
                     (convolution::forward_bias<dt_float16, dt_float16,
                                                dt_float16, dt_float32>))
296
        DISPATCH_RAW(BFloat16, BFloat16, BFloat16, BFloat16, FLOAT32,
297 298
                     (convolution::forward_bias<dt_bfloat16, dt_bfloat16,
                                                dt_bfloat16, dt_float32>))
299 300 301 302 303 304 305 306 307 308
#endif
        else {
            megdnn_throw(ssprintf(
                    "unsupported naive ConvBias(%s, %s, %s, %s) -> %s",
                    src.layout.dtype.name(), filter.layout.dtype.name(),
                    bias.layout.dtype.name(), z.layout.dtype.name(),
                    dst.layout.dtype.name()));
        }
#undef DISPATCH
#undef DISPATCH_RAW
309 310
        MEGDNN_DISPATCH_CPU_KERN_OPR(handle_z_inp_and_activation_naive(
                param().nonlineMode, sfb, z, dst, workspace_ptr));
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
    }
    MIDOUT_END();
}

std::vector<ConvBiasForward::Algorithm*>
ConvBiasForwardImpl::get_all_algorithms(const TensorLayout&,
                                        const TensorLayout&,
                                        const TensorLayout&,
                                        const TensorLayout&,
                                        const TensorLayout&) {
    return {static_cast<HandleImpl*>(handle())->default_conv_bias_fwd_algo()};
}

ConvBiasForward::Algorithm* ConvBiasForwardImpl::get_algorithm_heuristic(
        const TensorLayout& /* src */, const TensorLayout& /* filter */,
        const TensorLayout& /* bias */, const TensorLayout& /* z */,
        const TensorLayout& /* dst */, size_t /* workspace_limit_in_bytes */,
328 329
        const AlgoAttribute& positive_attr,
        const AlgoAttribute& negative_attr) {
330 331
    auto algo =
            static_cast<HandleImpl*>(handle())->default_conv_bias_fwd_algo();
332
    algo->check_attribute(positive_attr, negative_attr);
333 334 335
    return algo;
}

336
ConvBiasForward::Algorithm* ConvBiasForwardImpl::get_algorithm_from_desc(
337 338 339 340 341 342 343
        const AlgorithmDesc& desc) {
    Algorithm* ret =
            static_cast<HandleImpl*>(handle())->default_conv_bias_fwd_algo();
    megdnn_assert(desc == ret->info().desc);
    return ret;
}

344 345 346 347 348 349 350 351
const char* ConvBiasForwardImpl::get_algorithm_set_name() const {
    return "DEFAULT";
}

}  // namespace naive
}  // namespace megdnn

// vim: syntax=cpp.doxygen